
UNIVERZITET U NOVOM SADU

PRIRODNO-MATEMATIČKI
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Preface

Motivation

In the field of banking supervision and risk management The Basel Committee on
Banking Supervision (BCBS) established in 1974 takes the most important place.
In 1988, the BCBS has issued the first accord, that is The Basel Capital Accord
(Basel I) a framework for governing capital adequacy for internationally active
banks. After a while, in 1999 the consultative version of The New Capital Accord
(Basel II) was published, while the advanced version of Basel II was issued in 2006.
The Basel Committee with its’ Accords establishes standards for measuring the
risk and the minimum capital requirements which should best suited to banks’
actual risk exposures.

Expectations for full implementation of the Basel II was at the end of year
2006, while the advanced versions of the rules will be implemented by the end of
2007. In light of that, financial institutions around the world are increasing their
focus on risk management to ensure they are well prepared.

With New Basel Accord II, operational risk was introduced as equally im-
portant as market and credit risks are, and defined as a risk of loss resulting from
inadequate or failed internal processes, people, systems or from external events.
Also, within Basel II banks have got a freedom to develop theirs own internal
models for estimation of operational risk in order to provide more risk-sensitive
capital models.

Accordingly, the basic motivation for this paper was the research of math-
ematical models that can be used for estimation of operational risk in a financial
institution.
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Outlines

In Chapter 1 the notation adopted in this paper is given, together with basic well
known facts from econometrics and statistics.

Chapter 2 starts with the introduction of the Basel Committee and the Basel
II Accord. Later, the operational risk is defined, and the complete operational
risk management framework is explained.

Chapter 3 deals with capital models for operational risk allocation. These
models calculate the capital charge for operational risk exposure and the basics
of all three models are presented. More details are given for the Loss Distribution
Approach.

Chapter 4 can be considered as the main chapter of this paper. It starts with
descriptive analysis of loss data moving to parametrical fitting of frequency and
severity of data. The attention was put on the parameters estimation of chosen
distribution and consequently, the standard (Maximum Likelihood Estimation)
and adjusted approach are explained. The Expectation-Maximization algorithm
is adopted and explained in more details. Further, the statistical goodness-of-fit
tests are presented for complete data set and left-truncated data sets. Since the
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operational risk loss can be extremely high value with the possibility to happen
very small, Extreme Value Theory was considered. Two basic approaches are
presented, i.e. Peaks over Threshold and Block Maxima. The final step in Loss
Distribution Approach is the aggregation of both chosen distributions for severity
and frequency of loss data. Monte Carlo simulation method is described and
implemented for this model. The last part of Chapter 4 is the correlation effect
among loss data. However, formulas for uncorrelated and correlated loss data are
given in order to determine the capital charge for operational risk.

In Chapter 5 the empirical results obtained for a given data are reported.
The organization of this chapter is the same as for Chapter 4.

At the end of the thesis the list of considered literature is listed.
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Chapter 1

Introduction

1.1 Notation

In this paper the following notation is adopted.

The random variables are denoted with capital letters e.g. X, Y and its
corresponding realizations (i.e. observations, random draw) with small letters x,
y. If there is n-times realization of X then a small boldface letter presents a
corresponding random vector x = (x1, x2, . . . , xn).

The cumulative distribution function (cdf) ofX is denoted as FX(x; θ) where
θ is parameter or set of parameters. The corresponding probability function is
fX(x; θ). Sometimes the index is omitted when it is obvious from which distribu-
tion random variable comes, e.g. F (x; θ).

Convolution. Suppose that two independent random variables X and Y with
their cdf FX , FY and corresponding probability density functions (pdf) fX ,
fY are given. If we observe the sum U = X + Y , then, the pdf fU is the
convolution integral

fU(u) =

∫ ∞

−∞

fX(u− y) · fY (y)dy =

∫ ∞

−∞

fX(x) · fY (u− x)dx .

The notation is FU = FX?FY . The n-fold convolution is defined as F 1? = F ,
F n? = F (n−1)? ? F .

Conditional expectation. Suppose that (X,Y ) is a joint random variable ex-
plained by pdf f(X,Y )(x, y). Then, the conditional expectation for every

9



10 CHAPTER 1. INTRODUCTION

g(·, ·) function given X = x can be expressed as

E(g(X,Y ) | X = x) =

∫

y∈Y

g(x, y)fY |X(y | x) dy . (1.1)

Skewness and kurtosis. The skewness is the third standardized moment that
explains the asymmetry of data around the mean value, while the forth
standardized moment is the measure of tail-heaviness called kurtosis. Let
X be the random variable with the mean µ and the standard deviation σ,
then the formulas are

Skewness =
E((X − µ)3)

σ3
,

Kurtosis =
E((X − µ)4)

σ4
.

For the normal distribution the skewness is equal to zero which means that
positively skewed distributions have more probability mass concentrated on
the left side of the mean, while, negatively skewed distributions have more
probability mass concentrated on the right side. The kurtosis of normal
distribution is equal to 3 and distributions with more heavier tails than the
normal distribution, have kurtosis greater than 3. Respectively, distribu-
tions with ticker tails have kurtosis less than 3.

Quantile. The quantile (percentile) presents a cutoff value x such that the area
to their right is a given probability 1− α where α ∈ [0, 1] expressed as

1− α = P(X > x) = 1− F (x)

=

+∞
∫

x

f(x)dx .

Therefore, the αth quantile (α× 100%) can be also defined as

x = inf{x : F (x) ≥ α} .



Chapter 2

Operational Risk

2.1 The Basel Committee, The Basel Accords

The world’s most important organization in the field of banking supervision and
risk management is The Basel Committee on Banking Supervision (BCBS). It
was established by the central-bank governors of the Group of Ten countries1

in 1974 as a part of the world’s oldest international financial organization Bank
of International Settlement (BIS). The aim of BCBS is to ”formulate broad su-
pervisory standards and guidelines and recommends statements of best practice
in the expectation that individual authorities will take steps to implement them
through detailed arrangements - statutory or otherwise - which are best suited
to their own national systems”, [4].

In other words, BCBS tends to find the best common approaches and com-
mon standards for every member country in order to promote the advancement of
risk management in the banking system, strengthen banking supervisory frame-
works and to improve financial reporting standards. To achieve this, BCBS has
published many documents in the field of capital adequacy, banking problems,
accounting and auditing, core principles for effective banking supervision, credit
risk and securitization, market risk, operational risk, money laundering and ter-
rorist financing, transparency and disclosure. For the risk management the most
important documents are the Basel Accords, Basel I and Basel II.

In 1988, the BCBS has issued the first accord, that is The Basel Capital
Accord (Basel I), a framework for governing capital adequacy for internationally
active banks. After a while, in 1999 the consultative version of The New Capital

1The members of Group of Ten are Belgium, Canada, France, Germany, Italy, Japan, the
Netherlands, Sweden, Switzerland, the United Kingdom, the United States of America.

11



12 CHAPTER 2. OPERATIONAL RISK

Accord (Basel II) was published, and in 2004 its finale version. The advanced
version of Basel II was issued in 2006, [3].

The Basel Committee with its’ Accords establishes standards for measuring
the risk and the minimum capital requirements which should best suited to banks’
actual risk exposures.

Regulatory capital, also called the capital charge or the minimum capital re-
quirement, is the capital defined by the regulators that bank should set aside
as a buffer against its potential losses. The regulatory capital is meant to
assure bank’s ability to cover major potential losses (or to cover significant
but not catastrophic losses) without causing a banking crisis. Consequently,
regulatory capital management should ensure the soundness and the stabil-
ity of the banking sector and protect depositors.

Economic capital is, on the other hand, every kind of capital (such as book
capital, reserves, charges etc.) that can absorb economic losses without
interrupting any banking activity. It is calculated according to the bank’s
experts opinions and it is not a subject of supervisory review. Further,
the economic capital management helps in identifying the measure of risks,
base strategic decisions on accurate information, strengthen an institution’s
long-term profitability and competitiveness. Indeed, the regulatory and
economic capital are highly connected.

The universe of the risks which banks can face is composed of three basic
types - credit, market and operational risk. In Basel I the main focus is on market
and credit risk, leaving operational risk with no operational capital requirements.
Basel II, as a big improvement of Basel I, has introduced the operational risk
equally important as market and credit risks are. The risks are defined as follow-
ing.

Credit risk is the risk that a counterpart will not be able to meet their contrac-
tual obligations for full value.

Market risk is the risk of losses in on- and off- balance sheet positions arising
from movements in the level or volatility of market prices.

Operational risk is the risk of loss resulting from inadequate or failed internal
processes, people, systems or from external events.

The aim of Basel II is to promote safety and soundness in the financial
system. It means that it should make capital requirement sensitive to bank’s risk,
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maintain current level of firm’s capital, focus on international banks and apply
comprehensive risk approach. These objectives can only be achieved through the
mutually reinforcing of the Basel’s three pillars, [3], as shown in Figure 2.1.
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Basel II
The Three Pillars

Approaches for
calculation of
minimum capital
requirements for:

• Market risk
• Credit risk
• Operational risk

• Supervisors
should review and
expect banks to
operate above the
minimum capital
ratios.
• Banks should
have a process for
assessing their
overall capital
adequacy and risk
strategy.

• Banks are
required to carry
out both of
quantitative and
qualitative
disclosure to the
market participants
about its risk
exposure, risk
strategy, firm’s
capital etc.

