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Abstract

A gradient method for solving unconstrained minimization problems
in noisy environment is proposed and analyzed. The method combines
line-search technique with Stochastic Approximation (SA) method. A
line-search along the negative gradient direction is applied while the iter-
ates are far away from the solution and upon reaching some neighborhood
of the solution the method switches to SA rule. The main issue is to deter-
mine the switching point and that is resolved both theoretically and prac-
tically. The main results is the almost sure convergence of the proposed
method due to a finite number of line-search steps followed by infinitely
many SA consecutive steps. The numerical results obtained on a set of
standard test problems confirm theoretical expectations and demonstrate
the efficiency of the method.
Key words. stochastic optimization, stochastic approximation, noisy
function, gradient method, line-search method.
AMS subject classification. 90C15, 62L20, 60H40

1 Introduction

In this paper we consider the unconstrained minimization problem in noisy
environment,

min
x∈Rn

f(x), (1)

where f : D ⊂ R
n → R is a continuously differentiable function bounded below

on D. Throughout the paper we will assume that there is a unique x∗ that
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Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: natasak@uns.ac.rs. Research
supported by Ministry of Education and Science of Serbia grant No. 174030.

†Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad,
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solves (1) and that only noisy measurements of the objective function f(x) and
gradient ∇f(x) = g(x) are available at x ∈ D. For x ∈ D, let ξ(x) and ε(x)
be random variable and random vector, respectively, defined on a probability
space (Ω,F , P ). Then, the noisy functional and gradient component values at
each x ∈ D are

F (x) = f(x) + ξ(x) and G(x) = g(x) + ε(x), (2)

where ξ and ε represent the random noise terms. Note that the noise terms
show dependence on x as this property is relevant for many applications.

Noise is present whenever physical system measurements or computer sim-
ulations are used for approximation. A vast set of examples includes problems
where estimates are formed by computer-based Monte Carlo sampling according
to a statistical distribution, problems where data are collected while system is
operating or problems where physical data are processed sequentially, with each
sequential data point being used to estimate some overall (average) criterion,
such as the mean-squared error (MSE). The presence of noise might mislead
an optimization algorithm throughout the entire process and result in false op-
timal solutions. Some of the results regarding optimization problems in noisy
environment are given in [4, 18].

The notation we will use throughout the paper is

Fk = Fk(xk) = f(xk) + ξk(xk), Gk = Gk(xk) = g(xk) + εk(xk) (3)

The index k used with ε and ξ allow us to consider the noise depending on the
current iteration xk, i.e., the noise-generating process may change with k.

One of the first stochastic optimization method is Stochastic Approximation
(SA), also known as the Robbins-Monro Stochastic Approximation [16]. SA was
modified by Kiefer and Wolfowitz [7] such that only noisy objective function
measurements are used. That method is known as Finite Difference Stochastic
Approximation. Originally, SA method was established for solving nonlinear
algebraic systems, that is

g(x) = 0, (4)

where g : R
n → R

n. Mimicking the simplest gradient descent method and
using only the noisy measurements of g(x), SA algorithm generates an iterative
sequence by the formula

xk+1 = xk − akGk, (5)

where ak is a nonnegative gain coefficient. The method is convergent if the gain
sequence {ak} satisfies certain conditions. For solving (4) on a constrained set
X ⊆ R

n one can use SA with projection. Starting from a chosen point x0 ∈ X ,
the iterates are obtained by the formula

xk+1 = ΠX

(

xk − akGk

)

, (6)

where ΠX is a projection operator that maps iterates outside the constrained
set X back to X.
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Convergence of SA method in stochastic sense can be achieved under suitable
conditions. In the pioneer work of Robbins and Monro [16], the convergence in
mean square was proved, i.e., xk → x∗ in m.s., that is E[‖xk − x∗‖2] → 0 as
k → ∞. Other authors like Chen in [2] and Spall in [20] proved the almost sure
convergence, i.e., xk → x∗ a.s..

The performance of SA method depends mostly on the choice of the gain
sequence {ak}. The best-known example of the gain sequence is the scaled
harmonic sequence ak = a/(k + 1), where a > 0. A common generalization of
the scaled harmonic sequence is ak = a/(k+1)α, where a > 0, and 1/2 < α ≤ 1.
The gain coefficients are designed to yield convergence in noisy environment but
their values tend to make the iterative process quite slow. Roughly speaking the
step size is proportional to 1/k so the steps become small very fast and result in
slow progress. That was the main reason for a number of modifications proposed
in the literature. In particular, SA is often implemented in stochastic simulation
methods as a modified SA method or as a final step of some stochastic method
when convergence in stochastic sense is needed, see Delyon and Juditsky [3],
Kesten [6], Kushner and Gavin [9], Monnez [12], Ruppert [17], Spall [19], Wei
[24].

One of the first adaptive techniques, called Accelerated Stochastic Approxi-
mation is given by Kesten [6], for one dimensional problems. An adaptive gain
sequence ak definition is based on the frequency of sign changes of the differences
xk+1 − xk. Frequent sign changes are an indication that the current iterate is
near the optimal solution x∗, and if the signs are not changing, than the iterate
is far from x∗. A larger gain coefficient ak is used if there are no sign changes
and a smaller ak is used if the signs change frequently. Kesten established
a.s. convergence of the above accelerated SA to x∗, [6]. Further extensions of
Kesten’s accelerated SA were given by Kushner and Gavin [9], and by Delyon
and Juditsky [3]. Further modifications are the subject of many studies. An-
dradótirr in [1] considered the scaled algorithm. In each iteration of the scaled
algorithm two independent gradient estimates are sampled at the current iterate
xk to compute a scale-free estimate of the next iterate xk+1. Gradient methods
with the Armijo line-search rule are considered by Wardi [23]. A Quasi-Newton
method with line-search is proposed by Kao, Chen [5]. To avoid misjudgment
of the minimal point due to its stochastic nature, a t-test is performed instead
of a simple comparison of the mean responses. Additional attempts to consider
line-search in the context of SA methods are made in [10, 21, 22].

Methods that are SA analogues of the Newton-Raphson method replace the
scalar gain ak with a matrix that approximates the inverse Hessian. Some
methods of this type are given by Ruppert [17], Wei [24], and Monnez [12]. One
survey of stochastic approximation methods is given in Kushner [8].

Given that the performance of the gradient and other descent direction meth-
ods in classical optimization problems can be significantly improved if a line-
search technique is applied, a natural question is wether the use of line-search
techniques to determine the step size, in place of a fixed gain sequence, can
be beneficial or not. The noise prevents direct application of line-search tech-
niques, in particular when we are close to the solution. Steps determined by the
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line-search rule tend to be too large and cause zig-zag behavior or even lead the
iterative sequence out of the solution’s neighborhood. However, when we are far
away from the solution, large steps generated by a line-search rule are desirable
in comparison with relatively small step generated by SA. So a natural way of
exploiting the good properties of both approaches, SA and line-search, would be
to combine them in such a way that a line-search rule is used at the initial stages
of the optimization process and SA is applied afterwards. The key question is
how to determine the switching point between the line-search procedure and
SA. Given that the first-order optimality conditions are ∇f(x) = 0, but only
the noisy observation of the first derivative are available, the following reasoning
is intuitively clear. If the observed (noisy) gradient components values Gk are
large, we are far away from the stationary point and the decrease of the (noisy)
functional value indicates a decrease of the real objective function f, i.e.,, the
decrease is not only due to the noise, so it is safe to use the (large) line-search
step size. But if the gradient components values are small we are probably close
to the solution and hence we should switch to the safe gain coefficients of the
SA procedure, which minimizes the influence of noise.

