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Marko Nedeljkov§

Abstract

A mathematical model for optimization of pump scheduling in water
distribution system is proposed. The water system we consider works
without large water storage facility and hence the mass balance principle
is the base for the model. A result concerning pressure drop after T-
junctions is the main simplification we propose. An optimization problem
is formulated and solved by Branch and Bound method for a real water
distribution system using data from a small city in Serbia.
Key words: water distribution system, modelling water flow, linear pro-
gramming, branch and bound method.

1 Introduction

Water distributional system is the most important element of urban planning
and requires significant research and investment. Water distributional systems
are becoming larger and very complex, especially in big cities.

Usually, the main source consists of a set of pumps of different capacity.
These pumps work in combination and are supposed to give sufficient amount
of water. Thus, in any time period some pumps are in use while others are
idle. In other words optimization of operative control mean choosing the right
combination of pumps that will be working at one time period.

There have been several attempts in recent years to develop optimal control
algorithms to assist in the operation of a complex water distributional system.
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Mays [8] lists and classifies several algorithms that have been developed to solve
the control problem in a water distributional system. Various algorithms have
been proposed for determining least cost pump scheduling polices and they are
based on linear programming, nonlinear programming, dynamic programming,
genetic algorithms. However, the success of these algorithms has been very
limited and very few have been actually applied to a real water distribution
system.

In order to optimize the total cost of a water distributional system one
needs to analyze the components. The major part of the total budget depends
on pumping of treated water, [8].

Lansey et al. [7] introduced the number of pump switches as a way to evalu-
ate pumps maintenance cost. Baran et al. [1] proposed reservoir level variation
and maximum power peak as new constrains in pump scheduling optimization.

We make our model for the water factory in Zrenjanin. Zrenjanin is a city
in Serbia with approximately 80000 inhabitants. Its water distribution sys-
tem has been gradually built since 1945 and it has nearly 270km of pipeline
with diameter ranging from 50mm to 600mm. Dominant pipeline material is
asbestos-cement. The majority of the pipes are older than 20 years and more
than half of the pipes have diameter smaller then 100mm. There is one main
source with 32 wells, see Figure 1. From the main source the city is supplied
with two transit pipelines with diameter of 500mm and 600mm, and in these
pipelines we are monitoring pressure and flow rate. In these pipelines the pres-
sure is usually around 3bar and during summer around 2bar. The capacity of
the main source is about 520l/s. Zrenjanin doesn’t have a large water storage.
So, the water system functions on the principle:

wells → pumps → pipes.

Given all these characteristics of the water system we have chosen the mass
balance mathematical model. This model is based on the equilibrium between
the amount of water that comes from pumps and the amount water that is used
in the city. The water demand curve is obtained from a statistical study of
historical data.

The present work is organized as follows. Section 2 contains a description
of Q − H characteristics and calculation of water flow at each pump. In Sec-
tion 3 loss coefficients are introduced. These coefficients are calculated using a
model for T−junction and splitting of pipes. We also state and prove a the-
orem about pressure after T−junction which gives significant simplification in
further modelling of a water distributional system. In Section 4 we formulate
the optimization problem for operative control of pumps and discuss application
of Branch and Bound algorithm for its solution. Finally, Section 5 contains the
implementation details of the algorithm in four different test and experimental
results.
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Figure 1: The main source in Zrenjanin.

3



2 Q-H pump characteristic

Water head is a term commonly used with pumps. Head represents the height of
a vertical column of water. Pressure p and water head H are mutually connected
concepts and in our model we use the equation

H =
p

ρg
,

where ρ is fluid density and g is the gravity constant. The relationship between
water flow Q and water head H (pressure p) is given by the so-called Q − H
characteristic for each pump. Each Q − H curve can be approximated with a
quadratic function

H = aQ2 + bQ + c, a < 0.

For each pump we have the data for the water level in wells and the water
flow. Fitting that data one can get an approximate Q−H characteristic. Two
illustrative measurements for a pump in a well B36 are given in Table 1, see
also Figure 1.