Figure 2.1: The Structure of Basel II Document

Pillar 1 - Minimum Capital Requirements. Each bank institution is requir-
ed to calculate the minimum capital requirements, that is, a monetary cau-
tion that will be set aside as a reserve against the risks that bank takes.
Pillar 1 is based on capital requirements defined in Basel I for credit and
market risk, and also, on a new capital charge for operational risk. Fur-
thermore, Pillar 1 sets several approaches to credit, market and operational
risk estimation, increases risk sensitivity through more refined credit risk
weights and internal ratings based approaches, and defines constituents of
firm’s capital.
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Pillar 2 - Supervisory Review Process. According to Pillar 2 supervisors
have more active role with possibility to take actions where necessary. They
should review banks’ internal capital assessments, ensure that banks oper-
ate above the minimum regulatory capital ratios and require rapid remedial
actions if capital is not maintained or restored. The capital ratio is consid-
ered as bank’s capital that should be available for potential losses caused
by credit, market and operational risk. Currently, it is measured by

CapitalRatio =
TotalCapital

CreditRisk + 1.25(MarketRisk +OperationalRisk)

Further, since the total capital ratio must not be lower than 8% the total
regulatory capital is greater or equal to the following sum:

TotalCapital ≥ 0.08 · CreditRisk +MarketRisk +OperationalRisk

Supervisors have the obligations to make publicly available the criteria
which is used in the process of risk management; in a transparent and
accountable manner. Consequently, this review process encourages financial
institutions to develop better risk management techniques in monitoring,
measuring and managing risks.

Pillar 3 - Market Discipline. Financial institutions must carry out quantita-
tive and qualitative disclosure to the market participants regarding firm’s
capital, risk management practices, structure and organization, risk assess-
ment processes, risk exposures, and the capital adequacy of the institution.
In general, this kind of disclosure reveals the level of risk management so-
phistication to the market. Additionally, under the Pillar 3 the volume and
the frequency of reporting are increased.

Expectations for full implementation of the Basel II basic framework for
every member country of BCBS was at the end of year 2006, while the advanced
versions of the rules will be implemented by the end of 2007. In light of that,
financial institutions around the world are increasing their focus on risk manage-
ment (specially on operational risk management as relatively new and not enough
explored form of risk) to ensure they are well prepared.
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2.2 Defining Operational Risk

Until recently, there was no agreement on definition of operational risk (OR).
The earlier definitions were either inconsistent or overlapping, going from ”every-
thing except market and credit risk” to ”losses due to failures in the operational
process”. Finally, in 2001 the consensus on OR definition has been reached and
BCBS [1] has defined OR as follows.

Definition 2.1. Operational risk is the risk of loss resulting from inadequate or
failed internal processes, people, systems or from external events.

This definition includes legal risk2, but excludes strategic and reputational risk.3

Example:

External causes Retail Banking External Fraud Loss of money
Cause BL ET Effect

Causes

1. People

2. System

3. Processing

4. External causes

Business Line

1. Corporate Finance

2. Trading & Sales

3. Retail Banking

4. Commercial Banking

5. Payment &Settlement

6. Agency Services

7. Asset Management

8. Retail Brokerage

Event Type

1. Internal Fraud

2. External Fraud

3. Employment Practices &
Workplace Safety

4. Clients, Products &
Business Practices

5. Damage to Physical
Assets

6. Business Disruption &
System Failures

7. Execution, Delivery &
Process Management

Effects

1. Loss of recourse

2. Write-down

3. Loss of physical
asset

4. Restitution

5. Legal cost /
settlement

6. Loss of money

7. Loss of
important
information etc.

Table 2.1: Causes, Business Lines, Event Types and Effects

From the above definition it should be noted that OR highly depends on
characteristics of each bank institution; its specific processes, personal, culture

2Legal risk is a risk of loss resulting from legal actions (i.e. fines, penalties, or punitive
damages) and private settlements.

3The strategic risk is the risk of unexpected losses resulting from incorrect decisions taken
by senior management while the reputational risk is the loss arising from a damaged firm’s
reputation.
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and technology. Apparently, OR losses can appear from different types of events
such as a management failure, inadequate procedures and controls, malfunction of
IT system, poorly trained, overworked or unmotivated employees, unauthorized
activity by employees, breaking of systems security by hacking damage or theft of
information, external catastrophic events, earthquake, fire, or terroristic attack
like one on the World Trade Center on September 11, 2001 etc. In fact, the main
cause of the OR loss heavily depends on internal processes in the firm, business
strategy, technology. Thus, this form of risk continuously changes with firm’s
development and competition.4

The analysis of OR losses can be performed according to causes, loss event
types, effects that drive the OR losses, and, also by business lines where the OR
loss occurred. See Table 2.1. In order to provide the general classification of OR
losses BCBS [3] has defined four basic categories of the causes of OR, seven event
types and eight business lines of bank’s organizations5.

The causes: people, processing, system and external factors.

Business Lines (BL): Corporate Finance, Trading & Sales, Retail Banking,
Commercial Banking, Payment & Settlement, Agency Services, Asset Man-
agement and Retail Brokerage.

Event Types (ET): Internal Fraud, External Fraud, Employment Practices &
Workplace Safety, Clients, Products & Business Practices, Damage to Phys-
ical Assets, Business Disruption & System Failures and Execution, Delivery
& Process Management.

Effects: loss of recourse, write-down, loss of physical asset, restitution, legal cost
and settlement, loss of money, loss of important information and etc.

As we will see in the following chapters, this classification of OR’s loss types
and business lines is highly useful in identifying, assessing, and also, in calculating
the OR capital charge. Moreover, it is required for the banks under the Advanced
Measurement Approaches.

It is worth noting that operational losses vary quite a lot between different
business lines and event types. As an example of this, Table 2.2 and Table 2.3
present the percentages of the operational loss data disaggregated by BL and

4Regarding the nature of OR losses, BCBS has left, for each bank institution, the possibility
to change the definition of OR according to their own individual characteristics.

5For more details see [3] Annex 8: Mapping of BL and Annex 9: Detailed Loss Event Type
Classification
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ET, respectively. All losses exceeded $1 million, occurred in the United States of
America and have been collected by vendor OpVantage6, [5].

BL1  Corporate Finance

BL2 Trading & Sales

BL3  Retail Banking

BL4  Commercial Banking

BL5  Payment & Settlement

BL6 Agency Services

BL7 Asset Management

BL8  Retail Brokerage

4 %

9 %

39 %

16 %

1 %

3 %

6 %

22 %

ET1  Internal Fraud

ET2  External Fraud

ET3  Employment Practices &
Workplace   Safety

ET4  Clients, Products &
Business Practices

ET5  Damage to Physical Assets

ET6  Business Disruption &
System  Failures

ET7  Execution, Delivery &
Process Management

27 %

16.6 %

3.3 %

48.1 %

0.3 %

0.4 %

4.2 %

BL | % of all losses ET | % of all losses

Table 2.2: OR Losses by BL Table 2.3: OR Losses by ET

One can immediately see that the business line with the most observations
is Retail Banking (BL3) (39% of all losses) while the most frequent event type is
Clients, Products and Business Practices (ET4) (48.1% of all losses). Yet, it is
not necessary the case that the most frequent business line (or event type) has
in the same time losses with the highest impact on the amount of lost money. It
is more often that OR losses which are highly frequent are small/medium-sized
losses, while the low-frequent ones are usually large ones.

2.3 Operational Risk Management Framework

Operational risk management framework is the process that involves the whole
bank organization at all levels of management. The Basel Committee has defined
the OR management framework in two documents, that is, Basel II [3] and Sound
Practices for the Management and Supervision of Operational Risk [2]. There are
quantitative and qualitative approaches to management of OR.

The Basel II has proposed three basic models for calculating operational
capital charge: the Basic Indicator Approach (BIA), the Standardized Approach

6Namely, after the introduction of OR in 1999 with the first consultative version of Basel II
banks have started to collect more information on their historical OR losses (creating internal
loss databases). During the time, the data vendors like OpVantage, OpRisk Analytics and
British Bankers Association have been formed in order to make easier exchange of operational
loss experience among bank’s institutions. What actually vendors do is collecting the available
data from public information sources and making external database of OR losses.
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(SA), and the Advanced Measurement Approaches (AMA). These capital models
estimate the OR capital charge, that is, the OR regulatory capital and they
differ among each other by the level of risk-sensitivity. The AMA model is the
most risk-sensitive one and, until now, the most appropriate one for banks which
tend to understand their OR exposure in order to find better control, monitor
and mitigation of it. All capital models will be discussed in more details in the
following chapters.

On the other hand, the Basel’s document [2] has defined ten qualitative
principles which banks should consider and adopt for their OR management
framework. However, these principles are required for the banks under AMA
capital model.

The principles are:

1. The board of directors should be aware of the major aspects of OR, ap-
prove and periodically review the OR management framework.

2. The board of directors should ensure that the framework is subject to
effective internal audit.

3. Senior management has responsibility for implementing the framework,
and all levels of staff should understand their responsibilities.

4. Banks should identify the OR in all products, activities, processes and
systems for both existing operations and new products.

5. Banks should establish the processes to regularly monitor OR profiles
and material exposure to losses.

6. Banks should have policies, processes and procedures to control or mit-
igate OR. They should assess the feasibility of alternative strategies and
adjust their exposure appropriately.

7. Banks should have in place contingency and business continuity plans
to ensure their ability to operate as going concerns in the event of business
disruption.

8. Bank supervisors should require banks to have an effective OR manage-
ment strategy as part of an overall approach to risk management.

9. Supervisors should conduct regular independent evaluations of the re-
lated bank OR management strategies.
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10. Banks should make sufficient public disclosure to allow market partici-
pants to assess their approach to OR management.

According to the above principles the OR management framework has four
basic components, that is, strategy, process, infrastructure and environ-
ment. See Figure 2.2.

4. Environment

3. Infrastructure

2. Process

1. Strategy

2. Process
•  Risk Identification
•  Control Framework
• Assessment
•  Measuring
•  Monitoring
•  Reporting

•  Objectives
•  Governance Model
•  Policy

1. Strategy

Figure 2.2: The OR Management Framework

• The whole OR management framework starts from the definition of bank’s
strategy. The strategy is composed of objectives, governance model and pol-
icy, and hence, it gives the basic form for the entire management framework.
Namely, the strategy should define the goals and aims of the organization,
the organization’s risk appetite, the organization approach to the risk man-
agement, the policy of management and the responsibilities. The senior
management forms the strategy while the board of directors approve it.

