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1 Introduction

For different reasons scientists and engineers may need to optimize problems in which the ob-
jective function is very expensive to evaluate. In these cases, partial, and obviously inexact,
evaluations are useful. The idea is to decrease as much as possible functional values using par-
tial evaluations in such a way that, when we have no chance except to evaluate the function with
maximal accuracy, we are already close enough to a solution of the problem. Rational decisions
about when to increase accuracy (and evaluation cost) or even when to appeal to more inexact
evaluations are hard to make. Roughly speaking we need a compromise between accuracy of
evaluation and functional decrease that is difficult to achieve on a mere heuristic basis.

In recent papers, we developed a methodology based on the analogy of the Inexact Restora-
tion idea for continuous constrained optimization and the process of increasing accuracy of func-
tion evaluation. In our most recent paper [11], we developed an algorithm inspired in [10, 40]
for which it is possible to prove, not only convergence but also complexity results. However, the
algorithm proposed in [11], as well as the algorithms introduced in [10, 40], employs derivatives
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of the objective function, a feature that may be inadequate in many cases in which one does not
have derivatives at all.

This motivates the present work, in which the algorithms of [10, 11, 40] are adapted to the
case in which derivatives are not available and the main theoretical results are proved. Moreover,
we concentrate ourselves in a practical problem related with our present work of predicting and
mitigating the consequences of dam breaking disasters.

Notation. N+ denotes the non-negative integer numbers; while R+ denotes the non-negative
real numbers. The symbol ‖ · ‖ denotes the Euclidean norm of vector and matrices.

2 Main algorithm
{mainalgo}

For defining the main problem we adopt the formulation of [11]. Assume that Y is a set,
h : Y → R+, f : Rn × Y → R, and Ω ⊂ Rn is defined by the set of equations cE(x) = 0 and
inequations cI(x) ≤ 0, where cE : Rn → Rm and cI : Rn → Rp. The problem is given by

Minimize (with respect to x) f(x, y) subject to h(y) = 0 and x ∈ Ω, (1) {theproblem}{theproblem}

where
Ω = {x ∈ Rn | cE(x) = 0 and cI(x) ≤ 0}. (2) {omega}{omega}

The main algorithm for solving this problem is also the one suggested in [11]. The merit function
Φ : Rn × Y × (0, 1)→ R will be defined by

Φ(x, y, θ) = θf(x, y) + (1− θ)h(y).

Algorithm 2.1. Let x0 ∈ Ω, y0 ∈ Y , θ0 ∈ (0, 1), ν > 0, r ∈ (0, 1), α > 0, and β > 0 be given.
Set k ← 0.

Step 1. Restoration phase

Define yre
k ∈ Y in such a way that

h(yre
k ) ≤ rh(yk) (3) {erre}{erre}

and
f(xk, y

re
k ) ≤ f(xk, yk) + βh(yk). (4) {beta}{beta}

Step 2. Updating the penalty parameter

If

Φ(xk, y
re
k , θk) ≤ Φ(xk, yk, θk) +

1− r
2

(h(yre
k )− h(yk)) , (5) {cinco}{cinco}

set θk+1 = θk. Otherwise, set

θk+1 =
(1 + r) (h(yk)− h(yre

k ))

2
(
f(xk, y

re
k )− f(xk, yk) + h(yk)− h(yre

k )
) . (6) {seis}{seis}
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Step 3. Optimization phase

Compute yk+1 ∈ Y and sk ∈ Rn such that xk + sk ∈ Ω,

f(xk + sk, yk+1) ≤ f(xk, y
re
k )− α‖sk‖ν (7) {armijo1}{armijo1}

and

Φ(xk + sk, yk+1, θk+1) ≤ Φ(xk, yk, θk+1) +
1− r

2
(h(yre

k )− h(yk)) . (8) {dos}{dos}

Define xk+1 = xk + sk, update k ← k + 1, and go to Step 1.

The main results related to this algorithm have been proved in [11] and may be summarized
as follows.

{a1}
Assumption A1 At Step 1 of Algorithm 2.1, for all k ∈ N+ it is possible to compute, in finite
time, yre

k satisfying (3) and (4).

{lemaboludo}
Lemma 2.1 Suppose that Assumption A1 holds. Then, Algorithm 2.1 is well defined.

{a2}
Assumption A2 There exist hmax > 0 and fmin ∈ R such that, for all y ∈ Y and x ∈ Ω we
have that h(y) ≤ hmax and f(x, y) ≥ fmin.