H[m] 0 10 20 30 40 50 60 70 80 90

Q[l/s] 25.50 24.80 23.55 22.30 20.75 19.10 17.35 15.35 11.88 8.80
Q[l/s] 25.61 24.57 23.33 22.08 20.54 18.95 17.20 15.05 11.63 8.40

Table 1. Two measurements for the pump in a well B36.

The main question is how to calculate the water flow at each pump. Water
flow depends on the pressure at each pump. For each pump we distinguish
dynamic and static levels of the water. Dynamic pressure (dynamic level of the
water), Hdyn is the difference between the level of water in the well and ground
level, while static pressure Hsta, represents pressure in the main pipeline of
water system. Clearly

Q = Q(H),

where H = Hdyn + Hsta.
The level of water head in Table 1 represents the dynamic level of water Hdyn

plus the static level of water Hsta. In our model we assume that the pressure
in the main pipeline is approximately 3bar.

Dynamic level of water depends on the well. But, for the majority of wells
in our model the dynamic level is from 20m to 25m. For such H = Hdyn +Hsta,
and with a given Q−H characteristic for each pump we can calculate the water
flow on each pump.

As we suppose that the maximal dynamic level of water is 25m and the
minimal level is 20m, and that Hsta = 30m, we get Hmax = 25 + 30 = 55m,
Hmin = 20 + 30 = 50m.

For such values Hmax i Hmin we get Qmin and Qmax, respectively. In our
model we suppose that the pumps work with a fixed charge and water flow at
each pump is calculated as

Q =
Qmin + Qmax

2
.
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The power data for each pump is given in Table 2.

well Qmin [l/s] Qmax [l/s] Q [l/s] P [kW ]

B1 6.28949 6.69163 6.4906 7.5

B2 11.1979 12.0593 11.6286 9.2

B3 8.06727 8.386 8.2266 7.5

B4 7.95415 8.3207 8.1374 7.5

B5 5.51555 6.05393 5.7847 5.5

B6 9.27804 10.7004 9.9892 9.2

B7 4.93792 5.0428 4.9904 5.5

B8 9.75562 10.6943 10.2250 9.2

B9 12.8577 13.5878 13.2228 13

B10 4.67011 4.80571 4.7379 5.5

B11 7.26195 7.74699 7.5045 9.2

B12 14.0959 15.5554 14.8257 15

B14 12.564 13.1828 12.8734 15

B15 11.8411 12.7045 12.2728 13

B21 18.3652 18.9134 18.6393 18.5

B22 17.5501 18.4094 17.9798 18.5

B23 14.3785 15.3727 14.8756 13

B24 18.2656 18.8031 18.5344 18.5

B25 20.1319 20.9004 20.5162 22

B26 10.6657 11.63 11.1479 9.2

B27 7.39161 7.74515 7.5684 7.5

B28 4.57655 4.71105 4.6438 5.5

B29 8.05973 8.44248 8.2511 7.5

B31 7.71703 8.04934 7.8832 7.5

B32 12.9039 13.5293 13.2166 15

B33 4.94405 5.04779 4.9959 5.5

B34 14.8598 15.6736 15.2667 15

B35 18.3441 19.1965 18.7703 22

B36 18.0719 18.9435 18.5077 18.5

B37 13.738 15.187 14.4625 15

B38 4.96378 5.09192 5.0278 5.5

B39 9.09228 10.8459 9.9691 9.2

Table 2. Flow and power of each pump.

3 Loss coefficient and T-junction

The loss coefficient is defined as the adimensional difference in the total pressure
between the ends of a straight pipe or respectively other pipe geometries.

We will consider the loss coefficient for a viscous pipe, sudden contraction
and T−junction.

In a straight viscous pipe the loss of water head is given by the following
equation, [2]

h12 = f
L

D

v2

2g
=
4p

ρg
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where4p is pressure drop, f friction coefficient, D pipe diameter, L pipe length,
v mean velocity and g gravity acceleration. The previous equation can be writ-
ten in the form

h12 = K12
v2

2g
, (1)

or
4p = p1 − p2 =

1
2
ρK12v

2, (2)

where K12 is the loss coefficient for a straight viscous pipe. From previous
equations we can conclude that loss coefficient has the form

K12 = f
L

D
.