• The second phase of the OR management framework is the process. It
contains six different parts; risk identification, control framework, risk as-
sessment, measuring, monitoring and risk reporting. While the strategy is
formed for the bigger time horizon, the process is more based on the daily
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activities and decisions which are performed within the strategy. Each part
of the process will be explained later.

• Infrastructure should provide appropriate IT system, the database of OR
losses and other tools which are used in the management process.

• The environment should define responsibilities for every part of the process,
provide the appropriate bank’s organization structure, set the communica-
tion, attitudes, practices in the bank on the right level, and everything else
that characterize bank’s daily risk activities. Additionally, environment
should always monitor and assess external factors like industry trends, new
regulators requirements, law, competitors’ experiences etc. All this should
be done in order to adjust, as necessary, the internal processes to the new
situations.

Now, before explaining the stages of OR management process the following fact
should be noted. In most cases, for banks that integrate for the fist time the OR
management, it is very difficult to build the model which will perfectly fit to their
organization structure and risk exposure. Namely, the problem is that all parts of
the OR management framework can not be built with the same degree of quality
at the same time. There are lots of limitations such as no history data available
for measuring the risk, no trained staff for managing the process or there are no
appropriate infrastructure and IT systems to be used. But, since banks need to
have some kind of model for OR management, the common practice shows that,
in the first stage of implementation of risk management, it is better to have model
with reasonable characteristics than not having it at all. Of course, after building
the first version of the OR management framework banks need to improve and
adjust it all the time.

2.3.1 The OR Management Process

Perhaps the most important part of the management framework is the OR process
which goes through six different parts beginning with risk identification, and
followed by control framework, risk assessment, risk measurement, risk monitoring
and finally risk reporting.

Risk Identification. The main question of the OR management framework is
the identification of OR, that is, which types of risk exist and what is
their influence on the banks’ activities. Obviously, without appropriate
identification it is very difficult to reach the successful management. The
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Basel’s definition of operational risk gives the global view of it, but only
after collecting the internal (historical) data about OR losses one can be
more familiar with potential causes and types of this risk. However, the
Basel’s definition can be modified and expanded. See footnote 4.

The tool that is used is the risk mapping. This process is carried out for
every organizational unit in order to get the information on the unit’s risk
exposure, risk type and its corresponding degree. Basically, the risk’s degree
can be explained in terms of frequency and severity. The frequency is the
number of loss events for some period of time, while the severity of risk is
the impact of the event i.e. the lost amount of money. In risk mapping the
severity and frequency can be expressed qualitatively (high, medium, low)
or quantitatively.

The result of quantitative risk mapping is the probability-impact diagram
i.e. the typical plot of expected loss frequency against severity for each risk
event type or business line. Usually, the risk map is plotted on logarithmic
scale. One typical risk map is shown in Figure 2.3.
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Monitoring
medium frequency/

medium severity

Mitigation
Low frequency/ high

severity

Periodical
review

high freq./low severity

Figure 2.3: The Example of Risk Map
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In the risk identification process one should also consider the external factor
and industrial trends since some new form of OR can appear. Moreover,
the old types of risk can change its severity and frequency.

Control Framework. The control framework defines the most appropriate ap-
proach to control every identified risk. In this stage it is consider how well
some control approaches operating as well as the cost of its implementation.
It is important to know which risk can be handled without extra costing
and up to what degree. Some of control approaches are the following: pe-
riodically reviewed process, monitoring, mitigation and insurance.

From the risk map it can be seen which risk events should be in the main
focus for the management control and under which type of control. In Fig-
ure 2.3 the dark shaded region presents high-frequency low-severity events
which are usually covered by the cost of the business. Since they are not
of a big influence on the OR measure (i.e. OR capital charge) they are
only periodically reviewed. The shaded region is for the medium-frequency
medium-severity loss events. These events form the basis for calculating the
expected losses and they can be reduced with appropriate management con-
trol. They are under monitoring process. The low-frequency high-severity
loss events are in the white region. They are considered as the unexpected
losses and they are the most important ones. Their reduction is sometimes
very difficult to obtain and, hence, they are subject of mitigation. Of course,
the detailed analysis, insurance polices and planning are necessary for their
appropriate OR control. The very low-frequency and very high-severity
events are catastrophic losses and risk capital charge is not constructed to
cover them. Namely, these losses are under insurance policy since firm can
not deal with these risk exposures by itself.

Additionally, the control framework must be in line with the defined strat-
egy. Its characteristics should not prevent the achievement of basic firm’s
objectives.

Risk Assessment. Risk assessment is the qualitative process that results in
obtaining the risk profile of the whole financial organization and the ap-
propriate action plan. The action plan describes responsibilities and the
actions that bank should perform. Hence, it is the subject of approval of
the senior management. To be more precise, risk assessment needs to de-
termine and assess the risk exposure of the firm, how well the control and
monitoring of the risk is carried out, what are the weaknesses of the man-
agement framework, which actions should be done in order to improve the
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risk management and also define the responsibilities.

The most common tool is the self-assessment. The starting point is the
division of the bank’s organization into business lines or units in order to
assess and get better view of all topics. There are few different forms of
self-assessment. One of them is the checklists under which the responsible
personnel for one business line answer the list of the questions. The ques-
tionnaires should provide the insight into risk profile for the corresponding
business line. Obviously, one of the disadvantages of the self-assessment is
its highly subjective result. To avoid this usually more than one person do
the checklists and later the results are independently verified.

The other form of self-assessment is the workshop and, generally, it is facil-
itated by some experts i.e. independent person. During the workshop the
responsible personnel discuss about risk exposure, controls and what re-
quirement actions should be done for improvement. Similarly to the check-
lists, the workshop is done for every business unit.

Usually, risk self-assessment is used as the first step for those firms which
begin to assess their risk exposure. Often the internal database of loss
events is still not collected and the self-assessment is the only approach
that can give the basic view of the risk. Since the self-assessment is a
forward looking approach it can also forecast risk frequency and severity
for corresponding business line and event type. Its advantage is not only
viewed when the internal database does not exist, but also when the lots
of changes of business conditions or significant changes in size of business
leads to useless of the old historical data. As already mentioned the self-
assessment is subjective approach and it is necessary to validate the result
using internal database, external database and/or by opinions of excepts.
Nevertheless, the best way for assessing the risk exposure is the combination
of internal database and risk self-assessment.

Measuring. After the risk assessment and control framework are conducted firm
needs to be familiar, also, with quantitative measure of the risk exposure.
That measure should provide more information on the result of control
process and the changes in risk profile during the time. Nowadays, different
types of measure are in use. We will consider the following ones: Key Risk
Drivers (KRDs), Key Risk Indicators (KRIs), Loss Historical Data, Causal
Models and Capital Models.
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Risk type KRD KRI

1. Internal Fraud

2. External Fraud

3. Employment Practices &
Workplace Safety

4. Clients, Products &
Business Practices

5. Damage to Physical Assets

6. Business Disruption &
System Failures

7. Execution, Delivery &
Process Management

1. Management & Supervision
Recruitment Policy
Pay Structure

2. Systems Quality

3. Recruitment Policy
(Discrimination)
Pay Structure
Safety Measures

5. Location of Buildings

6. Systems Quality
Back up Policies
Business Continuity Plans

7.Management & Supervision
Recruitment Policy

(Qualification)
Volume of Transactions
Training of Back Office Staff

4. Product Complexity
Training of Sales Staff

1. Time Stamp Delays
(Front Running)

2. Number of Unauthorized Credit
Card Transaction

3. Number of Employee Complaints
Staff Turnover
Time Off Work

4. Number of Clients Complaints
Fines for Improper Practices

5. Insurance Premiums

6. System Downtime

7. Number of Failed Trades
Settlement Delay
Errors in Transactions Processing

Table 2.4: Some KRDs and KRIs for Different Risk Event Types

Key Risk Drivers. The inherent risk profile of the organization is the risk
profile when no control process is performed. The goal of obtaining
this measure is to get an insight of the risk exposure before taking
any control step and comparing it after the control is done. Key Risk
Drivers are those drivers (factors) that give the measure of the inherent
risk profile. Namely, they reflect the business environment and internal
control systems. If the measure of the KRDs is changed than, also,
the risk profile is changed. Table 2.4 presents examples of KRDs and
KRIs for different risk event types. Important fact about KRDs is that
they provide a forward-looking on the risk profile, and, therefore can
be used in forecasting.

Key Risk Indicators. KRIs are the measures, based on data, that in-
dicate the risk profile of the particular business unit or activity. The
examples of the types of KRIs are listed in Table 2.4. Indicators should
be easily quantify measure since they are, often, measured daily, and
they should be risk-sensitive. KRIs have their trigger levels (also called
escalation criteria, thresholds) which are designed to warn manage-
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ment when the acceptable risk level is exceeded. The selection of the
threshold is different for every indicator. Generally, green, yellow and
red threshold are associated with suitable quantitative measure of the
indicator. Green level corresponds to the properly controlled risk, yel-
low means that risk is approaching to the unacceptable level, while
the red signifies that risk has exceeded the acceptable level. KRIs,
like KRDs, give a forward-looking and therefore they can be used in
causal models. Moreover, these tools are also used in risk assessing
and monitoring processes.

Loss Historical Data. Every bank organization should have their own
internal database of OR losses. Without internal database bank could
not be able to use the Advanced Measurement (AMA) capital mod-
els proposed by Basel II. Particulary, under AMA models bank are
required to collect at least 3 years of loss experience (up to 5 years).
Obviously, with own internal database it is possible to get insight of
the risk exposure for every business line (BL) and event type (ET). It
is easier to find out how frequent some types of risk are or how severe
some operational risks can be. In addition, the internal database helps
a lot in identification of risk types and control framework.