{corofeas}
Theorem 2.1 Suppose that Assumptions A1 and A2 hold. Given εfeas > 0, the number of
indices k such that h(yk) > εfeas is bounded above by

cfeas

εfeas
, (9) {lavarlosdientes}{lavarlosdientes}

where cfeas only depends on x0, y0, r, θ0, β, hmax, and fmin.

{corosk}
Theorem 2.2 Suppose that Assumptions A1 and A2 hold. Then, the series

∑∞
k=0 ‖sk‖ν is

convergent. Moreover, given εopt > 0, the number of iterates k at which ‖sk‖ > εopt is not
bigger than

copt

ενopt

, (10) {buenoeso}{buenoeso}

where copt only depends on α, x0, y0, r, θ0, β, hmax, and fmin.

3 Solving the subproblem without derivatives
{solvinsub}

Step 3 of Algorithm 2.1 will be implemented as in [11]. Namely, initially we test an arbitrary
ytrial ∈ Y and strial ∈ Rn such that xk + strial ∈ Ω, and we accept yk+1 = ytrial and sk = strial

if conditions (7) and (8) are fulfilled. If this is not the case we set yk+1 = yre
k . In that case it

is trivial to see that (7) implies (8). So, the implementability of the algorithm depends on the
introduction of some method that, for arbitrary x, be able to compute s such that (7) holds
with yk+1 = yre

k and such that “‖s‖ small” imply some type of optimality for f .
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In Section 2 we did not use continuity let alone differentiability of the functions f , cE , cI .
Nevertheless we are able to prove that h(yk) and ‖sk‖ tend to zero. Algorithm 2.1 will be useful
only if the fact of ‖sk‖ being small implies some kind of optimality with respect to f .

A general idea for solving the implementability problem consists of choosing an arbitrary
derivative-free minimization algorithm and applying it to the minimization, with respect to s,
of f(x + s, y) + α‖s‖ν . Since the value of this function for s = 0 is f(x, y), it turns out that,
except in the case that s = 0 is satisfactory for the algorithm, the algorithm will find s 6= 0 such
that f(x+ s, y) +α‖s‖ν < f(x, y), so that the condition (7) will take place. Moreover, if we run
the derivative-free minimization algorithm up to the fulfillment of some reasonable approximate
convergence criterion, we will have that this criterion will be fulfilled by sk, which, in turn,
tends to zero. In other words, points arbitrarily close to xk will fulfill an approximate optimality
criterion that corresponds to a function which is arbitrarily close to f(x + s, y). Clearly, we
should be very close to our main objective, which is to discover an optimization meaning in the
property ‖sk‖ → 0. This was the idea used in [19] that lead to the choice of GSS [39, 38] as
a subalgorithm for an Inexact Restoration method for derivative-free optimization with smooth
constraints.

Algorithm 3.1.

Step 1. Choose yk+1 ∈ Y .

Step 2. Compute sk ∈ Rn such that xk + sk ∈ Ω and

f(xk + sk, yk+1) ≤ f(xk, yk+1)− α‖sk‖ν . (11) {armijo2}{armijo2}

Step 3. If (7) and (8) hold, return yk+1 and sk.

Step 4. Re-define yk+1 = yre
k , compute sk ∈ Rn such that xk+sk ∈ Ω and such that (11) holds,

and return yk+1 and sk.

Observe that when yk+1 = yre
k the fulfillment of (11) implies trivially the fulfillment of (7)

and (8). This is why the test of (7) and (8) is unnecessary at Step 4. It remains to take a decision
about the way in which, given yk+1 and xk, one may obtain the descent condition (11) without
employing derivatives and in such a way that the value of ‖sk‖ is a measure of optimality.

Mimicking the approach of ([19]) we could apply a derivative-free algorithm to the mini-
mization of f(xk + s, yk+1) + α‖s‖ν . In such a way, if the algorithm has the obvious property
of decreasing the objective function at each iteration and sine the objective function vanishes
if s = 0, all the iterates would satisfy f(xk + s, yk+1) + α‖s‖ν < f(xk, yk+1). Moreover, after
a reasonable number of iterations we would arrive to a point s that approximately minimizes
f(xk + s, yk+1) + α‖s‖ν . At such a point some optimality criterion would be fulfilled approx-
imately. Therefore, in that case, a small size of s would imply that the null increment s is
approximately optimal. So, we would not be far from the desired property that ‖sk‖ is an
optimality measure.