Now, consider the flow in a pipe with sudden contraction, where fluid flows
from the wider section to the narrow smaller section. The loss coefficient for
sudden contraction is, [2]

K12 = 1− A2

A1
(3)

where A1 is the cross section area of the wider part and A2 is the cross section
area of the narrow part.

Let us now consider a combining T−junction, that is the junction where we
have two inflows and one outflow. We are interested in calculating the outflow
pressure given the flow rate and two inflow pressures. We will use the loss
coefficient for T−junction to express the loss coefficient for an elbow pipe.

For such pipe geometry the empirically determined loss coefficient between
entry1 and exit3, Figure 2, has the following form, [2]

K13 = 0.61
(

v1

v3

)2

+ 1− 2
((

v1

v3

)
Q1

Q3
cosα′ +

(
v2

v3

)
Q2

Q3
cos β′

)
, (4)

where Q1, Q2, Q3 represents flows and v1, v2, v3 velocities in the pipes denoted
in Figure 2 respectively with entry1, entry2, exit3. Until now we know just the
mass balance equation

Q1 + Q2 = Q3.

For α′ and β′ the following equations hold

α′ = 1.41α− 0.00594α2,

β′ = 1.41β − 0.00594β2.

Since α and β are equal 90o, we have α′ = 78.786o, β′ = 78.786o.
Similarly, between the points entry2 and exit3, see Figure 2, we can write

the loss coefficient in the form

K23 = 0.61
(

v2

v3

)2

+ 1− 2
((

v1

v3

)
Q1

Q3
cosα′ +

(
v2

v3

)
Q2

Q3
cos β′

)
.
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Figure 2: T-junction

In our model we use the modified loss coefficient

K13 = 0.61
(

v1

v3

)2

+ 1− 2
((

v1

v3

)
Q1

Q3
cos α′

)
.

This modified loss coefficient can be obtained from equation (4) putting Q2 = 0
when we are dealing with an elbow pipe. Clearly Q1 = Q3 in this case.

The main pipe that brings water from the other wells is denoted by entry1,
its water flow is Q1, and the cross section area A, while the water flow from the
pipe from observed entrance well is denote by Q2 and its cross section area by
A2.

In this model we split the pipe into one sudden contraction and one elbow
pipe as shown at Figure 3.

The loss coefficient for elbow is

K23 = 0.61
(v2

v3

)2

+ 1− 2
((v2

v3

)Q2

Q3
cos α′

)
,

where Q2 = Q3.
We will use the equivalent form

K23 = 0.61
(A− x

A2

)2

+ 1− 2
((A− x

A2

)
cosα′

)
,

since v2 =
Q2

A2
and v3 =

Q3

A− x
.

Let us now consider the model for the loss coefficient of sudden contraction.
The loss coefficient for this geometry is

K13 = 1− x

A
,

where A is the cross section area of the main pipe, and x denote the cross section
area of the split pipe.
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Figure 3: Splitting T-junction into one elbow pipe and one sudden contraction

The pressure loss can be calculated using the following two equations

p1 − p′1 =
1
2
ρK13

(Q1

x

)2

,

p2 − p′2 =
1
2
ρK23

( Q2

A− x

)2

.

The first equation represents the pressure loss at a sudden contraction and the
second equation pressure drop in an elbow pipe.

Since p′1 = p′2, (that is the pressure at the same place in the main pipe), we
have the equation

p1 − 1
2
ρK13

(Q1

x

)2

= p2 − 1
2
ρK23

( Q2

A− x

)2

,

or
p1 − 1

2
ρ
(
1− x

A

)(Q1

x

)2

=

p2 − 1
2
ρ

(
0.61

(A− x

A2

)2

+ 1− 2
((A− x

A2

)Q1

Q3
cos α′

))( Q2

A− x

)2

,

which we solve for x. For such x, p′1 = p′2 = p3, where p3 is the pressure after a
T-junction.