Causal Model. These models are the mathematical approaches to the
forecasting of potential operational risks. They include: multifac-
tor models, Bayesian or causal networks, fuzzy logic and neural net-
works. These models use KRDs, KRIs, internal loss database, external
database in order to get multivariate distribution of losses. The aim
is to find out which factors or factor have the major impact on a par-
ticular risk. The change of the model’s factors should predict the risk
exposure. However, since there is a lack of data considering OR losses,
the limitation of the causal models is its requirement of many data
points.

Capital Model. Capital models are the models that calculate the eco-
nomic capital and regulatory capital charge. Basically, to determine
the capital charge one should quantify the unexpected losses. As al-
ready mentioned Basel II has defined three basic models, that is Ba-
sic Indicator Approach (BIA), Standardized Approach (SA) and Ad-
vanced Measurement Approaches (AMA) methods. The discussion
about these models will be done in the following chapter.

Monitoring. Sometimes it is difficult to separate which tools and models are
used for measurement and which for the risk monitoring. It is often the
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case that these processes go together and that they use the same tools.
Therefore, KRDs and KRIs are very important for the monitoring of OR.
They can help management to understand the risk profile, potential changes
in risk exposure and make attention to risks which are at unacceptable level.
During the monitoring process the management should consider all risk
measures, analyze the trends and gaps in the OR management framework.
Further, the results of the risk assessment should be considered, and also
the responsibilities in the processes together with appropriateness of action
plan.

Corporate OR Value-Added

•  External loss data
•  Benchmark
•  Industry monitoring
•  Best practices
•  Capital analysis etc.

Business Line Process

•  Internal loss data
•  Key risk drivers
•  Key risk indicators
•  Self-assessment etc.

OR Reports

•  Risk maps
•  Self-assessment
•  Issue tracking
•  Internal loss events
•  External loss events
•  Key Risk Indicators
•  Stress / scenario testing
•  Capital analysis etc.

•  Policy approval
•  Resource allocation
•  Risk finance strategy
•  Monitoring etc.

Senior Management Decisions

Figure 2.4: The OR Management Reporting Process

Reporting. Reporting is the final stage of OR process. In Figure 2.4 the OR
management reporting is described. There are two parts of reporting. The
first part is the business lines’ reporting on the basis of internal loss data,
KRDs, KRIs and sell-assessment. The second part is corporate OR report-
ing which tends to add-value by using external loss data, capital analysis,
industry monitoring, best practices etc. The reports should be acceptable
for the business managers and should also satisfy the senior management.
After getting all reports in one period of time the senior management is
required to create the overall risk profile, finance strategy and to approve
the action plan.



Chapter 3

The Capital Models

3.1 The Review of Capital Models

Dealing with OR’s measures is a relatively new field of research. It could be
said that just after the Basel II has permitted a substantial degree of flexibility
within the advanced models, the interest in calculating the OR capital charge
has increased. This is on the account of the fact that these models leave the
possibility for the bank to calculate the capital charge according to their own
internal methods which should be based on statistics and mathematics theory.

In this section the basics of three Basel’s capital models will be discussed
together with the emphasis on the Loss Distribution Approach. As mentioned,
Basel II distinguishes three models for calculating the OR capital charge: the
Basic Indicator Approach (BIA), the Standardized Approach (SA), and the Ad-
vanced Measurement Approaches (AMA).

3.1.1 The Basic Indicator Approach

The BIA calculates the required capital for OR as a fixed percentage α of positive
financial indicator averaged for the previous three years. Usually, the financial in-
dicator is the annual gross income. Let us denote the k-th year financial indicator
with FIk. Then, the capital charge CC may be expressed as

CCBIA =

3
∑

k=1

max(α · FIk, 0)

3
(3.1)

27
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where α is currently set at 15%. 1

This is the most simple capital model and its use is recommended only
for small-sized banks and/or for banks which begin the implementation of OR
management and measurement. It is important to note that under this approach
no qualifying criteria, listed in section 2.3, for management of OR are needed.
Obviously, the basic limitation of this capital measure is no risk-sensitivity, and
hence, lack of information on the actual risk exposure.

3.1.2 The Standardized Approach

The SA is more risk-sensitive method for calculation of OR required capital
charge, which extends the BIA by decomposing banks activities into eight busi-
ness lines (BL). Within each BL a financial indicator (e.g. annual gross income,
asset size of BL) is multiplied by appropriate fixed percentage β. If we keep the
notation, FIki will be k-th year financial indicator for the i-th BL, while βi will
be a corresponding percentage. Then, the total capital charge is just the aver-
age of the three-year regulatory capital charges summed across BLs, and can be
expressed as

CCSA =

3
∑

k=1

max
( 8
∑

i=1

βi · FIki, 0
)

3
(3.2)

where βi varies from 12% to 18%. 2

Even thought SA is an improvement of BIA it does not reveal too many
information on the insight of OR. Namely, it tells in which BL the risk exposure
might be bigger, but it is not precise enough. Consequently, BCBS has developed
the new AMA capital model.

3.1.3 The Advanced Measurement Approaches

The AMA are the most sophisticated capital models that allow bank to hold
regulatory capital for OR based on its own internal models. It means that banks
have the opportunity to develop their own procedures for measuring and assessing
their exposure to OR. Dispute this given freedom, the usage of the AMA is subject
of supervisory approval, and also, under this approach banks are, required to

1At first, α was set at 20%, later was revised at 12%, while at the moment it is 15%.
2Concretely, the values of β for every business line are: Corporate Finance 18%, Trading

and Sales 18%, Retail Banking 12%, Commercial Banking 15%, Payment and Settlement 18%,
Agency Services 15%, Asset Management 12% and Retail Brokerage 12%.
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adopt some qualitative and quantitative criteria set by the BCBS, listed in section
2.3.

Under AMA the total capital charge is, simply, the sum of the figures of
expected loss (EL) and unexpected loss (UL).

CCAMA = Expected Loss+ Unexpected Loss

What is not simple, is to obtain these figures. According to Basel’s rules, bank
must be able to demonstrate to supervisors that the risk measure, used for regu-
latory capital purposes, reflects a holding period of one year and a confidence
level of 99.9 percent. In fact, banks’ internal models should capture poten-
tially severe tail loss events, i.e. models should be able to produce reasonable
estimates of unexpected losses.

The way of calculation of capital charge highly depends on information
which banks have and use. Namely, there are four groups of information: internal
data, external data, scenario analysis and factors (i.e. KRD’s, KRI’s). Following
this, within AMA approaches four basic models can be distinguished:

• The Loss Distribution Approach (LDA),

• Internal Measurement Approach (IMA),

• The Scorecard or Risk Drivers and Control Approach, and

• The Scenario-based Approach.

The LDA and IMA are mostly based on the usage of internal loss data, the
Scorecard approach mainly considers the KRD’s and KRI’s, while, the Scenario-
based approach uses various scenarios to evaluate bank’s risk. However, in prac-
tice most banks uses elements of all four approaches.

Our study is mainly concentrated on LDA model as it is founded on sta-
tistical and actuarial theory and gives a possibility of implementation of various
mathematical models in order to derive the most appropriate figure for bank’s
OR capital charge. Next section describes the standard LDA and gives a mathe-
matical formulation of the underlying model.

3.1.4 Loss Distribution Approach

The LDA is founded on standard actuarial theory which considers frequency of
losses and severity of losses as independent random variables. From the economic
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Frequency Severity

Aggregated loss distribution
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16-Apr    280.140

19-Jun    572.310

05-Jul       78.612

06-Sept  148.277

27-Oct     59.600

Freq.   Severity

Expected loss

Figure 3.1: LDA

point of view, this division of the operational losses has justification in the fact
that some of management’s actions would affect only a severity of losses and some
just a frequency. Therefore, the frequency and the severity will be fitted with dif-
ferent distribution functions, and the aggregated loss distribution will be an
analytical (if it is possible) or simulated form of both chosen distribution func-
tions. The aim of this approach is to compute the aggregated loss distributions
from which the total OR capital charge can be derived.

Certainly, the LDA can have different forms as every organization can mod-
ified it according to its own needs. However, there are some basic steps in its
implementation which need to be performed.

Basically, LDA uses a bank’s internal loss data. According to the Basel II,
banks are required to collect at least three years of history loss data in order
to adopt the LDA. These internal loss data need to be arranged into a 56-cell OR
matrix (8 BL × 7 ET). Each element in the matrix is defined by its business line
(BL), where it has occurred, and event type (ET), what type of loss has occurred.
See Figure 3.1.
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The standard LDA consists of the following 4 steps:

1. For every BL-ET combination frequency and severity should be fitted with
appropriate distribution functions. The parameters for these distributions
can be estimated via Method of Maximum Likelihood Estimation (MLE),
Method of Moments or some other such as Expectation-Maximization al-
gorithm (EM) etc.

2. The aggregated distribution is a compounded distribution of the selected
frequency and the severity distributions. Usually, its analytical form is
difficult to get and hence, instead, the simulation techniques are applied
(e.g. Monte Carlo simulation).

3. The figure of OR capital charge is calculated for every BL-ET combination
as a sum of expected loss and unexpected loss of corresponding aggregated
distribution.

4. Finally, the total OR capital charge is just the sum of all calculated OR
capital charges across the matrix, if the correlation of loss events is assumed
to be one.

Suppose that we are given the bank’s OR internal loss data for some period
of time ∆t = T2−T1. If X denotes a random variable that represents bank’s loss
event in time interval ∆t, then n-times realization of X is our given sample i.e.
random vector x = (x1, . . . , xn). Obviously, X is from R+ since we are dealing
with amount of losses.