The main objective of this paper is to analyze and implement the above
described procedure. We will show that a line-search procedure is called in
a finite number of iterations, which ensures the almost sure convergence of
proposed methods due to infinitely many SA steps. At the same time the
convergence of the described combined method is significantly faster then the
convergence of SA.

The paper is organized as follows. Section 2 contains the notation and
an overview of known results regarding SA and line-search that will be used
throughout the paper. The gradient-based algorithm is defined and analyzed
in Section 3. Practical implementation issues are discussed in Section 4. In
the same section the results of numerical experiments which demonstrate the
efficiency of the proposed algorithm are given, while some conclusions are drawn
in Section 5.

2 Preliminaries

SA method is the key ingredient in our consideration and for a given initial
approximation x0 it can be written as

xk+1 = xk − akGk, k = 0, 1, . . . . (7)

The standard convergence conditions for the gain sequence {ak} are

ak > 0,
∑

k

ak = ∞ and
∑

k

a2k <∞. (8)

The choice of the gain coefficients is analyzed in many papers because they
determine the rate of convergence (see Spall [20] for details).

Let {xk} be a sequence generated by an SA method. Denote by Fk the
σ-algebra generated by x0, x1, . . . , xk. The norm || · || refers to the Euclidean
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norm. The set of standard assumptions under which SA is convergent consist
of the following.

A1 For any ε > 0 there exists βε > 0 such that

inf
||x−x∗||>ε

(x − x∗)T g(x) = βε > 0.

A2 The observation noise (εk(x),Fk+1) is a martingale difference sequence
with

E(εk(x)|Fk) = 0 and E(||εk(x)||2) <∞ a.s. for all k and x ∈ R
n,

where {Fk} is a family of nondecreasing σ-algebras.

A3 The gradient g and the conditional second moment of the observation
noise have the following upper bound

||g(x)||2 + E(||εk(x)||2|Fk) < c(1 + ||x− x∗||2) a.s. for all k and x ∈ R
n,

where c > 0 is a constant.

Assumption A1 represents the condition on the shape of g(x), A2 is the
standard zero-mean noise condition and A3 provides restrictions on the mag-
nitude of g(x), saying that ‖g(x)‖2 and the conditional second moment of the
observation noise cannot grow faster then a quadratic function of x.

In [2] it is proved that under assumptions A1-A3, the sequence {xk} gener-
ated by SA method (5) converges a.s. to the solution x∗ of the nonlinear system
(4) in noisy environment.

Theorem 2.1. Assume that A1-A3 hold. Let {xk} be a sequence generated by
SA method

xk+1 = xk − akGk

with the gain sequence {ak} satisfying (8) and assume that the Hessian of f is
nonsingular at the solution x∗. Then the sequence {xk} converges to x∗ for an
arbitrary initial approximation x0.

Line-search methods are powerful tools for globalization of descent-direction
methods of unconstrained optimization. The main idea is to use a descent search
direction and to determine the step size in such a way that enough decrease of
the objective function is achieved. There are many rules for determining the
step size in line-search procedure and for details of these methods one can look
at [14]. In this paper we will consider the Armijo rule.

The method in noisy environment that mimics the Armijo rule assumes
that we work with noisy observations of functional and gradient values. More
precisely, the sufficient decrease condition we consider is governed by

Fk(xk − akGk) ≤ Fk − c1ak‖Gk‖2, (9)
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where c1 is a small positive constant.
The convergence conditions for line-search method include the Lipschitz con-

dition on the gradient of the objective function. Therefore we state one addi-
tional assumption that will be necessary for the convergence.

A4 The gradient g is Lipschitz continuous, that is there exists a positive con-
stant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y|| for all x, y ∈ R
n.

3 The gradient method

The algorithm we are proposing consists of two methods: line-search and SA.
The basic idea is to take (larger) line-search steps at the beginning of the itera-
tive procedure and switch to (smaller) SA steps when we approach the solution.
The measure of proximity is the observed gradient vector. We will show that
there exists a constant C such that we can safely apply the line-search at the
kth iteration if

‖Gk‖ ≥ C. (10)

The algorithm switches to SA if (10) is violated. This way we will preserve good
properties of both methods, namely relatively large steps and fast progress of
the gradient line-search methods and safe convergence of SA method. So the
algorithm is defined as follows.

ALGORITHM 1. GSLS method

Step 0. Choose an initial point x0 ∈ R
n, constants c1 ∈ (0, 1), C, δ(C) > 0,

and a nonnegative SA gain sequence {ak} that satisfies (8). Set k = 0 and
p = 1.

Step 1. Calculate the noisy gradient Gk.

Step 2. If p = 1 then calculate the noisy function Fk and go to Step 3, else go
to Step 4.

Step 3. If ‖Gk‖ ≥ C choose α > δ(C) such that the inequality

Fk(xk − αGk) ≤ Fk − c1α‖Gk‖2 (11)

is satisfied, set ak = α and go to Step 5.

Else set p = 2.

Step 4. Take ak from the predefined SA gain sequence.

Step 5. Define xk+1 = xk − akGk, set k = k + 1 and go to Step 1.
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In practical implementation of GSLS Algorithm, at the kth iteration, the
backtracking line-search procedure is applied in Step 3. If it fails within a pre-
defined number of attempts then the algorithm switches to SA. Further details
of practical implementation are discussed in Section 4.

Convergence analysis of Algorithm GSLS (Gradient Stochastic Line Search)
consists of two parts. First we will show that the Algorithm is well defined,
i.e., that almost surely there exist constants C and δ(C) such that Step 3 will
be performed if ‖Gk‖ ≥ C. After that we will show that the line-search step
is almost surely executed a finite number of times so the algorithm inevitably
switches to SA and thus the almost sure convergence is obtained. The additional
assumption stated below bounds the realized noise and does not imply any
restriction on real problems. It is quite similar to the one used in Wardi [23]

A5 Observation noises are bounded and there exists a positive constant M
such that

‖ξk(x)‖ ≤M, ‖εk(x)‖ ≤M a.s..

for all k and x ∈ D.

Theorem 3.1. Suppose that A4-A5 hold. Let

C ≥ M + 2
√
2ML+ 1

1− c1
.

Then there exists δ(C) > 0 a.s. such that the Algorithm 1 is well defined.

Proof. We will prove that almost surely there exist δ(C) > 0 and α > δ(C)
such that (11) is satisfied whenever ‖Gk‖ ≥ C.

Denote by fk and gk the objective function and gradient values at x = xk
respectively. Let α > 0 and d ∈ Rn be arbitrary. Then

f(xk + αd) = fk + αg(xk + tαd)T d

= fk + αg(xk + tαd)T d+ αgTk d− αgTk d

= fk + αgTk d+ α(g(xk + tαd)− gk)
Td

≤ fk + αgTk d+ α‖g(xk + tαd)− gk‖ · ‖d‖

for some t ∈ (0, 1). Assumption A4 and t ∈ (0, 1) imply

f(xk + αd) ≤ fk + αgTk d+ α2L‖d‖2.

Taking d = −Gk we have

f(xk − αGk) ≤ fk − αgTk Gk + α2L‖Gk‖2.