For our T-junction we have A = 0.152 ·π [m2], A2 = 0.0752 ·π [m2]. We also
apply the condition p2 > p1, on the pressure since the pressure at a pump is
greater than the pressure in the main pipe. Then

8



p3 = p1 − 1
2
ρ
(
1− x

A

)(Q1

x

)2

and

p3 = p2 − 1
2
ρ
(
0.61

(A− x

A2

)2

+ 1− 2
(A− x

A2

)
cos α′

)( Q2

A− x

)2

.

Now we are ready to state the theorem.

Theorem 3.1 Let p2 > p1 and let the water flow Q2 at each pump be such that

Q2 >

√
2(p2 − p1)
ρ · 1843

. Then there exists a unique x ∈ (0, A) such that the pressure

p3 is smaller than the pressures p1 and p2.

Proof.
We need to show that there exists a unique x ∈ (0, A), such that p3 <

min{p1, p2} and the following equation

p1−1
2
ρ
(
1− x

A

)(Q1

x

)2

= p2−1
2
ρ
(
0.61

(A− x

A2

)2

+1−2
(A− x

A2

)
cos α′

)( Q2

A− x

)2

(5)
is satisfied. First we will show that p3 < p1 and p3 < p2. The inequality p3 < p1

follows from
p3 = p1 − 1

2
ρ
(
1− x

A

)(Q1

x

)2

< p1,

which is obviously true for all x ∈ (0, A). The second condition which must be
satisfied is

p1 − 1
2
ρ
(
1− x

A

)(Q1

x

)2

< p2.

That is also true because x ∈ (0, A) and p2 > p1.
Let us show that for x ∈ (0, A) the following two inequalities are satisfied

p3 = p2 − 1
2
ρ
(
0.61

(A− x

A2

)2

+ 1− 2
(A− x

A2

)
cosα′

)( Q2

A− x

)2

< p1, (6)

and

p3 = p2 − 1
2
ρ
(
0.61

(A− x

A2

)2

+ 1− 2
(A− x

A2

)
cosα′

)( Q2

A− x

)2

< p2. (7)

The inequality (6) is equivalent to

p2 − 1
2
ρ
(
0.61

Q2
2

A2
2

+
Q2

2

(A− x)2
− 2

Q2
2 cos α′

(A− x)A2

)
< p1 (8)

or
1
2
ρ
(
0.61

Q2
2

A2
2

+
Q2

2

(A− x)2
− 2

Q2
2 cosα′

(A− x)A2

)
− (p2 − p1) > 0.
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Let
y =

1
A− x

.

As x ∈ (0, A) then y ∈
( 1

A
,∞

)
. Inequality (8) can be written in the form

1
2
ρ

(
0.61

Q2
2

A2
2

+ Q2
2y

2 − 2
Q2

2 cos α′

A2
y
)
− (p2 − p1) > 0.

The left side of previous inequality is denoted by f(y),

f(y) =
1
2
ρ

(
0.61

Q2
2

A2
2

+ Q2
2y

2 − 2
Q2

2 cos α′

A2
y
)
− (p2 − p1).

The first derivative of f(y) is

f ′(y) = ρ Q2
2y − ρ

Q2
2 cos α′

A2
.

Obviously, one zero of this equation is y = cos α′/A2. Therefore f ′(y) > 0 for
y > cos α′/A2 i.e. function f is increasing. As we know that cos α′/A2 < A−1,
then function f is increasing for y ∈ (A−1,∞). Now we will find the necessary
condition for function f to be positive on interval (A−1,∞). Clearly

f
( 1

A

)
=

1
2
Q2

2

(
0.61

1
A2

2

+
1

A2
− 2

cos α′

A ·A2

)
− (p2 − p1).

For the considered T-junction we know that A = 0.152 ·π[m2] and A2 = 0.0752 ·
π[m2] so (

0.61
1

A2
2

+
1

A2
− 2

cos α′

A ·A2

)
> 1843,

or
1
2
ρQ2

2 · 1843 > p2 − p1.