The observed data sample should be classified into OR matrix. Let i and j
be indices that denote given BL and ET, respectively. The particular (i, j) cell for
BLi-ETj combination will be observed as a separate class for which the following
notation is defined.

• Xij is a random variable for the severity of losses in (i, j) cell and its prob-
ability function is denoted as fij(x) and cumulative distribution function as
Fij(x) = P(Xij ≤ x).

• Nij is a random variable of the frequency of losses in (i, j) cell. Its
corresponding probability function is pij(k) = P(Nij = k) and cumulative
distribution function Pij(n) = P(Nij ≤ n) i.e.

Pij(n) =
n
∑

k=0

pi,j(k) .
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• Following notation, the total (cumulative) loss Lij for (i, j) cell in time
interval [T1, T2] is

Lij =

Nij
∑

k=1

Xij(k) = Xij(1) +Xij(2) + · · ·+Xij(Nij) , (3.3)

where Xij(k) is an amount of k-th loss occurred in (i, j) cell. The cumulative
distribution function for random variable Lij is called the aggregated loss
distribution, here in notation Gij. Its analytical form is a compound
distribution given by

Gij(x) = P(Lij ≤ x) =















∞
∑

n=1

pij(n)F
n?
ij (x) , x > 0

pij(0) , x = 0

(3.4)

where n? denotes n-fold convolution on distribution functions F with itself.

Certainly, in order to simplify the model and to follow the Basel II rec-
ommendations we need to put some standard assumption on the properties of
random variables N and X within every cell.

Assumption 1. The frequency Nij and the severity of losses Xij are independent
random variables.

Assumption 2. The severity Xij is an independent and identically distributed
(i.i.d.) random variable.

From the first assumption it is clear that frequency and severity are treated
as two independent sources of randomness. By this assumption the possibility of
correlation among frequency and severity within one cell is completely rejected.
The second assumption means that two different losses within the same cell are
independent and identically distributed. This allows us to consider one cell as
separate class.

If we suppose that for every cell the Gij distribution is obtained then the
estimation of OR capital charge can be performed in the following way. Firstly,
we will calculated it at the level of one cell and later for the whole matrix. The
OR capital charge is a sum of corresponding expected and unexpected loss within
(i, j) cell, in notation

CCij = ELij +ULij . (3.5)
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The EL for some particular cell is usually defined as a mean value of a
corresponding total loss random variable i.e.

ELij = E(Lij) (3.6)

=

∞
∫

0

x · dGij(x) .

Yet, some other measures for EL can be considered, such as median value. If
the loss sample has a high skewness and kurtosis properties with big number of
outliers then median measure can be more suitable for calculation of expected
loss.

On the other side, the UL figure should capture the tail of the distribution,
and hence, it is computed as the difference between distribution’s α-th quantile
and expected loss. The α-th quantile of distribution can be thought of as Value
at Risk measure (VaR). Namely, VaR at confidence level α for a period of time
∆t, in notation VaRα,∆t, is the smallest loss that is greater than the α-th quantile
of some given distribution FY , i.e.

VaRα,∆t : = inf {y : FY (y) ≥ α} . (3.7)

In other words, VaRα,∆t presents the expected maximum loss over the time in-
terval within a given confidence level, and it is a result of

P(Yt+∆t − Yt > VaRα,∆t) = 1− α .

Accordingly, the UL can be defined as

ULij,α = inf {x : Gij(x) ≥ α} − E(Lij)

= VaRij
α,∆t − E(Lij) . (3.8)

From Equation 3.6 and 3.8 it follows that the capital charge in (i, j) cell for a
confidence level α in time interval ∆t is equal to VaR measure, that is

CCij,α = inf {x : Gij(x) ≥ α} = VaRij
α,∆t . (3.9)

In context of Basel II, banks are required to set α confidence level at 99.9 % and
a time interval ∆t to 1 year.

Now, we can obtain the estimate of total capital charge i.e. the capital
charge for the whole OR matrix. Usually, in practice the total capital charge is
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simply expressed as a sum of all calculated capital charges across the matrix i.e.

CCα =
∑

i

∑

j

CCij,α

=
∑

i

∑

j

VaRij
α,∆t . (3.10)

Indeed, this is true only if a perfect correlation among aggregated losses Lij is
assumed.

Therefore, if we assume that the aggregated losses are correlated with some
other degree the formula (3.10) need to be modified. The section 4.7 deals with
these issues and gives other expression of total OR capital charge.



Chapter 4

Modelling OR Losses Under LDA

In this chapter the LDA approach is given in more details. We have followed the
idea of what an individual bank should do in order to implement this approach,
and also, which mathematical models and techniques should be used.

The chapter is organized as follows. Firstly, in Section 4.1, we start with
descriptive statistic analysis of internal data, and then, in Section 4.2 we moved
to its parametrical fitting. Both the frequency and the severity of loss data are
considered. The most common distribution functions are listed and reviewed.
Secondly, in Section 4.3 the parameters estimation is presented through standard
and adjusted approach. The first approach treats OR internal data set as com-
plete and uses Maximum Likelihood parameters estimation method. The second
approach considers the OR data as truncated and, therefore, uses adjustment of
parameters. Moreover, the issue of parameters estimation for incomplete data is
explained via Expectation-Maximization algorithm. Thirdly, in Section 4.4. the
Kolmogorov-Smirnov statistical test for the goodness of the fit is applied to the
chosen distribution functions. Also, the adjusted test for left-truncated distribu-
tions is presented. Further, in Section 4.5 the problem of fitting the tail of severity
distribution is explained through the Extreme Value Theory. And finally, in Sec-
tion 4.6 the Monte Carlo method for simulation of aggregated loss distribution
is given, and in Section 4.7 the correlation effect of loss events is considered and
the required total capital charge figure is formulated.

4.1 Descriptive Statistic Analysis

Performing the descriptive statistic analysis is the first step in modelling the inter-
nal loss data. Obviously, we need to get familiar with underlying structure of the

35
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Figure 4.1: Skewness and kurtosis

available data through its moments, empirical distributions, graphical inspection
etc.

Descriptive Statistics. The descriptive statistic provides information on num-
ber of observed data, its minimum and maximum value, the mean value,
the standard deviation, the skewness, the kurtosis etc. The most important
measures in OR loss modelling are skewness and kurtosis.

The skewness is the third standardized moment which explains the asymme-
try of data around the mean value, while kurtosis is the forth standardized
moment for measure of tail-heaviness. Therefore, these measures can be
considered as guidelines in choosing the distribution for fitting the data.

Namely, for the normal distribution skewness is equal to zero. See Figure
4.1. Positive skewness means that distributions have more probability mass
concentrated on the left side of the mean, while, negatively skewed distri-
butions have on the right side. The kurtosis of normal distribution is equal
to 3 and distributions with more heavier tails than the normal distribution,
have kurtosis greater than 3. Respectively, distributions with ticker tails
have kurtosis less than 3.

Graphics. In our empirical analysis various plots are adopted in order to provide
information about visual characteristics of data.

Firstly, the box-plot provides information about sample percentiles and
outliers. See Figure 4.2. In the box the lower quartile (25th quantile),
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median (50th quantile), and upper quartile (75th quantile) values are shown,
while lines at the end of the box show spread of sample. Obviously, outliers
are data beyond the box and lines.

Secondly, the histogram gives information about frequency of data. See
Figure 4.2.

Thirdly, information on data’s probability structure can be obtained using
the kernel smoothing method. This technique describes data by estimat-
ing its density in a nonparametric way. That is, every data point from
the random vector x = (x1, . . . , xn) is included through the kernel density
estimator

f̂(x, h) =
1

nh

n
∑

k=1

K
(x− xk

h

)

where h is a scaling factor (bandwidth) and K chosen kernel function. The
Epanechnikov kernel is the most common one and it is defined as

K(η) =











3

4
(1− η2) , η ∈ (−1, 1)

0 , else

where η = (x− xk)/h.

The result is the graphic of kernel smoothing estimator that gives an em-
pirical version of a probability density function as shown in Figure 4.2.
Namely, instead of using a parametric density function and estimating the
parameters, we produce a nonparametric density estimate that tries to fit
the data.

Obviously, the data’s estimated probability function should be supplemented
by an empirical cumulative distribution function (cdf). It is the function
that assigns probability for a sample x = (x1, . . . , xn) as a number of ob-
servations less or equal to x divided by the size of sample n, i.e.

Fecdf (x) =
1

n

n
∑

k=1

I(xk ≤ x) (4.1)

where I is a identical function

I(xk ≤ x) =







1 , xk ≤ x

0 , xk > x
(4.2)

In Figure 4.2 the empirical cdf is presented.
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Figure 4.2: Boxplot, Histogram, Epanechnikov pdf, Empirical cdf

Tail Plot. Modelling the severity random variable assigns problems considering
the tail of the distribution. It fact, more attention has to be put on tail
thickness in order to explain the highest severity OR loss data. One of the
common tools for graphical presentation of the tail is the tail plot.

If we find the empirical cdf Fecdf for random sample x = (x1, . . . , xn), then,
log(1−Fecdf (x)) plotted on the vertical axis against log(x) presents the tail
plot. See Figure 4.3. From the linear shape of the plot it can be concluded
that data are probably drawn from heavier-tailed distribution (e.g. Pareto-
type distribution). However, a preliminary estimate of the tail parameter
is a slope a from the line

log(1− Fecdf (x)) = −a · log(x) + b (4.3)

where b is a constant. The line (4.3) of the slope -1 is considered as a
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reference line, since if the plot is near or above it, the tail parameter is
considered equal or greater then 1, meaning the data have heavy tails.
These issues were investigated in more details by P. de Fontnouvelle and E.
Rosengren in paper [6].

Mean Excess Plot. Another useful graphical instrument for better understand-
ing of distribution’s tails is the mean excess plot. It is based on mean excess
function MEF(u) which is defined for loss sample x = (x1, . . . , xn) as con-
ditional expectation of number of losses exceeding the chosen threshold u
given that the losses are bigger then threshold. That is,

MEF(u) = E(X − u | X > u) .