Since f and g are subject to noise we have

Fk(xk − αGk) = f(xk − αGk) + ξ̃k,

Fk = fk + ξk and Gk = gk + εk,
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where the abbreviation ξ̃k = ξk(xk − αGk) is used. Furthermore

F (xk − αGk) = f(xk − αGk) + ξ̃k (12)

≤ fk − αgTk Gk + α2L‖Gk‖2 + ξ̃k

= Fk − ξk − α(Gk − εk)
TGk + α2L‖Gk‖2 + ξ̃k

≤ Fk − α‖Gk‖2 + α‖εk‖‖Gk‖+ α2L‖Gk‖2 + ξ̃k − ξk

≤ Fk − α‖Gk‖2 + αM‖Gk‖+ α2L‖Gk‖2 + 2M, a.s. (13)

with ξ̃k − ξk ≤ 2M a.s. and ‖εk‖ ≤M a.s..
We are looking for δ(C) > 0 and α > δ(C) such that

F (xk − αGk) ≤ Fk − c1α‖Gk‖2

and therefore we need to prove that a.s. there exist δ(C) > 0 and an upper
bound ᾱ to be specified later, ᾱ > δ(C), such that for α ∈ (δ(C), ᾱ) we have

−α(1− αL)‖Gk‖2 + αM‖Gk‖+ 2M ≤ −c1α‖Gk‖2.

This is equivalent to

0 ≤ −α2L‖Gk‖2 + α‖Gk‖2 − αM‖Gk‖ − c1α‖Gk‖2 − 2M. (14)

Let us first prove that there exists α > 0 such that (14) is satisfied for
α ∈ (0, α) a.s. and then we will prove that α can be uniformly bounded from
below. Let

φ(α) = −α2L‖Gk‖2 + α(−M‖Gk‖+ (1− c1)‖Gk‖2)− 2M.

If φ(α1) = φ(α2) = 0 then φ(α) ≥ 0 for α ∈ [α1, α2]. So (14) will be valid for
α ∈ (α1, α2) if we can prove that α1 6= α2 and α2 > 0. With notation

Aφ = −L‖Gk‖2,

Bφ = (1− c1)‖Gk‖2 −M‖Gk‖,
Cφ = −2M,

we have Bφ > 0 due to ‖Gk‖ > M/(1− c1) as ‖Gk‖ ≥ C. Now

B2
φ − 4AφCφ = [(1− c1)‖Gk‖2 −M‖Gk‖]2 − 8ML‖Gk‖2

so B2
φ − 4AφCφ > 0 is equal to

(1− c1)
2‖Gk‖4 − 2M(1− c1)‖Gk‖3 +M2‖Gk‖2 − 8ML‖Gk‖2 > 0

and equivalent to

(1− c1)
2‖Gk‖2 − 2M(1− c1)‖Gk‖+M2 − 8ML > 0. (15)
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Let us consider

ψ(u) = (1− c1)
2u2 − 2M(1− c1)u+M2 − 8ML.

If ψ(u1) = ψ(u2) = 0 then ψ(u) > 0 for u > u2. As

M2(1− c1)
2 − (1− c1)

2(M2 − 8ML) = 8(1− c1)
2ML > 0

we have that u1, u2 ∈ R, u1 6= u2 and

u2 =
M(1− c1) +

√

8(1− c1)2ML

(1− c1)2
,

so

u2 =
M + 2

√
2ML

1− c1
.

As ‖Gk‖ ≥ C > u2 we conclude that (15) is fulfilled and hence the function
φ(α) has two real zeroes α1 and α2, given by

α1 =
−Bφ +

√

Bφ
2 − 4AφCφ

2Aφ
and α2 =

−Bφ −
√

Bφ
2 − 4AφCφ

2Aφ
.

Furthermore α2 > 0 (due to Bφ > 0 and Aφ < 0), so (14) is true for
α ∈ (α1, α2).

On the other hand 4AφCφ > 0 and B2
φ − 4AφCφ > 0 implies that 0 <

α1 < − Bφ

2Aφ
< α2. In order to show that (14) is fulfilled for α that are uni-

formly bounded from bellow, it is sufficient to find a lower bound α > 0 that is
independent of k such that − Bφ

2Aφ
≥ α.

Since ‖Gk‖ ≥ C > 0 we have that

− Bφ

2Aφ
=

(1− c1)‖Gk‖ −M

2L‖Gk‖
=

(1 − c1)−M/‖Gk‖
2L

≥ (1− c1)−M/C

2L
.

Having in mind the condition C ≥ M+2
√
2ML+1

1−c1
we have

(1− c1)−M/C

2L
≥ (1 − c1)(2

√
2ML+ 1)

2L(M + 2
√
2ML+ 1)

.

So for the lower bound that we are looking for we can take

α =
(1− c1)(2

√
2ML+ 1)

2L(M + 2
√
2ML+ 1)

.

Thus, we have demonstrated that (14) holds true for α ∈ (α1, α2), where

0 < α1 < − Bφ

2Aφ
< α2, and − Bφ

2Aφ
≥ α. So we can conclude that for δ(C) =

max{α1, α} there exists α ∈ (δ(C), α2) such that (14) is valid and α is uniformly
bounded from below a.s..
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The previous Theorem shows that when the iterate is ”far” from the solution
(characterized by ‖Gk‖ ≥ C), then Step 3 of GSLS Algorithm will be executed
almost surely. The next theorem shows that this step is called almost surely
only a finite number of times.

Theorem 3.2. Suppose that assumptions A4-A5 hold. Let

C ≥ max

{

4(1− c1)

αc1
,
M + 2

√
2ML+ 1

1− c1

}

,

where

α =
(1− c1)(2

√
2ML+ 1)

2L(M + 2
√
2ML+ 1)

.

Let {xk} be an infinite sequence generated by Algorithm 1 and {xj}, j ∈ J be a
subsequence such that

‖Gj‖ ≥ C. (16)

Then J is finite a.s..

Proof. Let us assume the contrary, i.e., the sequence {xj} is infinite. If (16)
is satisfied, then we have that

‖Gj‖ ≥ M + 2
√
2ML+ 1

1− c1

and Theorem 3.1 implies that for any j ∈ J the next iterative point xj+1 is
obtained a.s. by the line-search rule such that

Fj(xj+1) ≤ Fj − c1aj‖Gj‖2, xj+1 = xj − ajGj , aj > δ(C) ≥ α.

Furthermore, all previous points are also obtained a.s. by the line-search rule
and thus

Fi(xi+1) ≤ Fi − c1ai‖Gi‖2, ai > α, i = 0, 1, . . . , j. a.s..

Since ξi(xi) − ξi(xi+1) ≤ 2M , a.s. ‖Gi‖ ≥ C, ai > α, M < (1 − c1)‖Gi‖, we
have

f(xi+1) ≤ f(xi)− c1ai‖Gi‖2 + ξi(xi)− ξi(xi+1)
≤ f(xi)− c1ai‖Gi‖2 + 2M
≤ f(xi)− c1aiC‖Gi‖+ 2M
< f(xi)− c1αC‖Gi‖+ 2M
< f(xi)− c1αC‖Gi‖+ 2(1− c1)‖Gi‖
= f(xi)− (c1αC − 2(1− c1))‖Gi‖ a.s..

(17)

Let K = c1αC − 2(1− c1). Since

C ≥ 4(1− c1)

αc1
>

2(1− c1)

αc1
,
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we have that
K = c1αC − 2(1− c1) > 0.

Now (17) implies

f(xi+1) < f(xi)−K‖Gi‖, i = 0, 1, 2, . . . , j a.s..

Summing up the above inequalities for arbitrary j ∈ J , we have

j
∑

i=0

f(xi+1) <

j
∑

i=0

f(xi)−K

j
∑

i=0

‖Gi‖

and

f(xj+1)− f(x0) < −K
j

∑

i=0

‖Gi‖

so

K

j
∑

i=0

‖Gi‖ < f(x0)− f(xj+1) ≤ K1,

for some K1 > 0, as f is bounded from below. As K > 0, we have

j
∑

i=0

‖Gi‖ < K1/K = K2,

and K2 > 0. On the other hand, ‖Gi‖ ≥ C and

j
∑

i=0

‖Gi‖ ≥
j

∑

i=0

C = (j + 1)C.