The assumption

Q2 >

√
2(p2 − p1)
ρ · 1843

,

implies f(A−1) > 0 and function f is increasing for y ∈ (A−1,∞), so f(y) > 0
for y ∈ (A−1,∞), and we conclude that equation (6) is satisfied.

Obviously we can deduce

−1
2
ρ
(
0.61

(A− x

A2

)2

+ 1− 2
(A− x

A2

)
cos α′

)( Q2

A− x

)2

< 0

and inequality (7) is satisfied for x ∈ (0, A). Let us now prove the uniqueness of
x ∈ (0, A) such that

p1−1
2
ρ
(
1− x

A

)(Q1

x

)2

= p2−1
2
ρ
(
0.61

(A− x

A2

)2

+1−2
(A− x

A2

)
cos α′

)( Q2

A− x

)2

.
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First we define the function g by

g(y) = p1 − 1
2
ρ
( 1

Ay

)( Q1

A− 1
y

)2

− p2 +
1
2
ρ
(
0.61

Q2
2

A2
2

+ Q2
2y

2 − 2
Q2

2 cosα′

A2
y
)
.

Clearly lim
y→∞

g(y) = ∞ and lim
y→ 1

A

g(y) = −∞. Function g is continuous on

(A−1,∞) so it has at least one zero in that interval.
Now we will show that function g has only one zero in (A−1,∞). The

equivalent form of g is

g(y) = p1 − 1
2
ρ
( 1

Ay

)( Q1

A− 1
y

)2

− p2 + (f(y) + p2 − p1),

or
g(y) = −1

2
ρ
( 1

Ay

)( Q1

A− 1
y

)2

+ f(y).

Function g is increasing on (A−1,∞) because

g′(y) = f ′(y)− 1
2
ρ

1
A

Q2
1 ·

d

dy


1

y

(
1

Ay−1
y

)2

 ,

g′(y) = f ′(y)− 1
2
ρ

1
A

Q2
1

( 1−A2y2

(Ay − 1)4
)
.

As we know that f ′(y) > 0 for (A−1,∞), inequality g′(y) > 0 is satisfied if and
only if

1−A2y2 < 0,

which is true because y > A−1. Therefore there exists one and only one zero of
g and the equation (5) has one and only one solution in the interval (0, A). ¤

This theorem allows a significant simplification of the water distributional
system model. Next two tables show that the pressure after T−junction p3 is
indeed smaller than p1 and p2 and that pressure drop is less than 0.001bar.

Calculation for that T-junction is represented in next two tables. In Table
3 we put a fixed flow rate from the observed well and from the pipe while we
change the pressure. Table 4 shows the pressure p3 if we change the flow rate
while pressures p1 and p2 are fixed.

p1[bar] p2[bar] p3[bar]

3.00 3.10 2.9998547494

3.00 3.30 2.9999191259

3.00 3.50 2.9999379925

3.00 4.00 2.9999565840

3.00 5.00 2.9999695054

Table 3. Pressure p3 if Q1 = 50l/s and Q2 = 12l/s.
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Q1[l/s] Q2[l/s] p3[bar]

50 5 2.9999746553

50 15 2.9999218052

100 5 2.9998986291

100 15 2.9996872974

10 20 2.9999957641

Table 4. Pressure p3 if p1 = 3.00 bar and p2 = 3.50 bar.

From Table 3 and Table 4 we can see that the pressure loss at the T-junction
is less than 0.001 bar, i.e. the pressure loss is negligible. As in this model we
have 32 wells, the pressure loss at all T-junctions is around 28·0.001 bar, because
the maximal number of T-junctions is 28 if all pumps work at the same time.

4 The Optimization Model

Pump scheduling is a process of choosing which of the available pumps are to
be used and for which periods of a day the pumps are to be in use.

The model consists of 32 pumps which are presented in Figure 1. The input
data for this model is the water demand curve. Pumping capacities are supposed
to be constant during any time interval, without any additional costs. Also, for
the time period of 1hour, each pump combination gives a fixed discharge, and
uses a fixed amount of electric energy and fixed power.