However, this approach is not satisfactory because it demands the whole application up to
approximate convergence of an ad hoc derivative-free algorithm. Our goal is to find an approach
that obtains (11) with the desired optimality property of ‖sk‖ using a single iteration of a
suitable derivative-free algorithm.
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4 Optimization phase

4.1 Model regularization
{regula}

Let F : Ω → R where Ω ⊂ Rn is arbitrary. No conditions are imposed on F except, of course,
to be defined for all x ∈ Ω. We assume, however, that there exist a model M(·, ·), L ≥ 0, and
p ≥ 0 such that, for all x̄ ∈ Ω, M(x̄, x̄) = F (x̄) and

F (x) ≤M(x̄, x) + L‖x− x̄‖p+1 (12) {lipscho}{lipscho}

for all x ∈ Ω. The algorithm based on the minimization of a regularized model that gives rise
to the optimization phase proposed in the current section follows.

Algorithm 4.1.1. Let σmin > 0, σub
ini > 0, ζ > 1, α > 0, and x0 ∈ Ω be given. Initialize k ← 0.

Step 1. Set `← `+ 1 and choose σk,` ∈ [0, σub
ini].

Step 2. Compute xk,` ∈ Ω a minimizer of M(xk, x) + σk,`‖x− xk‖p+1 subject to x ∈ Ω.

Step 3. Test the condition
F (xk,`) ≤ F (xk)− α‖xk,` − xk‖p+1. (13) {armijoF}{armijoF}

If (13) does not hold, then set σk,`+1 = max{σmin, ζσk,`}, `← `+ 1, and go to Step 2.

Step 3. Set xk+1 = xk,`, σk = σk,`, k ← k + 1, and go to Step 1.

The theorem below shows Algorithm 4.1.1 is well-defined and, additionally, it gives an eval-
uation complexity result for each iteration.

{regula2}
Theorem 4.1 Assume that M(·, ·), L ≥ 0, and p ≥ 0 are such that (12) holds and that Step 2
is well defined. Then, the kth iteration of Algorithm 4.1.1 is well defined and finishes with the
fulfillment of (13) after at most O(log(L+ α)) evaluations of F .

Proof: By (12),

F (xk,`) ≤ M(xk, xk,`) + L‖xk,` − xk‖p+1

≤ M(xk, xk,`) + σk,`‖xk,` − xk‖p+1 − σk,`‖xk,` − xk‖p+1 + L‖xk,` − xk‖p+1

≤ M(xk, xk) + σk,`‖xk − xk‖p+1 + (L− σk,`)‖xk,` − xk‖p+1

= F (xk) + (L− σk,`))‖xk,` − xk‖p+1.

Therefore, (13) holds if σk,` ≥ L + α that, by construction, occurs in the worst case when
` ≥ logζ ((L+ α)/σmin) + 2. Since F is evaluated only at points xk,` to test condition (13), this
completes the proof. 2

We now ellaborate on the properties of the sequence generated by the algorithm. (Este
analisis, que deberia estar concluindo antes de la definicion del Algoritm 4.1.2, esta incompleto.)
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{regula1}
Lemma 4.1 If x̄ ∈ Ω is a local minimizer of F (x) subject to x ∈ Ω, M(·, ·), L ≥ 0, and p ≥ 0
are such that (12) holds, and σ ≥ L, then x̄ is a local minimizer of M(x̄, x)+σ‖x− x̄‖p+1 subject
to x ∈ Ω.

Proof: Assume, by contradiction, that there exists a sequence xk contained in Ω that con-
verges to x̄ and M(x̄, xk) + σ‖xk − x̄‖p+1 < M(x̄, x̄) = F (x̄) for all k. Then, since σ ≥ L,
M(x̄, xk) +L‖xk− x̄‖p+1 < F (x̄) for all k. Therefore, by (12), F (xk) < F (x̄) for all k and, thus,
x̄ is not a local minimizer of F (x). 2

We say that x̄ is an ε-M -stationary point of F onto Ω if M(·, ·), L ≥ 0, and p ≥ 0
are such that (12) holds and, for some σ ≤ 2L, there exists a local minimizer x̂ ∈ Ω of
M(x̄, x) + σ‖x− x̄‖p+1 such that ‖x̄− x̂‖ ≤ ε and σ‖x̄− x̂‖p+1 ≤ ε.