Combining the last two inequalities we obtain

(j + 1)C < K2

for arbitrary j ∈ J . But J is an infinite subsequence by assumption, so there
exists j0 ∈ J such that (j0+1)C ≥ K2. This contradiction proves the statement.

Now we can state the main convergence result for GSLS method based on
the previous Theorems and SA convergence.

Corollary 3.1. Suppose that assumptions A1-A5 hold and that the Hessian
matrix ∇f(x∗) exists and is nonsingular. Let

C ≥ max

{

4(1− c1)

αc1
,
M + 2

√
2ML+ 1

1− c1

}

,

where

α =
(1− c1)(2

√
2ML+ 1)

2L(M + 2
√
2ML+ 1)

.

Let {xk} be an infinite sequence generated by Algorithm 1. Then xk convergenes
to x∗ a.s..
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Proof. From Theorem 3.2 we have that there are finitely many iterates that
are obtained by Step 3 of Algorithm 1. So, infinitely many successive iterates
are obtained by Step 4 and Theorem 2.1 implies the statement.

4 Numerical results

The algorithm proposed in this paper is tested and compared with SA using a
collection of test problems in the form

min
x∈Rn

f(x) =

m
∑

i=1

f2
i (x).

The set of 10 problems from [13] and [15] is selected. The problems are
transformed to noisy problems using the rule suggested in Sirlantzis et al. [18],

F (x, ω) = f(x) + ω, Gi(x, ω) = (∇f(x))i + ω, i = 1, . . . , n.

We assume that the noise ω is normally distributed with zero expectation and
variance σ, i.e., w ∼ N(0, σ2). Normal distribution noise clearly does not satisfy
A5 because one could have ‖ξ(xk)‖ and ‖ε(xk)‖ arbitrary large with positive
probability. However that does not complicate the implementation of the algo-
rithm in practice due to the small variance we use and thus the samples are in
fact bounded. The same kind of reasoning is present in [11]. Each calculation of
the functional and gradient values is performed by using an independent sam-
ple realization of the noise. Analogously to [5] and [19], we calculate the noisy
functional and gradient values using the arithmetic mean with sample size p :

F (x) =

∑p
i=1 F (x, ωi)

p
, G(x) =

∑p
i=1G(x, ωi)

p

All tests are performed with p = 3 and two values for the variance, σ = 0.1, 0.01.
For each of the problems we give the parameters n andm, functions fi, initial

approximation x0, solution x
∗, if available and the optimal value f∗ = f(x∗). If

x∗ is not known, we take f∗ from [13]. Besides these data we also list ||x0−x∗||2
and |f(x0)− f(x∗)|2.

Problem 1. [13] Biggs EXP6 function; n = 6, m = 13

fi(x) = x3e
−tix1 − x4e

−tix2 + x6e
−tix5 − yi,

ti = 0.1i, yi = e−ti − 5e−10ti + 3e−4ti

x0 = (10, 10, 1, 1, 10, 1); x∗ = (1, 10, 1, 5, 4, 3); f∗ = 0; ||x0 − x∗||2 = 137;
|f(x0)− f(x∗)|2 = 74.3672
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Problem 2. [13] Gaussian function; n = 3, m = 15

fi(x) = x1 exp(
−x2(ti−x3)

2

2 )− yi, and ti = (8− i)/2,

y1 = y15 = 0.0009, y2 = y14 = 0.004, y3 = y13 = 0.0175, y4 = y12 = 0.0540,

y5 = y11 = 0.1295, y6 = y10 = 0.2420, y7 = y9 = 0.3521 and y8 = 0.3989

x0 = (0, 0, 0); x∗ unknown; f∗ = 1.12793 ·10−8; |f(x0)−f(x∗)|2 = 0.3183

Problem 3. [13] Box three-dimensional function; n = 3, m = 10

fi(x) = exp[−tix1]− exp[−tix2]− x3(exp[−ti]− exp[−10ti]), ti =
i
10 , i = 1, ...,m

x0 = (0, 10, 20); x∗ = (1, 10, 1) or (10, 1,−1) or (x1 = x2 andx3 = 0); f∗ = 0
|f(x0)− f(x∗)|2 = 1.0633 · 106

Problem 4. [13] Penalty function I; n = 10, m = 11

fi(x) = 10−5/2(xi − 1), 1 ≤ i ≤ 10, fn+1(x) = (
∑n

j=1 x
2
j)− 1

4

x0 = (1, 1, ..., 1), x∗ unknown; f∗ = 7.08765 · 10−5 |f(x0) − f(x∗)|2 =
9.0369 · 103

Problem 5. [13] Penalty function II; n = 4, m = 8

f1(x) = x1 − 0.2, fi(x) = 10−5/2(exp(xi

10 ) + exp(xi−1

10 )− yi), 2 ≤ i ≤ n,

fi(x) = 10−5/2(exp(xi−n+1

10 )− exp(−1
10 )), n < i < 2n,

f2n(x) = (
∑n

j=1(n− j + 1)x2j )− 1 and yi = exp( i
10 ) + exp( i−1

10 ).

x0 = (1/2, 1/2, ..., 1/2); x∗ unknown; f∗ = 9.37629 · 10−6; |f(x0)− f(x∗)|2 =
5.4756

Problem 6. [13] Trigonometric function; n = 10, m = 10

fi(x) = n−∑n
j=1 cosxj + i(1− cosxi)− sinxi

x0 = (1, 0, ..., 1, 0); x∗ unknown; f∗ = 0; |f(x0)− f(x∗)|2 = 1.1106 · 104

Problem 7. [13] Beale function; n = 2, m = 3

fi(x) = yi − x1(1− xi2), y1 = 1.5, y2 = 2.25, y3 = 2.625

x0 = (1, 1); x∗ = (3, 0.5); f∗ = 0; ||x0 − x∗||2 = 4.25; |f(x0) − f(x∗)|2 =
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201.7288

Problem 8. [13] Chebyquad function; n = 10, m = 10

fi(x) =
1
n

∑n
j=1 Ti(xj)−

∫ 1

0
Ti(x)dx,

Ti is the ith Chebyshev polynomial shifted to the interval [0, 1]
∫ 1

0
Ti(x)dx = 0 for i odd,

∫ 1

0
Ti(x)dx = −1

i2−1 for i even.

x0 = (1/(n+ 1), 2/(n+ 1), ..., n/(n+ 1)); x∗ unknown; f∗ = 6.50395 ·10−3;
|f(x0)− f(x∗)|2 = 0.0965

Problem 9. [15] Strictly Convex 1; n = 10

f(x) =
∑n

i=1(e
xi − xi)

x0 = (1/n, ..., i/n, ..., 1); x∗ = (0, ..., 0); f∗ = 10; ||x0−x∗||2 = 3.85, |f(x0)−
f(x∗)|2 = 6.5345

Problem 10. [15] Strictly Convex 2, n = 10

f(x) =
∑n

i=1
i
10 (e

xi − xi), x = (x1, ..., xn)

x0 = (1, ..., 1); x∗ = (0, ..., 0); f∗ = 5.5; ||x0 − x∗||2 = 10, |f(x0) −
f(x∗)|2 = 15.6068