For this model, the following assumptions are introduced:

A1 Water source supplies enough water at any time and without additional
costs;

A2 Pressure in the main pipeline is always between minimal and maximal.
This assumption is justified by the results of Section 3;

A3 The water demand curve and the characteristics of pumps (discharge and
power) are considered.

The objective function in our optimization model includes electrical energy
cost and maintenance cost. Electrical energy cost E is the price of consumed
energy by all pumps during the optimization period. In our model the electrical
energy cost is replaced by equivalent measure - the power of pumps. The main
maintenance cost is modeled by a switch on/off of a pump and our objective is
to keep the number of switches as small as possible. Pumps maintenance cost,
denoted by M , can be equally important as the electrical energy cost.

So, our problem is to minimize cost function C

min C = min(E + M).

We assume that all pumps work with a fixed flow Qi, i = 1, ..., 32. The
power vector of all pumps is P = (P1, P2, ..., P32). The mass balance implies the
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constraint

Qmin ≤
32∑

i=1

Qi ≤ Qmax.

Our problem is to find the combination of pumps which will be working in
a specific time interval such that the total water flow is in (Qmin, Qmax) with
minimal cost.

We make an optimization model for one day. In our model we suppose that
the shortest period for each combination of pumps is one hour, i.e. a pump can
be switched off/on after being active/inactive for at least one hour.

We divide one day into k time periods. For each period we require

Qj
min ≤

32∑

i=1

Qi ≤ Qj
max, j = 1, ..., k,

where Qj
min and Qj

max is respectively, minimal and maximal water flow in each
period j = 1, ..., k. These values are obtained from the water demand curve
based on historical data.

Pumps can be turned on or off only at the beginning of each time interval.
Different time interval could be considered if needed, we assumed that 1 hour
is the minimal time for one pump combination. In this way number of possible
pump combinations is 232. But due to the problem constraints, a large number
of possible combinations are not feasible.

For the first optimization period we know

Q1
min ≤

32∑

i=1

Qi ≤ Q1
max

where Q1
min and Q1

max is minimal and maximal water flow for the first time
period. Therefore we are looking for the solution of

min PTc1,

where c1 represent the corresponding pump combination.
The pump combination c1 = (c1

1, c
1
2, ..., c

1
32), is

c1
i =

{
0 , switched off
1 , switched on , i = 1, ..., 32.

So, for the first time period we have the constrained linear programming
problem

min PTc1

s. t. Ac1 ≤ b1, (9)

c1
i ∈ {0, 1}, i = 1, ..., 32.
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where A is the matrix which has Q1, ..., Q32 in the first row and −Q1, ...,−Q32

in the second row while b1 =
[
Q1

max,−Q1
min

]T
. Solution (9) is then taken as

the initial approximation for the second period.
In the second period we have an additional condition for pump combination

c2. Since the desired water amount could be achieved in many different ways,
maintenance cost calls for the smallest possible number of switch on/of i.e. we
require that ‖c2 − c1‖1 be as small as possible. the components of c2 are again

c2
i =

{
0 , pump doesn’t work
1 , pump works , i = 1, ..., 32.

Let y2 = c2 − c1. Clearly there are 4 possible cases for y2
i as shown in Table 5.

c1
i c2

i y2
i

0 1 1

1 0 -1

0 0 0

1 1 0

Table 5. All possible combinations of c1 and c2.

In order to state the minimal maintenance costs we define S = (s1, s2, ..., s32)
whose components are

si =
{

σ , c1
i = 0

−σ , c1
i = 1

where σ > 0 represent the maintenance cost. We assume that the maintenance
factor is equal for all pumps. So we will minimize the function STy2. Putting
both aims together, we have to minimize the function

PTc2 + ST(c2 − c1),

Since STc1 is a constant we have the following optimization problem

min (PTc2 + STc2)

Ac2 ≤ b2 (10)

c2
i ∈ {0, 1}, i = 1, ..., 32.

where A,b are the same as in (9).
If Q2

min > Q1
min then some additional pumps are switched but maintenance

costs imply that all pumps which were working in the first time period will
continue working in the second time period. Similarly, if Q2

min < Q1
min then

some pumps will be switched off and no new pumps will be switched on.
For all other periods of optimization we have the minimization problem

min (PTcj+1 + STcj+1)

Acj+1 ≤ bj+1 (11)
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cj+1
i ∈ {0, 1}, i = 1, ..., 32.

with bj+1 =
[
Qj+1

max −Qj+1
min

]T

.