By (13), we have that, for all k, F (xk+1) ≤ F (xk) − α‖xk+1 − xk‖p+1. Therefore, if F is
bounded below by flow, we necessarily have that ‖xk+1−xk‖ tends to zero. Moreover ‖xk+1−xk‖
can be bigger than ε > 0 during at most bα−1(F (x0)− flow)ε−(p+1)c iterations. This reasoning
shows that small values of ‖xk+1 − xk‖ when xk+1 is a minimizer of M(xk, x) + σ‖x − xk‖p+1

indeed mean something in terms of optimality. (Entiendo que aqui, en lugar de ese “means
something” entra de alguna forma el Lema 4.1 y la definicion de ε-M -stationary. Es aqui,
inclusive, que la necesidad de esas dos desigualdades parecidas que aparecen en la definicion
de ε-M -stationary es desvendada.) We are going to use this fact in the implementation of the
optimization phase of Algorithm 2.1 suggested in this section.

Assume that there exist a model M(·, ·, ·), L ≥ 0, and ν > 0 such that, for all x̄ ∈ Ω,
M(x̄, x̄, y) = f(x̄, y) and

f(x, y) ≤M(x̄, x, y) + L‖x− x̄‖ν (14) {lipschi}{lipschi}

for all x ∈ Ω and y ∈ Y . Assume that xk, y
re
k , and yk+1 correspond to iteration k of Al-

gorithm 2.1. The steps to compute sk and to choose between accepting the given arbitrary
(heuristically chossen) yk+1 or to re-define yk+1 = yre

k follow. If yk+1 = yre
k , Steps 1–4 should be

skipped.

Algorithm 4.1.2. Let σmin > 0, σub
ini > 0, and ζ > 1 be given constants independent of k.

Step 1. Choose σ ∈ [0, σub
ini].

Step 2. Compute xtrial a solution to

Minimize M(xk, x, yk+1) + σ‖x− xk‖ν subject to x ∈ Ω. (15) {reg1}{reg1}

Step 3. If sk = xtrial − xk satisfies (7) and (8), then return yk+1 and sk.

Step 4. Re-define yk+1 = yre
k and choose σ ∈ [0, σub

ini].

Step 5. Compute xtrial a solution to (15).

Step 6. If sk = xtrial − xk does not satisfy (7), then set σ ← max{σmin, ζσ} and go to Step 5.

Step 7. Return yk+1 and sk.
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4.2 Simplex derivatives (in this section we have Ω = Rn)
{simplex}

As in the case of Section 4.1, let us analyze first the case of a general function F : Rn → R. In
this section, we assume that F admits Lipschitz-continuous first derivatives. Therefore, there
exists L ≥ 0 such that

F (x)− F (x̄) ≤ ∇F (x̄)T (x− x̄) + L‖x− x̄‖2 (16) {lipscha}{lipscha}

for all x̄, x ∈ Rn. Moreover, we assume that, for all x̄ ∈ Rn, there exists a sequence (of gradient
approximations) {g`(x̄)}∞`=0 such that either

lim
`→∞

‖g`(x̄)‖= ‖∇F (x̄)‖ = 0 (17) {limige}{limige}

or

‖g`(x̄)−∇F (x̄)‖ ≤ ‖g`(x̄)‖
4

(18) {cuatro}{cuatro}

for all ` ≥ 0 large enough. A sequence of gradient approximations satisfying (17,18) can be
obtained using the simplex techniques described in [26].

The algorithm based on simplex derivatives that gives rise to the optimization phase pro-
posed in the current section follows.

Algorithm 4.2.1. Let σmin > 0, σub
ini > 0, ζ > 1, α > 0, and x0 ∈ Ω be given. Initialize k ← 0.

Step 1. Set `← 0 and choose σk,` ∈ [0, σub
ini].

Step 2. Compute g`(xk) and set xk,` = xk − 1
2σk,`

g`(xk).

Step 3. Test the descent condition

F (xk,`) ≤ F (xk)− α‖xk,` − xk‖2. (19) {armijazo}{armijazo}

Step 4. If (19) does not hold, then set σk,`+1 = max{σmin, ζσk,`}, `← `+ 1, and go to Step 2.

Step 4. Set xk+1 = xk,`, σk = σk,`, k ← k + 1, and go to Step 1.

Note that, by definition, xk,` is the minimizer of g`(xk)(x− xk) + σk,`‖x− xk‖2. Therefore,

g`(xk)(xk,` − xk) + σk,`‖xk,` − xk‖2 ≤ 0. (20) {mimi}{mimi}

The theorem below shows Algorithm 4.2.1 is well-defined and, in addition, it provides an
evaluation complexity result for its iterations.

{simplex1}
Theorem 4.2 The kth iteration of Algorithm 4.2.1 computes an infinite sequence {g`(xk)}∞`=0

that satisfies (17) or stops satisfying (19) after at most O(log(L+ α)) evaluations of F .
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Proof: Assume that (17) does not hold. Therefore, (18) takes place for all ` ≥ 0. Assume

σk,` ≥ 2(L+ α). (21) {yallego}{yallego}

Therefore,
L+ α

4σk,`
≤ 1

8
.