Its estimate M̂EF(u) is defined as average of all excesses over threshold u
minus the threshold itself

M̂EF(u) =
I(xk > u)

∑

k≤n(xk − u)
∑

k≤n I(xk > u)
.

Similar to the tail plot, the shape of the mean excess plot gives an informa-
tion on the underlying distribution. In Embrechts, [9] it is stated that if the
plot shows a upward trend (positive slope) it implies that the data belongs
to heavier tailed distribution. If the plot is more horizontal line then the
data are exponentially distributed, while downward trend (negative slope)
is sign of light-tailed distribution.

Certainly, having results of descriptive statistical analysis simplify the pro-
cess of finding which distribution should be used for fitting frequency N and
severity X random variables. All this measures and plots are performed in our
empirical study and the results are presented in Chapter 5.

4.2 Parametrical Fitting

In this section different parametric distribution functions are presented. Some
of them are used in fitting frequency random variable N and some for severity
random variable X. Their brief review is given.
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4.2.1 Frequency

Considering a frequency, the most common and the most appropriate distribu-
tions are Poisson and Negative Binomial. Both are discrete parametric distribu-
tions that can well explained the counting problem i.e. the number of occurrence
of a random event in a given time interval. Their plots are shown in Figure 4.4.

The Poisson distribution with its simple form and properties is a good
candidate for the start of modelling the frequency of OR loss events. Its proba-
bility mass function is defined as

f(n;λ) =
λn

n!
e−λ . (4.4)

It takes nonnegative integer values and has one parameter λ (intensity rate) which
is, also a value of a mean and a variance of the distribution.

However, Negative Binomial distribution can be, sometimes, more suit-
able than Poisson distribution since it has a variance greater than its mean. This
property gives more variability for the interval of the expected number of events.
The Negative Binomial distribution has two real parameters p and r, p ∈ (0, 1),
r > 0, and probability mass function defined for n ∈ N ∪ {0} as

f(n; r, p) =

(

r + n− 1

n

)

pr(1− p)n . (4.5)
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Figure 4.4: Plot of Poisson and Negative Binomial Distribution

If we consider the frequency of losses in non discrete way, then an arrival
process can be introduced. Such process is obviously, irregularly arranged in
time, since there is no rule when the next loss event will happen. Consequently,
we need assumption that the loss events are independently distributed.

In general, this kind of process is modelled by stochastic Poisson Process
Nt which has the following properties:

1. N0 = 0.

2. Nt has independent increments. That is, for every n ∈ N and any t1, t2, . . . , tn
such that 0 ≤ t1 ≤ t2 ≤ · · · < ∞ the random variables Nti+1

− Nti , for
i = 0, 1, . . . , n are independent.

3. Nt is homogeneous. That is, for any s, t,∆t > 0 random variables
Ns+∆t −Ns and Nt+∆t −Nt are identically distributed.

4. The number of observations n in an interval ∆t has Poisson distribution
with intensity rate λ∆t, λ > 0. That is, for every t,∆t > 0

P(Nt+∆t −Nt = n) =
(λ∆t)ne−λ∆t

n!
.

There are two types of Poisson process: a homogeneous (HPP) and a non-
homogeneous (NHPP). The HPP is the ordinary Poisson distribution with in-
tensity rate λ constant over time as defined by function (4.4). In contrast to
HPP, NHPP has intensity rate which changes during the time and is defined by
deterministic intensity function λ(t). In general, a cumulative intensity over a
given time interval ∆t = T2 − T1 is equal to

λ̂ =

∫ T2

T1

λ(t)dt .
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The type of function λ(t) highly depends on the particular data which are fitted.
However, in the literature (see A. Chernobai 2005, [13], R. Giacometti 2007, [17])
two types are commonly used in OR frequency modelling: LogNormal cdf-like
and LogWeibull cdf-like cumulative intensity. They are defined as

LogNormal cdf-like λ̂(t) = a+
b exp(− log

2(t−d)
2c2

)√
2πc

LogWeibull cdf-like λ̂(t) = a− b · exp(−c logd(t))

where a, b, c, d are parameters.

In our empirical study Poisson and Negative Binomial distribution functions
are considered.

4.2.2 Severity

The descriptive statistical analysis of severity of OR loss data, in most situa-
tions, shows a positive skewness and a high kurtosis. Therefore, for fitting a
severity random variable X we should consider distributions with heavier tails.
Indeed, we have to be aware of the fact that the size of losses in internal data
can be small/medium and very large. Namely, small/medium-sized losses are
generated by high-frequency low-impact events and these losses constitute the
body of severity distribution. The second one, the large losses are generated by
low-frequency high-impact events and constitute the tail of distribution. Conse-
quently, if our data set consists of more severe losses then more heavier tailed
distributions should be considered for its fitting.

According to Basel Committee’s surveys conducted by Risk Management
Group in 2002 and in 2004, the most commonly used distribution for severity
of data is LogNormal. However, there is quite a number of distributions that
can be adopted in modelling severity of OR losses like Exponential, LogNormal,
LogLogistic, Weibull, LogWeibull, Pareto, General Pareto Distribution (GPD),
Burr, Gamma, LogGamma, log-α stable etc. Certainly, the nature of a given
data determines which distribution gives better fit.

In our empirical study Weibull, LogNormal, LogLogistic and Pareto distri-
bution functions are considered1. If we classify the distributions by their tail heav-
iness then Weibull distribution comes from light tailed, LogNormal and LogLogis-
tic distributions form medium tailed and Pareto from heavier tailed distributions.

1We have also considered Exponential distribution function, but since the fit of severity of
every data set did not provide good results, the consideration of this distribution is omitted
from the paper.
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Figure 4.5: Distribution Plots

Theirs probability density functions are defined as following and plots shown in
Figure 4.5.

Weibull f(x; a, b) =
a

b

(x

a

)b−1

exp
(

−
(x

a

)b)

, x > 0, a, b > 0

LogNormal f(x;µ, σ) =
1

x · σ
√
2π

exp
(−(lnx− µ)2

2σ2

)

, x > 0

LogLogistic f(x;µ, σ) =
exp(z)

x · σ(1 + exp(z))2
, z =

lnx− µ

σ
, x > 0

Pareto f(x; k, xm) =
k · xkm
xk+1

, x ∈ [xm,+∞), k > 0
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4.3 Parameters Estimation

One of the most important thing in distributions’ parameters estimation is the
knowledge of what kind of data set we have. The standard approaches deal with
complete data set, while some others are modified in order to capture the effect
of missing data.

It was said before that banks only recently have started to collect infor-
mation on theirs OR loss events, and thus, most of internal database are not
complete. This is on account of the fact that most banks are not able to record
all OR losses, especially at the beginning of theirs OR management process. In-
stead, they specified some threshold u, below which OR losses will not be fully
recorded. The incompleteness can be viewed through censorship or truncation
of data. If only frequency, below u, is not recorded then data are considered
censored from below, and if both frequency and severity of losses are not known
then data are said to be truncated from below.

Particulary, OR loss data can be either left-censored or left-truncated, and
in most cases, they are left-truncated. This specific property of OR loss data can
be (and should be) included in parameters estimation of distribution functions
of both the frequency and severity. Recently, there are more and more papers
that investigate these issues such as N. Baud 2002, [11], A. Chernobai 2005, [13],
A. Chernobai 2006, [15], R. Giacometti 2007, [17]. The reason is simple. The
obtained sample fitted distributions under standard parameter estimation method
are in fact different from the true loss distributions. We need to use conditional
distributions, that is the probability distributions conditionally to losses greater
than some specific threshold.

In this section two approaches will be given, the standard also called naive
approach that ignore the effect of OR missing data, and adjusted approach that
considers the exact nature of a given OR data.

1. Standard Approach. Standard approach is based on the full-data pa-
rameters estimation methods meaning that data are considered complete.
The most common method is Maximum Likelihood Estimation (MLE) that
consists of two basic steps. Firstly, the likelihood function for a given distri-
bution is formed as an argument of a distribution parameter, and secondly
it is maximized by that parameter.

Particulary, let suppose that we have x = (x1, x2, . . . , xn) i.i.d random vec-
tor drawn from X random variable with a density function f(x; θ), where
θ is parameter or set of parameters (θ ∈ Θ). Then, the corresponding
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likelihood function is simply a product of density functions for that sample

Lx(θ) =
n
∏

k=1

f(xk; θ) . (4.6)

Lx(θ) is a function of parameters θ when data x are fixed. What we want
to find is the parameter θ̂mle that maximizes L function, that is

θ̂mle = argmax
θ

Lx(θ) . (4.7)

Certainly, this maximization problem can be easy or hard to perform, since
it highly depends on characteristics of distribution function f . Often like-
lihood function is replaced with log-likelihood function logLx(θ) in order
to simplify the maximization. However, for simpler forms of distributions
the maximum likelihood estimation is done by setting the first derivative of
Lx(θ) to zero, and solving it directly for parameters θ.

2. Adjusted Approach. Under this approach the frequency and severity
parameters are modified and adjusted by the missing information. We have
considered left-truncated data for some threshold u.

Obviously, for the given threshold u the true (complete) severity cumulative
distribution function denoted by F (x; θ) gives information on probability if
data falls above or below u. The first case when x > u has a probability
P(x > u) = 1− F (u; θ), and for x ≤ u the probability is simply
P(x ≤ u) = F (u; θ). This means that in case of incomplete data, there
is lack of information for the area x ≤ u. Consequently, the parameters
should be adjusted by the information from which area data come.