The algorithm applies either the line-search rule taking α = βm, for m =
0, 1, . . . until the Armijo rule (11) is satisfied in Step 3, or the SA method in
Step 4. Which one of these steps is taken clearly depends on the constant C
that determines the switching point. The constant C introduced in Theorem
3.1 and later modified in Theorem 3.2 is a theoretical value that depends on
the Lipschitz constant L and the noise bound M. It is very difficult to estimate
such value. Therefore we implemented the algorithm without estimating C but
taking a more practical criteria, the maximal number of backtracking steps m.
In fact, one can easily see that setting the maximal number of the backtracking
steps to

βm < α, i.e., m > ln
( (1− c1)(2

√
2ML+ 1)

2L(M + 2
√
2ML+ 1)

)

/ lnβ (18)

is in fact equivalent to the condition involving C. This bound does not solve
the estimation problem as m still depends on L and M, but allows one to test
different values for m in practical implementation. Taking m too small would
of course result in a switching point that is not so close to the optimal solution,
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so the line-search method would not be fully used. On the other hand, taking
m too large will yield unproductive line-search steps but the switching point
will be reached eventually. In all our experiments we took m = 5 and such a
choice appears to be robust. So all results reported here are obtained with the
following rule: if the sufficient decrease condition is not satisfied for α = βm̄,
the algorithm switches to SA method. Other parameter values in the line-search
procedures are selected as c1 = 10−4 and β = 0.5. The new algorithms switch
to SA at some iteration, say j. So two possibilities for the gain coefficients are
considered

(I) ak = (k + 1)−1, k = j, j + 1, . . . .

(II) ak = (k − j)−1, k = j + 1, j + 2, . . . .

The stopping criteria in all tests is either ‖Gk‖ ≤ 10−5 or the maximal
number of 1000 function evaluations is reached.

Each test consists of 50 independent runs. Thus for each method and each
problem we have a sample

(||G(i)||, x(i), y(i)), i = 1, . . . , 50.

where G(i), x(i), y(i) are the last estimates of the gradient value, optimal point
and optimal functional value. A run is considered successful if the condition
||G(i)|| < 1 is satisfied.

Two performance measures are reported. The empirical standard deviation
(ESD), σe, is defined by

σ2
e =

∑

i:||G(i)||<1

||x(i) − x∗||2
/

Ns,

where Ns ≤ 50 is the number of successful runs. The Empirical Standard Devia-
tion σe can serve as a characteristic of the estimation quality (see [4]). There are
problems for which the empirical standard deviation cannot be evaluated since
the optimal point is not known or it is not unique (Problems 2, 3, 4, 5, 6 and
8). Another measure for estimation quality that we report is the Mean-Squared
Error (MSE) of the objective function estimator, given by

MSE(f) =
∑

i:||G(i)||<1

(y(i) − f∗)2/Ns.

The mean-squared error of the objective function estimator is calculated for
each problem.

The results for GSLS method and comparison with the SA method are given
in the following tables. Table 1 contains the number of successful runs for SA
and GSLS methods, depending on the choice of the gain sequence after switching
to SA (choices I and II).

The GSLS method proposed in this paper is significantly better than SA
when one compares the number of successful runs. The first algorithm, GSLS(I)

15



σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 50 50 46 50 50 46
2 50 50 50 50 50 50
3 0 50 50 0 50 50
4 0 50 50 0 50 50
5 0 45 2 0 50 1
6 0 50 46 0 50 46
7 0 48 0 0 50 0
8 15 50 28 2 50 48
9 50 50 50 50 50 50
10 50 50 50 50 50 50

success: 43% 98.6% 74.7% 40.4% 100% 78.2%

Table 1: Number of successful runs

is successful in 493 out of 500 runs for the noise with variance σ = 0.1, while for
the smallest noise σ = 0.01 it is successful in all 500 runs. The SA algorithm
is successful only in 215 and 202 runs for σ = 0.1 and σ = 0.01, respectively.
The second line-search method GSLS(II) is somewhere between these two, with
success in 372 and 391 runs, respectively. The obtained results confirm the
assumption that the line-search will yield large steps when the noise is weak.
On the other hand, the SA method does not recognized the level of noise and
decreases steps independently of the noise. We can also see that the switching
point is well defined as the proposed combination of line-search and SA signifi-
cantly improves the number of successful runs, if compared with SA. The switch
at a later iteration might have taken the iterative sequence out of the solution’s
neighborhood.

Significantly better results are obtained with GSLS(I), i.e., with the method
that takes ak = (1 + k)−1 after switching to SA. This is in line with the expec-
tation that the last line-search iteration will be in proximity of the solution and
thus the noise will significantly interfere with the process, so smaller SA steps
are preferable afterwards. SA is successful only if the initial approximation is
close to the solution (problems 1,7,9 and 10). But as we will see in Tables 2
and 3, where the values of ESD and MSE as well as the average number of line-
search iterations are reported, in all tests the new method is better in terms of
computational efforts versus quality of approximation. Considering the common
stopping criteria for problems without noise, ‖Gk‖ ≤ 10−5, only GSLS(II) ful-
filled that criterion in 38 out of 50 runs for Problem 9 and σ = 0.01. In all other
cases the algorithms stopped due to the maximal number of functional evalu-
ations. Thus the reported results are obtained with the same computational
effort for all tested methods in terms of functional evaluations.

The square of the empirical standard deviation, σ2
e and the average number

of line search iterations before switching to SA, itnAR, are reported in Table
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2. The empirical standard deviation is calculated only for the problems with
known solutions. The weakest results are obtained for Problem 1, but even in
that case GSLS is better than SA, particularly for the case σ = 0.01.The number
of Armijo steps is relatively large for this problem (around 10 for the smallest
noise and around 30 for the largest noise) in both GSLS. That is explained with
the fact that x0 is far away from the solution and thus the globalization with
the line-search rule yields significantly better results in comparison with SA.
The difference in the number of line-search steps (10 versus 30) is in line with
the intuitive reasoning: small noise allows us to use line-search steps for longer,
as the noise is important only in a tight neighborhood of the solution. The only
successful method for Problem 7 is GSLS(I) and the approximate solution is
quite close to the exact solution. In all tests the line-search is used at initial
stages of the iterative process and there is no example where SA is applied
immediately. Thus, introducing line-search steps is numerically justified.

SA GSLS(I) GSLS(II)
prb σ2

e σ2
e itnAR σ2

e itnAR

σ = 0.1

1 125.627124 88.9515396 10.5 85.22198 9.3
7 fail 0.0051343 7.79 fail fail
9 0.0017502 0.00189925 4.46 0.0015737 4.46
10 0.692694 0.2619552 4.78 0.14223548 4.78

σ = 0.01

1 125.422589 10.931906 32.92 11.028006 32.5
7 fail 0.0041855 13.3 fail fail
9 0.0008237 0.0000253 5.1 0.000231 4.94
10 0.685479 0.053169 8.52 0.0997031 8.52

Table 2: σ2
e and average number of Armijo steps (itnAR)

Table 3 contains the Mean Square Error values, MSE(f), and the average
number of Armijo steps, itnAR for all examples. As expected MSE values are
similar to σs values in the sense that problems with large MSE values have large
σs values too, but MSE values are calculated for all test examples. The results
confirm that the number of Armijo steps is significantly larger for problems
with small noise (σ = 0.01) than for problems with large noise, σ = 0.1. The
average number is almost twice as large as for the smallest noise: for example
in Algorithms of type GSLS(I) we have 6.74 steps per successful run for σ = 0.1
and 11.82 steps per successful run for σ = 0.01. The advantages of GSLS method
are quite obvious at Problem 1. SA can not approach the solution, while both
new methods use a large number of Armijo steps (32.92 and 32.5 iterations) and
yield good approximations of the solution for σ = 0.01.