So,
L+ α

4σk,`
‖g`(xk)‖ ≤

1

8
‖g`(xk)‖.

Hence,
L+ α

4σk,`
‖g`(xk)‖ ≤

1

4
‖g`(xk)‖ −

1

8
‖g`(xk)‖.

Then, by (18),
L+ α

4σk,`
‖g`(xk)‖ ≤

1

4
‖g`(xk)‖ −

1

2
‖g`(xk)−∇F (xk)‖.

Thus,
L+ α

4σk,`
‖g`(xk)‖2 ≤

1

4
‖g`(xk)‖2 −

1

2
‖g`(xk)‖‖g`(xk)−∇F (xk)‖.

Therefore,

L+ α

4σ2
k,`

‖g`(xk)‖2 ≤
1

4σk,`
‖g`(xk)‖2 −

1

2σk,`
‖g`(xk)‖‖g`(xk)−∇F (xk)‖.

So,

0 ≤ −L+ α

4σ2
k,`

‖g`(xk)‖2 +
1

4σk,`
‖g`(xk)‖2 −

1

2σk,`
‖g`(xk)‖‖g`(xk)−∇F (xk)‖.

Hence,

L+ α

4σ2
k,`

‖g`(xk)‖2 −
1

4σk,`
‖g`(xk)‖2 +

1

2σk,`
‖g`(xk)‖‖g`(xk)−∇F (xk)‖ ≤ 0.

Then,

L

4σ2
k,`

‖g`(xk)‖2 −
1

4σk,`
‖g`(xk)‖2 +

1

2σk,`
‖g`(xk)‖‖g`(xk)−∇F (xk)‖ ≤ −

α

4σ2
k,`

‖g`(xk)‖2.

Thus, by Cauchy inequality,

L

4σ2
k,`

‖g`(xk)‖2 −
1

4σk,`
‖g`(xk)‖2 +

1

2σk,`
g`(xk)

T (g`(xk)−∇F (xk)) ≤ −
α

4σ2
k,`

‖g`(xk)‖2.

Therefore, by the definition of xk,`,

L‖xk,` − xk‖2 − σk,`‖xk,` − xk‖2 − (xk,` − xk)T (g`(xk)−∇F (xk)) ≤ −α‖xk,` − xk‖2.
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So, by (20),

g`(xk)
T (xk,` − xk) + σk,`‖xk,` − xk‖2 + L‖xk,` − xk‖2 − σk,`‖xk,` − xk‖2

−(xk,` − xk)T (g`(xk)−∇F (xk)) ≤ −α‖xk,` − xk‖2.

Hence,
L‖xk,` − xk‖2 + (xk,` − xk)T∇F (xk) ≤ −α‖xk,` − xk‖2.

Then, by (16),
F (xk,`)− F (xk) ≤ −α‖xk,` − xk‖2.

By construction, (21) occurs in the worst case when ` ≥ logζ ((L+ α)/σmin) + 2. Since F is
evaluated only at points xk,` to test (19), this completes the proof. 2

Here we should say something about the (optimality) propoerties of the sequence generated
by Algorithm 4.2.1.

We now describe the proposal based on simplex derivatives to implement to optimization
phase of Algorithm 2.1. This proposal applies to the case ν = 2 only. Assume that xk, y

re
k ,

and yk+1 correspond to iteration k of Algorithm 2.1. Assume that, for all y ∈ Y , defining
F (x) = f(x, y), we have that (a) condition (16) is satisfied and, (b) it can be defined sequences
of approximate gradients {g`(xk)}∞`=0 satisfying (17) or (18). (Is it clear that (b) must hold for
all y ∈ Y ?) Steps to compute sk and to choose between accepting the given arbitrary (heuris-
tically chossen) yk+1 or to re-define yk+1 = yre

k follow. If yk+1 = yre
k , Steps 1–5 should be skipped.

Algorithm 4.2.2. Let σmin > 0, σub
ini > 0, and ζ > 1 be given constants independent of k. Let

ε > 0 be given. (Could ε depend on k?).

Step 1. Set `← 0 and choose σ ∈ [0, σub
ini].

Step 2. Compute g`(xk). If ‖g`(xk)‖ ≤ ε, then go to Step 5.

Step 3. If sk = − 1
2σg`(xk) satisfies (7) and (8), then return yk+1 and sk.