The sequence of problems (9)-(11) is solved in MATLAB 7.0 using the built-
in function bintprog. This function is performing Branch and Bound method.
Let us remark that a solution for a particular day depend on the solution in
the first period, i.e. depend on the pump combination c1. The value of the
maintenance parameter in all tests was σ = 100. The same result was obtained
with σ = 10 and σ = 106 and therefore the particular value of this parameter
does not influence the performance of the algorithm.

5 Experimental Results

In this section we test the model from Section 4. Water demand curve is obtained
from historical data, see Figure 4.

We tested the model using four different slicing of a day.

• Test 1. We divide a day into 24 periods. The minimal period for one
combination of pumps is one hour. The minimal necessary water flow for
one hour is the minimal water flow for that hour. We start optimization
with minimal registered flow, from 3 a.m to 4 a.m.

• Test 2. A day is divided into 24 periods. Optimization starts from mid-
night. Like in the previous test, the minimal necessary water flow for one
hour is the minimal water flow for that hour, Table 6.

• Test 3. We divide a day into 24 periods. In this test the minimal necessary
water flow for one hour is the average registered water flow for that hour.

• Test 4. We split a day into two periods, 8-23 and 23-8. The water demand
for 8-23 is much larger then for 23-08. The minimal water flow for these
periods are the average flows.

The results are shown at Figures 5-8. Each figure a) shows the minimal and
maximal demand curves together with the water flow obtained while b) figures
show active pumps (denoted by blue boxes) during 24 hours. The numbering
of pumps is the same as at Figure 1. The optimization procedure is obviously
yielding good results. For the first three tests the generated amount of water
is clearly satisfying the constraints while in the fourth test there is a slight
shortage at transition times due to the large difference in the required amount
of water. The total power used in each test is given in Table 7 together with the
number of working pumps for each test. The amounts of used power in Test 1
and Test 2 are quite similar while Test 3 and Test 4 require larger amounts of
power. Given the fact that there is a slight shortage of water in Test 4, a split
into two periods only is clearly not the best option. The smallest amount of
power is needed in the policy implied by Test 2 and additional 39.2kW, 348.5kW
and 293kW are needed for Test 1,3 and 4 respectively. If counting on yearly
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level these amounts yield differences in hundreds of MW and hence the policy
imposed by Test 2 is the best one in terms of energy consumption. The energy
cost is roughly proportional to used power although some other factors also pay
a role in determining the total amount in money for industrial consumers.

The cost of operation is not just the electricity but also the maintenance that
is in our model proportional to the total number of switching each pump on or
off. It is quite obvious from Figures 5-8 that the frequency of switching on/off is
reasonably similar in all tests. Such behavior is due to the presence of ST cj+1 in
the objective function of (11). One can also observe that the policy imposed by
Test 2, which is optimal in terms of energy consumption, is requiring the largest
amount of active pumps - in one day 25 pumps are supposed to work, while the
number of active pumps in other tests is slightly smaller. Therefore the true
optimal policy is dependent on the actual relationship between the energy and
maintenance costs.
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Figure 4: Minimal and maximal water demand
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Figure 5a: Test 1 - Demand curve and water flow Figure 5b: Active pumps for Test 1
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Figure 6a: Test 2 - Demand curve and water flow Figure 6b: Active pumps for Test 2
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Figure 7a: Test 3 - Demand curve and water flow Figure 7b: Active pumps for Test 3
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Figure 8a: Test 4 - Demand curve and water flow Figure 8b: Active pumps for Test 4

test used power [kW ] number of pumps
test 1 4861.2 23
test 2 4822 25
test 3 5170.5 24
test 4 5115 21

Table 7. Used power and number of pumps
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