The plots given in Figures 1 and 2 show the values of ‖Gk‖ and step size ak
for the first 20 iterations, on Problem 10 with σ = 0.1, 0.01, for SA, GSLS(I)
and GSLS(II) methods. The gradient values decrease significantly faster with
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SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 42.978024 28.741947 10.5 29.80379 9.3
2 0.3349472 0.0035007 5.98 0.01756547 5.98
3 fail 0.0115834 12.12 0.0114113 12.12
4 fail 0.002752 3.48 0.002758 3.48
5 fail 0.00290395 6.91 0.00385406 8
6 fail 0.00289889 7.08 0.00311755 7.24
7 fail 0.004229 7.79 fail fail
8 0.017301023 0.010854015 4.34 0.01431826 4.68
9 0.00397999 0.0033668 4.46 0.00336359 4.46
10 0.0096439 0.003697 4.78 0.00338097 4.78

σ = 0.01

1 42.7774287 0.0008434 32.92 0.0235777 32.5
2 0.3193908 0.0000374 10.54 0.0002833 10.54
3 fail 0.0077512 13.82 0.0075879 13.82
4 fail 0.00005147 5.54 0.00002859 5.54
5 fail 0.00009268 10.94 0.00000276 11
6 fail 0.00004513 8.96 0.00004815 8.96
7 fail 0.0000319 13.3 fail fail
8 0.0091224794 0.007754975 8.54 0.007408019 8.04
9 0.00004266 0.000033967 5.1 0.00003608 4.94
10 0.0051316 0.0000437 8.52 0.0000792 8.52

Table 3: MSE(f) and average number of Armijo steps (itnAR)

line-search steps for both σ values. The switching iteration is market by a dot.
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Figure 1.3: GSLS(II)
Figure 1: Problem 10, σ = 0.1, ‖Gk‖ (solid line) and ak (dashed line) values
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Figure 2.1: SA Figure 2.2: GSLS(I)
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Figure 2.3: GSLS(II)
Figure 2: Problem 10, σ = 0.01, ‖Gk‖ (solid line) and ak (dashed line) values

Additional numerical results are given in Appendix A. The results are ob-
tained with different gain coefficients for the SA method. Some other results
are also available at http://sites.dmi.rs/personal/krejicn/Natasa%20Krejic%20-
%20Curriculum%20Vitae.htm

5 Consclusion

The proposed method for unconstrained minimization in noisy environment
combined two different approaches: the gradient line-search with the Armijo rule
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and the SA method. It aims at employing the good properties of both methods.
A large step size obtained by the Armijo rule at the beginning of the iterative
procedure yields fast progress while we are far away from the solution. The safe
but slow SA method is applied afterwards to ensure almost sure convergence and
prevent zig-zag behavior of line search methods in the proximity of the solution.
The key point in applying the proposed method is the rule that determines the
switching point between the line-search and the SA method. Under a set of
standard assumption in noisy optimization we proved that such a point exists
almost surely. Furthermore we proved that SA will be employed almost surely
after a finite number of line search steps and thus almost sure convergence of
the sequence is guaranteed. An additional assumption that limits the realized
noise does not influence the applicability of the proposed method in real-life
problems. The question of suppressing noise is without doubt an important
question in solving noisy problems. As one of the referees suggested, taking
an average value of the gradients in several subsequent iterations could be an
appealing strategy. Such a strategy would imply a change in the Armijo rule
within line-search iterations and might be beneficial in the case of large noise.
We are planning to consider such an approach in future research.

The method is tested on a set of examples from literature, by adding the
Gaussian noise to the objective function and its gradient and compared with
the SA method. The results confirm that the combination of line-search and SA
method improves the robustness as well as the quality of approximate solutions
within a given constraint on the computational effort, measured in functional
evaluations.

The main drawbacks of the proposed method are inherited from SA conver-
gence conditions. These are the assumption that x∗ is unique and the need to
use gradient values. Gradient values are not always available in real-life prob-
lems and avoiding their calculation is an important point. In fact line-search
is a powerful tool for many other search directions, not only the negative gra-
dient but also quasi-Newton directions and other descent directions. Further
research is needed to develop methods that can successfully work with gradient
approximations in line search procedures.
Aknowledgements: We are grateful to the two anonymous referees, whose
suggestions helped us to improve this paper.
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A Additional numerical results

gain coefficients A, [20]: ak =
a

(k + 1 +A)α
, A = 100, α = 0.501, a = 1

σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 50 50 50 50 50 50
2 50 50 50 50 50 50
3 50 50 50 50 50 50
4 0 50 50 0 50 50
5 0 50 50 0 50 50
6 0 50 50 0 50 50
7 4 2 0 0 0 0
8 50 50 50 50 50 50
9 50 50 50 50 50 50
10 50 50 50 50 50 50

success: 60.8% 90.4% 90% 60% 90% 90%

Table A.1: Number of successful runs

SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 121.0426 82.899469 10.5 82.582009 10.5
7 0.0144607 0.0142281 5 fail fail
9 0.0065941 0.0018238 4.46 0.001833 4.46
10 0.832608 0.2223136 4.78 0.218987 4.78

σ = 0.01

1 120.8994 10.996916 32.92 11.008855 32.92
7 fail fail fail fail fail
9 0.0053672 0.00001934 5.1 0.00001924 5.1
10 0.823739 0.0834911 8.82 0.0819886 8.52

Table A.2: σ2
e and average number of Armijo steps (itnAR)
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SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 42.2433 27.589528 10.5 27.52283 10.5
2 0.002926 0.0034218 5.98 0.0034213 5.98
3 0.00295 0.011389 12.12 0.0113746 12.12
4 fail 0.0027555 3.48 0.0027554 3.48
5 fail 0.0028692 6.26 0.0028678 6.26
6 fail 0.0029015 7.08 0.0029009 7.08
7 0.0029660 0.0026383 5 fail fail
8 0.01314 0.0108821 4.34 0.0108835 4.34
9 0.004012 0.0033682 4.46 0.0033682 4.46
10 0.013923 0.00353367 4.78 0.0035224 4.78

σ = 0.01

1 42.0478 0.0007886 32.92 0.00077969 32.92
2 0.0000309 0.00002061 10.54 0.00002055 10.54
3 0.0000334 0.0075707 13.82 0.007556 13.82
4 fail 0.00003489 5.54 0.000034091 5.54
5 fail 0.00003225 10.94 0.00003228 10.94
6 fail 0.00004591 8.96 0.00004599 8.96
7 fail fail fail fail fail
8 0.008507 0.0077535 8.54 0.00775349 8.54
9 0.0000578 0.00003396 5.1 0.00003396 5.1
10 0.0092167 0.00006379 8.52 0.00006257 8.52

Table A.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients B, [20]: ak =
a

(k + 1 +A)α
, A = 100, α = 0.501, a = 0.1

σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 0 50 50 0 50 50
2 50 50 50 50 50 50
3 0 50 50 0 50 50
4 50 50 50 50 50 50
5 50 50 50 50 50 50
6 50 50 50 50 50 50
7 50 50 50 50 50 50
8 50 50 50 50 50 50
9 0 50 50 0 50 50
10 0 50 50 0 50 50

success: 60% 100% 100% 60% 100% 100%

Table B.1: Number of successful runs
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SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 fail 95.7944784 10.5 95.7665068 10.5
7 0.261215 0.0538276 8.1 0.0520003 8.1
9 fail 0.017043 4.46 0.0168833 4.46
10 fail 0.4304804 4.78 0.4296233 4.78