Step 4. Set σ ← max{σmin, ζσ}, `← `+ 1, and go to Step 2.

Step 5. Re-define yk+1 = yre
k .

Step 6. Set `← 0 and choose σ ∈ [0, σub
ini].

Step 7. Compute g`(xk). If ‖g`(xk)‖ ≤ ε then return yk+1 and sk. (Who is sk in this case?
Can we return sk = 0 or does it make sense to return sk = − 1

2σg`(xk)?)

Step 8. If sk = − 1
2σg`(xk) satisfies (7), then return yk+1 and sk.

Step 9. Set σ ← max{σmin, ζσ}, `← `+ 1, and go to Step 7.

Remark. At Step 2, g`(xk) corresponds to a simplex gradient of function F (·) = f(·, yk+1)
evaluated at xk, with yk+1 6= yre

k ; while, at Step 7, it corresponds to a simplex gradient of
function F (·) = f(·, yre

k ).
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4.3 Dense directions (in this section we have Ω = Rn)
{dense}

For fixing ideas let us begin with the problem of minimizing F : Rn → R.

Algorithm 4.3.1. Let ∆ > 0, {d0, d1, d2, . . . } a dense set in the unitary sphere, and x0 ∈ Rn
be given. Initialize k ← 0.

Step 1. Set `← 0.

Step 2. Test condition
F (xk + 2−`∆dk+`) ≤ F (xk)− α2−`∆. (22) {armijo6}{armijo6}

Step 3. If (22) does not hold, then set `← `+ 1 and go to Step 2.

Step 4. Set sk = 2−`∆dk+`, xk+1 = xk + sk, k ← k + 1 and go to Step 1.

Clearly, there are two possibilities. Either every iteration of this algorithm finishes with the
fulfillment of (22) for some ` or there exists k such that for all ` = 0, 1, 2, . . . (22) fails to be
satisfied. In this case we say that the algorithm stalls at xk. For proving the characterization
of this situation we need a Lipschitz assumption that is stated below.

{assumpdense1}
Assumption A3 There exists L > 0 such that, whenever k is an iteration at which Algo-
rithm 4.3.1 stalls, there exists a neighborhood of xk such that, for all z1, z2 in this neighborhood,

|F (z1)− F (z2)| ≤ L‖z1 − z2‖. (23) {lipschu}{lipschu}
{assumpdense2}

Assumption A4 F is bounded below.

Here, it would be nice to give an interpretation of the results in the theorem below, that are
not clear to me. Are (24) and (25) saying, respectively, that x∗ and xk satisfy a derivative-free
optimality condition? If the answer is ’yes’, it is in some sense umpleasent that the tolerance
is α instead of ε.

{teodense1}
Theorem 4.3 Suppose that Assumptions A3 and A4 hold. Then:

1. If Algorithm 4.3.1 generates an infinite sequence of iterates {xk}, the series
∑∞

k=0 ‖sk‖ is
convergent and the sequence {xk} converges to a point x∗ such that for any given unitary
direction d and any given ` ∈ {0, 1, 2, . . .}, we have that

F (x∗ + 2−`∆d)− F (x∗)

2−`∆
≥ −α. (24) {tesilin}{tesilin}

2. If the algorithm stalls at xk, for all d in the unitary sphere, there exist infinitely many
indices ` ∈ {0, 1, 2, . . . } verifying

F (xk + 2−`∆d)− F (xk)

2−`∆
> −2α. (25) {saba}{saba}
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Proof: Consider first the case in which Algorithm 4.3.1 generates an infinite sequence {xk}.
By (22) and the definition of sk,

F (xk + sk) ≤ F (xk)− α‖sk‖ (26) {armijo7}{armijo7}

and xk+1 = xk + sk for all k = 0, 1, 2, . . . . Since F is assumed to be bounded below, (26) implies
that the series

∑∞
k=0 ‖sk‖ is convergent. Thus {xk} is a Cauchy sequence and converges to some

x∗ ∈ Rn.
Let us fix ` ∈ {0, 1, 2, . . . } and let d be an arbitrary direction belonging to the unitary sphere.