Let us denote the adjusted severity distribution function by f adj(x; θ), then
fadj is equal to conditional distribution given that loss x exceeded threshold
u, i.e.

fadj(x; θ) = f(x; θ | x ≥ u) (4.8)

= I(x ≥ u)
f(x; θ)

∫ +∞

u
f(y; θ)dy

(4.9)

=















f(x; θ)

1− F (u; θ)
, x ≥ u

0 , x < u

(4.10)
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The above equations imply that complete distribution function is adjusted
in terms of division by the probability that loss occurred is greater than
threshold.

Now, from Equation 4.10 the new adjusted severity parameter should be
computed. Following the MLE reasoning, the θ̂adj will be a maximum ar-
gument of a log-likelihood function for f adj(x; θ), i.e.

θ̂adj = argmax
θ

logLx(θ)

= argmax
θ

log
(

n
∏

k=1

fadj(xk; θ)
)

= argmax
θ

log
(

n
∏

k=1

f(xk; θ)

1− F (u; θ)

)

(4.11)

= argmax
θ

(

n
∑

k=1

log f(xk; θ)− n log(1− F (u; θ))
)

. (4.12)

If the severity parameter is computed then the frequency parameter should
be also adjusted as

τ̂adj =
τ̂mle

1− F (u; θ̂adj)
(4.13)

where τ̂mle is MLE parameter estimate of frequency distribution P (n; τ).

Apparently, only problem in this approach can be in maximization of (4.12).
Indeed, in some cases it is hard to obtain the parameter analytically, and
hence, standard numerical optimization tools should be considered. It is
evident that having computed severity parameter θ̂adj from Equation 4.12,
the estimation of frequency parameter τ̂ adj is straightforward from Equation
4.13.

Although, the maximization problem (4.12) can be solved numerically for al-
most every type of density distribution function, the other way of finding the
adjusted parameters can be performed via Expectation-Maximization
algorithm (EM). In the following sections the theoretical background of EM
algorithm is given together with application to the most common Poisson-
LogNormal aggregated loss distribution.
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4.3.1 EM Algorithm - Theoretical Background

As mentioned before, the standard MLE method is formed for the estimation of
distributions’ parameters when data are assumed to be complete. In those cases
when data are incomplete or has missing values, naturally, the MLE can not be
fully acceptable. One of the iterative techniques that can be adopted in order
to find the maximum likelihood parameter estimations for incomplete data set is
EM algorithm.

The EM algorithm was described and explained by Dempster, Laird and
Rubin in 1977, [8]. This paper has been a ”trigger” for algorithm’s wider ap-
plication in various problems where missing data and unidentified variables are
involved. Recently in risk measurement, specially in OR measurement, this EM
algorithm has found its use.

As the name says EM has two steps: expectation (E-step) and maximiza-
tion (M-step). The main goal is to compute an expectation of the likelihood
function when the missing data are included, and then, to compute the parame-
ters that maximize that expected likelihood function.

If we consider a left-truncated data for some threshold u then a set domain
A = [0,+∞) is divided by that threshold into two sets, A1 = [0, u] and A2 =
(u,+∞). This means that a given data sample x = (x1, . . . , xn) comes only from
A2 set, and thus, in A1 set we do not know neither the quantity nor the severity
of data. Consequently, we need to set some new notations.

Random variable X1 will present the loss event from A1 set, while random
variable X2 will present loss event occurred in A2 set. In light of that, X1 is
considered as missing random variable and our given sample is now denoted as
x2 = (x21, x22, . . . , x2n2

) , x2 ∈ (u,+∞)n2 .

Now, the complete data sample is simply expansion of observed data x2
with random variable X1, that is x = (X1,x2). Obviously, x is a random draw
from joint random variable X = (X1, X2) where a random vector x1 ∈ [0, u]n1 is
”missing” and replaced by X1 random variable.

Consequently, the joint density function is, according to Bayes rule and the
low of total probability, equal to

fX1,X2
(x1, x2; θ) = f(X1, x2; θ)

= f(X1;x2, θ) · f(x2; θ) . (4.14)

This means that complete data will be observed through the conditional function
of missing data given the known data and the marginal function of known data.
From Equation 4.6 the likelihood function for the joint likelihood function of
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complete data set is equal to

LX1,x2
(θ) = f(X1,x2; θ)

=

n2
∏

k=1

f(X1, x2k; θ) . (4.15)

Note that now LX1,x2
(θ) is a random variable since it depends on X1 and its

maximization by parameter θ can not be performed via standard MLE model.
This is the main reason why some other model must be considered. We have
applied the EM algorithm. It is defined in the following way.

The EM Algorithm. Let a given data set x2 be expanded by a random vari-
able X1 of missing data. The joint random variable X = (X1, X2) has
joint density function f(x1, x2; θ) and likelihood function LX1,x2

(θ) defined
by Equation 4.14 and Equation 4.15, respectively. Then, given an initial
parameter θ(0) the following steps are iterated.

E-step: EvaluateQ(θ, θ(i)) as a conditional expectation of joint log-likelihood
function

Q(θ, θ(i)) := E(logLX1,x2
(θ) | x2, θ(i)) . (4.16)

M-step: Find θ = θ(i+1) which maximizes Q(θ, θ(i)) i.e.

θ(i+1) = argmax
θ

Q(θ, θ(i)) . (4.17)

The basic idea of this iterative algorithm is to choose parameter θ(i+1) that
maximizes log-likelihood function log(LX1,x2

(θ)). But, since the analytical form of
joint log-density function log f(X1,x2; θ) is not known, the EM algorithm max-
imize the current expectation of log(LX1,x2

(θ)) for given data x2 and current
parameter θ(i). Equation 4.16 can be also written as

Q(θ, θ(i)) = E(logLX1,x2
(θ) | x2, θ(i))

=

∫

x1∈A1

logLX1,x2
(θ) · f(x1;x2, θ(i)) dx1

=

∫

x1∈A1

log f(x1,x2; θ) · f(x1;x2, θ(i)) dx1 . (4.18)

It should be noted that two arguments in the function Q(θ, θ(i)) have differ-
ent meanings. The first argument θ presents the parameter (or set of parameters)
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that should be gained as a result of maximization of the likelihood function. On
the other hand, the second argument θ(i) corresponds to the parameter that is
used in i-th iteration for the evaluation of the expectation. This implies that the
maximization in Equation 4.17 is one dimensional maximization problem that
can be easily solved by θ when θ(i) is known.

The convergence of EM algorithm is provided by the following theorems.

Theorem 4.1. [8] If θ(i+1) = argmax
θ

Q(θ, θ(i)), then

LX1,x2
(θ(i+1)) ≥ LX1,x2

(θ(i))

with equality holding if and only if

Q(θ(i+1), θ(i)) = Q(θ(i), θ(i)) .

Theorem 4.2. [8] Suppose that θ(i) for i = 0, 1, 2, . . . is an instance of EM
algorithm such that

1. the sequence LX1,x2
(θ(i)) is bounded, and

2. Q(θ(i+1), θ(i)) − Q(θ(i), θ(i)) ≥ α · (θ(i+1) − θ(i))(θ(i+1) − θ(i))T for some
scalar α > 0 and all i.

Then the sequence θ(i) converge to some θ? in the closure of Θ.

The first theorem says that in each step of EM algorithm the likelihood
function is non-decreased, and the second theorem implies that the limit θ? of
the sequence {θ(i)}i∈N will be a local maximum of LX1,x2

(θ). However, it is
possible that θ? is a global maximum, but there is no guarantee. The proofs of
the theorems are given in [8] together with the corollaries and other properties of
the EM algorithm.

4.3.2 EM for Poisson-LogNormal Aggregated Loss Distri-
bution

Following the notation from the previous section a complete loss data x = (x1,x2)
is assumed to be a n-times i.i.d. random realization of loss event for one event type
and one business line in OR matrix. Namely, our attention is mainly concentrated
on obtaining the aggregated distribution function for that cell in the matrix. Let
recall that in Section 3. the aggregated loss distribution for total loss Li,j in (i, j)
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cell is defined by Equation 3.4. This time the indices i and j referee to number
of observations i = 1, 2, . . . , nj in Aj set where j = 1, 2. The realization of total
loss random variable L in A set is

l =
2
∑

j=1

nj
∑

i=1

xji .

Regarding the choices of distributions the frequency of X is assumed to fol-
low Poisson distribution with intensity rate ∆tλ, ∆t = T2−T1, and the severity of
X is assumed to follow LogNormal distribution f(x;µ, σ). For simplicity, param-
eters µ and σ will be presented by vector parameter θ. Further, the Assumption
1 and Assumption 2 under standard LDA model also hold.

Now, the aggregated loss density function g(x;λ, θ) for the complete data
set is expressed as

g(x;λ, θ) =
(∆tλ)n1+n2

(n1 + n2)!
e(−∆tλ)

(

n1 + n2
n1

)

qn1

1 qn2

2

2
∏

j=1

nj
∏

i=1

f(xji; θ)

qj
(4.19)

where qj is the probability that realization of random variable X fall into Aj set
i.e. qj = P(xji ∈ Aj) for j = 1, 2. Naturally, the sum of probabilities q1 and q2 is
equal to 1.

The first part of expression in Equation 4.19 comes from Poisson distribution
considering the whole set A. The number of observations is n = n1 + n2 and the
intensity parameter is ∆tλ. Since we do not know the number n1 it is supposed
that it is distributed by Binomial distribution. This means that n1 is chosen
from n with probability q1. The last term in the observed equation considers the
severity of X. Since the realization of X can fall in one of two sets A1 or A2, the
distribution function f is adjusted by that corresponding probabilities q1 or q2.
Consequently, it follows that aggregated loss distribution g depends, not only on
frequency parameter λ and severity vector parameter θ, but also on probabilities
qj, j = 1, 2. Moreover, since

qj = P(xji ∈ Aj) = P(xji ≤ u) = F (u; θ)

it follows that g depends, also, on the values of threshold u.