σ = 0.01

1 fail 10.908572 32.92 10.910184 32.92
7 0.2614917 0.0255486 13.3 0.0244098 13.3
9 fail 0.00025191 5.1 0.000249239 5.1
10 fail 0.131444 8.52 0.131192 8.52

Table B.2: σ2
e and average number of Armijo steps (itnAR)

SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 fail 29.8742945 10.5 29.8696448 10.5
2 0.010195 0.004398 5.98 0.0043807 5.98
3 fail 0.0116541 12.12 0.011652 12.12
4 0.010936 0.002735 3.48 0.0027345 3.48
5 0.002566 0.0124461 6.26 0.012206 6.26
6 0.007077 0.0029019 7.08 0.0029014 7.08
7 0.00658 0.0036576 8.1 0.00363827 8.1
8 0.0208914 0.012674 4.34 0.0126472 4.34
9 fail 0.0035372 4.46 0.0035353 4.46
10 fail 0.0050786 4.78 0.00506645 4.78

σ = 0.01

1 fail 0.0008795 32.92 0.0008754 32.92
2 0.0056422 0.0001420 10.54 0.0001389 10.54
3 fail 0.0078115 13.82 0.0078099 13.82
4 0.0064634 0.00026495 5.54 0.00026477 5.54
5 0.0000417 0.0012029 10.94 0.00117512 10.94
6 0.002765 0.0000491 8.96 0.00004897 8.96
7 0.00523 0.00006156 13.3 0.00005879 13.3
8 0.0160763 0.0078465 8.54 0.0078438 8.54
9 fail 0.00003401 5.1 0.00003401 5.1
10 fail 0.0001281 8.52 0.0001277 8.52

Table B.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients C, [20]: ak =
a

k + 1
, a = 0.1
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σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 0 50 50 0 50 50
2 50 50 50 50 50 50
3 0 50 50 0 50 50
4 50 50 50 50 50 50
5 50 50 50 50 50 50
6 10 50 50 7 50 50
7 0 50 50 0 50 50
8 50 50 50 50 50 50
9 0 50 50 0 50 50
10 0 50 50 0 50 50

success: 42% 100% 100% 41.4% 100% 100$

Table C.1: Number of successful runs

SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 fail 96.342625 10.5 95.561843 10.5
7 fail 0.125638 8.1 0.078354 8.1
9 fail 0.018855 4.46 0.012795 4.46
10 fail 0.4397850 4.78 0.4049329 4.78

σ = 0.01

1 fail 10.900485 32.92 10.932018 32.92
7 fail 0.0521027 13.3 0.0326230 13.3
9 fail 0.0002832 5.1 0.0001871 5.1
10 fail 0.133937 8.52 0.125421 8.52

Table C.2: σ2
e and average number of Armijo steps (itnAR)

SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 fail 29.963021 10.5 29.833755 10.5
2 0.018291 0.005420 5.98 0.004676 5.98
3 fail 0.0119313 12.12 0.011655 12.12
4 0.0039711 0.002736 3.48 0.002712 3.48
5 0.0248071 0.022087 6.26 0.014402 6.26
6 0.0093885 0.00291 7.08 0.00290176 7.08
7 fail 0.0052070 8.1 0.0040522 8.1
8 0.020718 0.012961 4.34 0.011934 4.34
9 fail 0.0035588 4.46 0.0034795 4.46
10 fail 0.0052181 4.78 0.0047484 4.78

σ = 0.01

1 fail 0.00090981 32.92 0.00083693 32.92
2 0.012812 0.0002263 10.54 0.0001574 10.54
3 fail 0.0078491 13.82 0.0078136 13.82
4 0.0000412 0.0002667 5.54 0.0002567 5.54
5 0.0234929 0.0016016 10.94 0.0011419 10.94
6 0.0038791 0.0000506 8.96 0.0000466 8.96
7 fail 0.0001925 13.3 0.00008712 13.3
8 0.0158904 0.0078800 8.54 0.0078043 8.54
9 fail 0.00003403 5.1 0.00003400 5.1
10 fail 0.0001325 8.52 0.0001181 8.52
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Table C.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients D, [6, 3]: ak =
a

sk + 1
, sk+1 = sk + I(GT

k+1Gk),

(I(t) = 1 if t < 0, I(t) = 0 if t ≥ 0), a = 1

σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 46 50 38 50 50 45
2 50 50 50 50 50 50
3 0 50 0 0 50 0
4 0 50 50 0 50 50
5 0 28 0 0 50 0
6 0 50 0 0 50 50
7 0 27 0 0 50 0
8 0 48 0 0 50 0
9 50 50 50 50 50 50
10 50 50 50 50 50 50

success: 39.2% 90.6% 47.6% 40% 100% 59%

Table D.1: Number of successful runs

SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 38.536352 36.676602 10.5 94972.44284 10.34
7 fail 0.0016100 9.22 fail fail
9 0.0015442 0.0016006 4.46 0.0345863 4.46
10 0.115646 0.1136127 4.78 0.0559252 4.78

σ = 0.01

1 13.9445 11.02922 32.92 29465.36399 32.44
7 fail 0.00026264 13.3 fail fail
9 0.0000165 0.000017 5.1 0.000318 4.94
10 0.0190116 0.0132143 8.52 0.0018534 8.52

Table D.2: σ2
e and average number of Armijo steps (itnAR)
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SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 0.004862 0.014505 10.5 51.74475 10.34
2 0.3349523 0.0034784 5.98 0.3297073 5.98
3 fail 0.011529 12.12 fail fail
4 fail 0.002755 3.48 0.002737 3.48
5 fail 0.0026771 7.75 fail fail
6 fail 0.0029073 7.08 fail fail
7 fail 0.0016704 9.22 fail fail
8 fail 0.0104589 3.92 fail fail
9 0.00398386 0.00336686 4.46 0.0036238 4.46
10 0.0041752 0.0033385 4.78 0.00342104 4.78

σ = 0.01

1 0.001699 0.0007788 32.92 73.86254 32.44
2 0.3193908 0.0000209 10.54 0.317417 10.54
3 fail 0.0076047 13.82 fail fail
4 fail 0.0000285 5.54 0.0000303 5.54
5 fail 0.00003166 10.94 fail fail
6 fail 0.0000463 8.96 0.0000502 8.96
7 fail 0.0000319 13.3 fail fail
8 fail 0.0077533 8.54 fail fail
9 0.0000411 0.00003396 5.1 0.0000364 4.94
10 0.00004616 0.00003212 8.52 0.00003144 8.52

Table D.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients E, [6, 3]: ak =
a

sk + 1
, sk+1 = sk + I(GT

k+1Gk),

(I(t) = 1 if t < 0, I(t) = 0 if t ≥ 0), a = 0.1

σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 50 50 50 50 50 50
2 50 50 50 50 50 50
3 50 50 50 50 50 50
4 0 50 50 0 50 50
5 50 50 50 50 50 50
6 2 50 50 0 50 50
7 50 50 0 50 50 0
8 50 50 50 50 50 50
9 50 50 50 50 50 50
10 50 50 50 50 50 50

success: 80.4% 100% 90% 80% 100% 90%

Table E.1: Number of successful runs
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SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 118.3953499 82.222250 10.5 80.965305 10.5
7 0.0081745 0.0191389 8.1 fail fail
9 0.0073673 0.0081150 4.46 0.0019346 4.46
10 0.7454309 0.3411463 4.78 0.2101301 4.78