Since ‖sk‖ → 0, there exists k0 such that for all k ≥ k0, ‖sk‖ < 2−`∆. This implies that, for all
k ≥ k0 the increment 2−`∆dk+` has been tested and rejected, not satisfying (22). Therefore,

F (xk + 2−`∆dk+`) > F (xk)− α2−`∆ (27) {endelta}{endelta}

for all k ≥ k0. Since {dk+`, k ≥ k0} is dense in the unitary sphere it turns out that there exists
an infinite set of indices K such that limk∈K dk+` = d. Taking limits in (27) for k ∈ K we obtain
that

F (x∗ + 2−`∆d) ≥ F (x∗)− α2−`∆. (28) {enellimi}{enellimi}

Consider now the case in which the algorithm finishes at iteration k with an infinite loop
between Step 2 and Step 3. Observe that the set {dk+`, ` = 0, 1, 2, . . . } is dense in the unitary
sphere, as well as {d0, d1, d2, . . . }. Let d be an arbitrary direction in the unitary sphere. By the
density of {dk+`, ` = 0, 1, 2, . . .} there exists an infinite sequence of indices ` ∈ K1 such that

lim
`∈K1

dk+` = d.

Since (22) does not hold for all ` = 0, 1, 2, . . . we have that

F (xk + 2−`∆dk+`) > F (xk)− α2−`∆ (29) {notarmijo6}{notarmijo6}

for all ` ∈ K1. But, by the Lipschitz condition (23),

|F (xk + 2−`∆dk+`)− F (xk + 2−`∆d)| ≤ L2−`∆‖dk+` − d‖

for all ` ∈ K1 large enough. Therefore,

F (xk + 2−`∆d− F (xk + 2−`∆dk+`) ≥ −L2−`∆‖dk+` − d‖

for all ` ∈ K1 large enough. So,

F (xk + 2−`∆d) ≥ F (xk + 2−`∆dk+`)− L2−`∆‖dk+` − d‖

for all ` ∈ K1 large enough. Thus, by (29),

F (xk + 2−`∆d) > F (xk)− α2−`∆− L2−`∆‖dk+` − d‖ (30) {sabanda}{sabanda}

for all ` ∈ K1 large enough. Let `0 be such that

L‖dk+` − d‖ ≤ α
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for all ` ≥ `0, ` ∈ K1. Then
−L‖dk,` − d‖ ≥ −α

for all ` ≥ `0, ` ∈ K1. Thus, by (30),

F (xk + 2−`∆d) > F (xk)− α2−`∆− α2−`∆ = F (xk)− 2α2−`∆ (31) {saban}{saban}

for all ` ∈ K1 large enough. Therefore, (25) is proved. 2

We now describe the proposal based on dense directions to implement to optimization phase
of Algorithm 2.1. This proposal applies to the case ν = 1 only. Assume that xk, y

re
k , and yk+1

correspond to iteration k of Algorithm 2.1. Assume that, for all y ∈ Y , condition (23) is sat-
isfied defining F (x) = f(x, y). Steps to compute sk and to choose between accepting the given
arbitrary (heuristically chossen) yk+1 or to re-define yk+1 = yre

k follow. If yk+1 = yre
k , Steps 1–4

should be skipped.

Algorithm 4.3.2. Let ∆ > 0 and {d0, d1, d2, . . . } a dense set in the unitary sphere be given,
independent of k.

Step 1. Set `← 0.

Step 2. If sk = 2−`∆dk+` satisfies (7) and (8), then return yk+1 and sk.

Step 3. If ` < 2k, then set `← `+ 1 and go to Step 2.

Step 4. Re-define yk+1 = yre
k .

Step 5. Set `← 0.

Step 6. If sk = 2−`∆dk+` satisfies (7), then return yk+1 and sk.

Step 7. If ` < 2k, then set `← `+ 1 and go to Step 6.

Step 8. Return yk+1 and sk = 0.

4.4 Subgradient approach(in this section we have Ω = Rn)
{bagirov}

The full script of every previous subsection for the optimization phase is the following. We first
introduce a derivative-free algorithm that applyes to a generic F (locally Lipschitz in this case).
The we prove the algorithm is well-defined and prove some some convergence result that says
something about optimality. The we define F (x) = f(x, y), extend the assumtions and make a
proposal for an iteration of the optimization phase. OK. In this ection, we only have the last
part, i.e., the proposal for the optimization phase. All the other parts are missing.

Based in the approach of [3] ...
We now describe the proposal based on subgradients to implement to optimization phase of

Algorithm 2.1. This proposal applies to the case ν = 1 only. Assume that xk, y
re
k , and yk+1

correspond to iteration k of Algorithm 2.1. Assume that, for all y ∈ Y , F (x) = f(x, y) is locally

12



Lipschitz. Steps to compute sk and to choose between accepting the given arbitrary (heuris-
tically chossen) yk+1 or to re-define yk+1 = yre

k follow. If yk+1 = yre
k , Steps 1–4 should be skipped.