σ = 0.01

1 118.233373 10.9157290 32.92 11.0123029 32.92
7 0.0004904 0.0186394 13.3 fail fail
9 0.0032182 0.00009375 5.1 0.000019704 5.1
10 0.7357191 0.1043706 8.52 0.0796481 8.52

Table E.2: σ2
e and average number of Armijo steps (itnAR)

SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 41.798171 27.424956 10.5 27.193449 10.5
2 0.0033206 0.0037454 5.98 0.0034165 5.98
3 0.0036856 0.0116663 12.12 0.0113331 12.12
4 fail 0.0027207 3.48 0.0027545 3.48
5 0.0079767 0.0032263 6.26 0.0028036 6.26
6 0.00005802 0.0028907 7.08 0.0029003 7.08
7 0.0025004 0.00338343 8.1 fail fail
8 0.013114 0.0109367 4.34 0.0108823 4.34
9 0.0039959 0.0033837 4.46 0.0033677 4.46
10 0.0113042 0.0041788 4.78 0.0035002 4.78

σ = 0.01

1 41.600274 0.0008710 32.92 0.00077782 32.92
2 0.00007962 0.00010291 10.54 0.0000205 10.54
3 0.0003867 0.0078148 13.82 0.0075176 13.82
4 fail 0.00021048 5.54 0.00003131 5.54
5 0.0026003 0.00097469 10.94 0.000032315 10.94
6 fail 0.00004745 8.96 0.000046077 8.96
7 0.00002901 0.00004126 13.3 fail fail
8 0.00850702 0.00781918 8.54 0.00775355 8.54
9 0.0000493 0.00003403 5.1 0.00003396 5.1
10 0.0066991 0.00008631 8.52 0.00006052 8.52

Table E.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients F, [25]: ak =
a

(k + 1+A)q(
sk
k

)
, q(

sk
k
) = max

(

1−
∣

∣

∣

sk
k

− 1

2

∣

∣

∣
, 0.501

)

(I(t) = 1 if t < 0, I(t) = 0 if t ≥ 0), a = 1
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σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 50 50 50 50 50 50
2 50 50 50 50 50 50
3 50 50 50 50 50 50
4 0 50 50 0 50 50
5 50 50 50 50 50 50
6 5 50 50 6 50 50
7 50 50 0 50 50 0
8 50 50 50 50 50 50
9 50 50 50 50 50 50
10 50 50 50 50 50 50

success: 80% 100% 90% 81.2% 100% 90%

Table F.1: Number of successful runs

SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 121.0425578 83.4379495 10.5 82.5820087 10.5
7 0.0022018 0.0034627 8.1 fail fail
9 0.0073457 0.0060687 4.46 0.001833 4.46
10 0.832608 0.3128886 4.78 0.218987 4.78

σ = 0.01

1 120.899406 10.941975 32.92 11.008855 32.92
7 0.0001114 0.0020164 13.3 fail fail
9 0.0053672 0.0000644 5.1 0.00001924 5.1
10 0.8237388 0.0944149 8.52 0.0819886 8.52

Table F.2: σ2
e and average number of Armijo steps (itnAR)

SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 42.2432718 27.6883046 10.5 27.5228296 10.5
2 0.0030965 0.00352996 5.98 0.0034213 5.98
3 0.0087767 0.01163409 12.12 0.0113746 12.12
4 fail 0.0027195 3.48 0.0027554 3.48
5 0.0025681 0.002965 6.26 0.0028678 6.26
6 0.0006954 0.0028992 7.08 0.002909 7.08
7 0.0025116 0.0033131 8.1 fail fail
8 0.0130993 0.0109146 4.34 0.0108835 4.34
9 0.0040162 0.0033809 4.46 0.0033682 4.46
10 0.0139235 0.0039766 4.78 0.0035224 4.78

σ = 0.01

1 42.0478177 0.00083982 32.92 0.0007797 32.92
2 0.0000422 0.000037 10.54 0.00002055 10.54
3 0.0043837 0.0077682 13.82 0.00755600 13.82
4 fail 0.00016708 5.54 0.00003409 5.54
5 0.00004143 0.0002453 10.94 0.0000323 10.94
6 0.00061929 0.0000462 8.96 0.00004599 8.96
7 0.00002896 0.0000315 13.3 fail fail
8 0.00850702 0.0077957 8.54 0.0077535 8.54
9 0.00005783 0.00003401 5.1 0.00003396 5.1
10 0.0092167 0.00007500 8.52 0.00006257 8.52
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Table F.3: MSE(f) and average number of Armijo steps (itnAR)

gain coefficients G, [25]: ak =
a

(k + 1+A)q(
sk
k

)
, q(

sk
k
) = max

(

1−
∣

∣

∣

sk
k

− 1

2

∣

∣

∣
, 0.501

)

(I(t) = 1 if t < 0, I(t) = 0 if t ≥ 0), a = 0.1

σ = 0.1 σ = 0.01

pr SA GSLS(I) GSLS(II) SA GSLS(I) GSLS(II)
1 0 50 50 0 50 50
2 50 50 50 50 50 50
3 0 50 50 0 50 50
4 50 50 50 50 50 50
5 50 50 50 50 50 50
6 50 50 50 50 50 50
7 50 50 50 50 50 50
8 50 50 50 50 50 50
9 0 50 50 0 50 50
10 0 50 50 0 50 50

success: 60% 100% 100% 60% 100% 100%

Table G.1: Number of successful runs

SA GSLS(I) GSLS(II)
prb σ2

e
σ2
e

itnAR σ2
e

itnAR

σ = 0.1

1 fail 95.841642 10.5 95.766507 10.5
7 0.261215 0.091945 8.1 0.0520003 8.1
9 fail 0.021593 4.46 0.016883 4.46
10 fail 0.4470755 4.78 0.4296233 4.78

σ = 0.01

1 fail 10.901866 32.92 10.910184 32.92
7 0.2614917 0.0460891 13.3 0.0244098 13.3
9 fail 0.0003052 5.1 0.0002492 5.1
10 fail 0.1331996 8.52 0.131192 8.52

Table G.2: σ2
e and average number of Armijo steps (itnAR)
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SA GSLS(I) GSLS(II)
prb MSE(f) MSE(f) itnAR MSE(f) itnAR

σ = 0.1

1 fail 29.8817907 10.5 29.869645 10.5
2 0.010195 0.004974 5.98 0.0043807 5.98
3 fail 0.012035 12.12 0.0116516 12.12
4 0.010936 0.002772 3.48 0.002734 3.48
5 0.002565 0.015744 6.26 0.012206 6.26
6 0.0102667 0.002969 7.08 0.002901 7.08
7 0.0065804 0.004209 8.1 0.0036383 8.1
8 0.0208914 0.013657 4.34 0.012647 4.34
9 fail 0.003586 4.46 0.003535 4.46
10 fail 0.0053331 4.78 0.0050664 4.78

σ = 0.01

1 fail 0.0009065 32.92 0.0008754 32.92
2 0.0056422 0.0002221 10.54 0.0001389 10.54
3 fail 0.007859 13.82 0.0078099 13.82
4 0.006463 0.000271 5.54 0.0002648 5.54
5 0.0000417 0.001659 10.94 0.001175 10.94
6 0.005773 0.0000547 8.96 0.00004897 8.96
7 0.0052300 0.0001443 13.3 0.0000588 13.3
8 0.016076 0.0079555 8.54 0.0078438 8.54
9 fail 0.0000341 5.1 0.00003401 5.1
10 fail 0.0001316 8.52 0.0001277 8.52

Table G.3: MSE(f) and average number of Armijo steps (itnAR)
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