Algorithm 4.4.1. Let γ > 0 and δ > 0 be given (small) constants, independent of k. Moreover,
let κ ∈ (0, 1) be a given constant, independent of k. Constants κ and δ must satisfy κδ ≥ α,
where α > 0 is the parameter of Algorithm 2.1. This means, that, in fact, we must require δ > α
and choose κ ∈ [α/δ, 1). (We can re-write this simplified requirement if we confirm all this is
right.) Initialize `← 1.

Step 1. Choose d̄ ∈ Rn such that ‖d̄‖ = 1.

Step 2. Compute a quasisecant vector v̄ ∈ Rn using xk, γ, d, and the function (of x) f(x, yk+1).
This is not exactly Bagirov. Given the direction d̄, we should use his algorithm below to
compute the descent direction sk and the corresponding quasisecant vk.

Step 3. If ‖v̄‖ > δ and sk = − γ
‖v̄‖ v̄ satisfies (7) and (8), then return yk+1 and sk. (There is a

difference here with respect to the previous version. In the previous version we required
this first sk to satisfy (32). Do we need this? There is a relation between satisfying (32)
and satisfying (??). We should check this latter.

Step 4. Re-define yk+1 = yre
k , choose d̄0 ∈ Rn such that ‖d̄0‖ = 1, and set `← 1.

Step 5. Compute a quasisecant vector v` ∈ Rn using xk, γ, d̄`−1, and the function f(x, yk+1).
This is not exactly Bagirov. Given the direction d̄, we should use his algorithm below to
compute the descent direction sk and the corresponding quasisecant vk.

Step 6. If ` = 1 then define v̄` = v`. Otherwise, define v̄` as the point in the segment [v`, v̄`−1]
that is closest to the origin in the Euclidian norm.

Step 7. If ‖v̄`‖ ≤ δ then return yk+1 and sk = 0.

Step 8. Compute d̄` = −v̄`/‖v̄`‖.

Step 9. If
f(xk + γd̄`, yk+1) ≤ f(xk, yk+1)− κγ‖v̄`‖ (32) {armijobagirov}{armijobagirov}

then return yk+1 and sk = γd̄`.

Step 10. Set `← `+ 1, and go to Step 5.

4.5 Gradient sampling
{gs}

The optimization algorithm presented below is based on [37]. We present the algorithm with
nonormalized search direction, other options are possible, see [37]. Maybe we can work with
limited Armijo line search, procedure 4.3 in the original paper? Assume that f(x, y),
for all y ∈ Y is locally Lipschitz and continuously differentiable on an open and dense set D.
Algorithm 4.5.1 Let α > 0 and δ, ε > 0 be given (small) constants independent of k. Let
β, γ ∈ (0, 1) be line search parameters, reduction factors η, θ ∈ (0, 1]. Let m ≥ n + 1 be the
sampling size. Assume that δk ≥ δ, εk ≥ ε and xk ∈ D are given.
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Step 1. Choose yk+1 and compute gk = ∇f(xk, yk+1).

Step 2. If ‖gk‖ ≤ δ and εk ≤ ε stop.

Step 3. If sk = −γgk satisfies (7) and (8) and xk + sk ∈ D then return yk+1 and sk.

Step 4. Redefine yk+1 = yre
k . Denote f(x) = f(x, yk+1).

Step 5. Sample {xki}mi=1 uniformly and independently from B(xk, εk). If {xki}mi=1 6⊂ D, then
stop. Otherwise set Gk = co{∇f(xk),∇f(xk1, . . . ,∇f(xkm)}. Find

gk = arg min
g∈Gk

‖g‖ (33) {mingk}{mingk}

Step 6. If ‖gk‖ ≤ δ, εk ≤ ε stop.

Step 7. If ‖gk‖ ≤ δk set δk = θδk, εk = ηεk, and goto Step 5. Otherwise, set δk+1 = δk, εk+1 =
εk and dk = −gk.

Step 8. Line search: Find the smallest j = 0, 1, . . . such that for γk = βj there holds

f(xk + γkdk) < f(xk)− αγk‖gk‖2. (34) {gsarmijo}{gsarmijo}

Step 9. If xk + γkdk ∈ D set xk+1 = xk + γkdk. Otherwise let xk+1 ∈ D be any point such that

f(xk+1) < f(xk)− αγk‖gk‖2 (35) {notD1}{notD1}

and
‖xk + γkdk − xk+1‖ ≤ min{γk, εk}‖dk‖. (36) {notD2}{notD2}

Return sk = xk+1 − xk and yk+1.

5 Numerical experiments

6 Conclusions
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