The simplification of Equation 4.19 gives

g(x;λ, θ) =
(∆tλ)n1+n2

n1! n2!
e(−∆tλ)

2
∏

j=1

nj
∏

i=1

f(xji; θ) . (4.20)
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Generally speaking, the Expectation-Maximization (EM) algorithm is per-
formed in the following way.

1. Setting the Parameters. The algorithm starts with choosing the initial val-
ues for unknown parameters λ and θ. Let denote them as (λ(0), θ(0)). Fur-
ther, having the initial value θ(0) we can calculate qj probabilities, j = 1, 2

as q
(0)
1 = F (u; θ(0)) and q

(0)
2 = 1 − q

(0)
1 . Then, the initial value for the un-

known number n1 is computed from the expression n
(0)
1 = q

(0)
1 λ(0)∆t. This

follows from equalities λ = λ1 + λ2 = q1λ+ (1− q1)λ = n1+n2

∆t
.

2. E-step. In this step the conditional expectation of log-likelihood function of
complete random sample x given the known sample x2 and initial param-
eters (λ(0), θ(0)) is calculated. That is, we need to obtain the following
expectation

E(logLX1,x2
(λ, θ);x2, λ

(0), θ(0)) . (4.21)

In our case the log-likelihood function of aggregated loss density is equal to

logLX1,x2
(λ, θ) = (n1 + n2) log(∆tλ)−∆tλ−

−
n
∑

j=1

log(nj!) +
2
∑

j=1

nj
∑

i=1

log f(xji; θ) (4.22)

and requesting conditional expectation is equal to

E(logLX1,x2
(λ, θ);x2, λ

(0), θ(0)) = (n
(0)
1 + n2) log(∆tλ)−∆tλ+

+ n
(0)
1 E(log f(X1, X2; θ);x2, θ

(0)) +

+

n2
∑

i=1

log f(x2i; θ) . (4.23)

3. M-step. The next step is maximization of Equation 4.23 with respect to
unknown parameters λ and θ, that is

(λ(1), θ(1)) = argmax
λ,θ

E(logLX1,x2
(λ, θ);x2, λ

(0), θ(0)) . (4.24)

In our case

λ(1) =
n
(0)
1 + n2
∆t

(4.25)

θ(1) = argmax
θ

(

n
(0)
1 · E

(

log f(X1, X2; θ);x2, θ
(0)
)

+

+

n2
∑

i=1

log f(x2i; θ)
)

(4.26)
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where the expectation in (4.26) is equal to the following integral

E
(

log f(X1, X2; θ);x2, θ
(0)
)

=

∫

x1∈A1

log f(x1,x2; θ)f(x1;x2, θ
(0))dx1 .

(4.27)

4. Convergence. For the new obtained values λ(1) and θ(1) new E-step and
M-step are repeated until convergence is reached.

4.4 Statistical Goodness-Of-Fit Tests

Suppose that a data sample x = (x1, . . . , xn) has been fitted by some parametrical
distribution function F (x; θ) for which the parameter θ is estimated and denoted
as θ̂. In order to determine the goodness of that fit one need to perform a
statistical test. There is quite a number of Goodness-Of-Fit (GOF) tests that
provide a comparatione of the empirical distribution function with the cumulative
distribution function used for fitting the data. For example, Kolmogorov-Smirnov
test, Anderson-Darling test, Cramer-von Mises test etc. In our empirical study
the Kolmogorov-Smirnov GOF test (K-S) was considered.

4.4.1 Kolmogorov-Smirnov GOF test

The testing hypothesis for every GOF test are the following

H0 : Fecdf (x) ∈ F (x; θ̂) vs. H1 : Fecdf (x) 6∈ F (x; θ̂), ∀x ∈ x

where Fecdf is the empirical cumulative distribution function explained earlier by
Equation 4.1.

The K-S test reject or accept the H0 hypothesis according to the absolute
difference between the empirical and fitted distribution function. Firstly, x data
set must be put in a vector of order statistics, that is x(1) < x(2) < . . . < x(n).
Then, the KS statistic value is calculated as

KS = sup
1≤i≤n

| Fecdf (x(i))− F (x(i); θ̂) | . (4.28)

Consequently, in this GOF test every observation in data sample has the same
weight. This means that K-S test does not consider where the maximal difference
occurred only how big the difference is.
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The rejection of H0 hypothesis depends mostly on the computed p-value.
The p-value is the probability that KS statistic value is greater than ks critical
value for the given confidence level α i.e.

p-value = P(KS > ks) .

Usually, confidence level α goes from 5% to 10% and the corresponding critical
values are 1.36/

√
n and 1.22/

√
n. So, if p-value is lower than 0.05 or 0.1 then H0

is rejected.

This K-S GOF test is used for data sets which are considered not-truncated
or not-censored. Consequently, in our empirical study this test is applied on the
data sets that are fitted by distributions according to the standard approach from
Section 4.3.

4.4.2 K-S test for Left-Truncated Data

In order to test the goodness of fit for left-truncated data sets below some thresh-
old u, the standard K-S test need to be modified.

Using the old notation, the left-truncated data set x2 = (x21, x22, . . . , x2n2
) ∈

(u,∞)n2 is expanded by the missing data set x1 = (x11, x12, . . . , x1n1
) ∈ [0, u]n1 .

Let recall that under the adjusted approach from Section 4.3 the frequency and
severity distributional parameters are computed as

τ̂adj =
τ̂mle

1− F (u; θ̂adj)
(4.29)

θ̂adj = argmax
θ

log
(

n2
∏

k=1

f(x2k; θ̂)

1− F (u; θ̂)

)

(4.30)

Note that the loss frequency density function P (n; τ̂mle) is not changed. Namely,
only the parameter τ̂mle estimated by Maximum Likelihood (MLE) method is
adjusted by (4.29), and thus, the adjusted frequency density function is simply
P (n; τ̂ adj). As far as loss severity density function is concerned, the modification
is done in the following way. The complete (true) density function f is adjusted
for the truncated data what results as a new truncated distribution function
fadj(x; θ̂adj). As mentioned before, its density function is defined as

fadj(x; θ) =















f(x; θ)

1− F (u; θ)
, x ≥ u

0 , x < u

(4.31)
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and its cumulative distribution as

F adj(x; θ) =















F (x; θ)− F (u; θ)

1− F (u; θ)
, x ≥ u

0 , x < u

(4.32)

The total number of observations for complete data set x = (x1,x2) is
equal to n = n1 + n2 and the expected number of data depends on the fitted
distribution. If we choose Poisson distribution, the expected number is equal to
intensity parameter λ. However, λ for x2 data set is λ̂2 =

n2

∆t
and accordingly, for

the x it is λ̂ = n
∆t
. Namely, since we have two area, λ can be expressed as

λ = P(x ≤ u) · λ+P(x > u) · λ
= F adj(u; θ) · λ+ (1− F adj(u; θ)) · λ .

Further, we obtain

λ1 = F adj(u; θ) · λ =
n1
∆t

λ2 = (1− F adj(u; θ)) · λ =
n2
∆t

From the above equalities it follows that number of missing data and number of
observed data is related as

n1 =
n2 F

adj(u; θ)

(1− F adj(u; θ))
(4.33)

meaning that total number n is

n =
n2

1− F adj(u; θ)
. (4.34)

This relation implies that the empirical cumulative distribution Fecdf (x) of
complete data set x can not be based only on the number of observed data n2.
Namely, the empirical cumulative distribution F n2

ecdf of x2

F n2

ecdf (x) =
1

n2

n2
∑

i=1

I(x2i ≤ x)

explains only the truncated data set x2. Since all missing data from x1 are by
definition lower than threshold u it means that Fecdf (x) can be expressed using
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Equations 4.34 and 4.33 respectively as

Fecdf (x) =
n1 +

∑n2

i=1 I(x2i ≤ x)

n

=

(

1− F adj(u; θ)
)(

n1 +
∑n2

i=1 I(x2i ≤ x)
)

n2

= F adj(u; θ) + (1− F adj(u; θ)) · 1

n2

n2
∑

i=1

I(x2i ≤ x)

what is further equal to

Fecdf (x) = F adj(u; θ) + (1− F adj(u; θ)) · F n2

ecdf (x) . (4.35)

Now, having expression for adjusted cumulative distribution (4.32) and for
complete empirical cumulative distribution (4.35) the testing hypothesis are

H0 : Fecdf (x) ∈ F adj(x; θ) vs. H1 : Fecdf (x) 6∈ F adj(x; θ), ∀x ∈ x

Accordingly, the KS statistic value is also modified as

KS? =
√
n sup
1≤i≤n

| Fecdf (xi)− F adj(xi; θ̂) . (4.36)

The calculation of p-value under these hypothesis must be done in the different
way. This is due to the fact that now our empirical cdf is dependant on the
parameter θ from F adj distribution. One way of determining the p-value is by
Monte-Carlo simulation ( see A. Chernobai 2005, [20]). The simulation steps are
the following.

1. Determine the confidence level α. In our case it is α = 0.05.

2. Calculate the KS? for x data set.

3. Obtain the large number of random samples ym, m = 1, . . . ,M of dimension
n from the F adj(x; θ) with condition ym > u. The number of random
samples should be 1,000 or higher.

4. Fit every random sample ym with F adj(ym; θ) and estimate the correspond-
ing parameter θ̂adjm .

5. Calculate the values of KS statistics for every random sample ym and denote
them as KS?m.
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6. The p-value is computed as number of KS?m exceeding the KS?, that is

p-value =

∑M

m=1 I(KS?m > KS?)

M
.

7. If p-value is lower than α then H0 hypothesis is rejected.

In paper [20], the other GOF tests which can be used for testing the left-
truncated data samples are introduced. The basic idea is the same as explained
above.

4.5 Extreme Value Theory

The most difficult problem in the OR analysis is the question of modelling ex-
tremely rare and extremely high operational losses, that is, how to treat large
and rare losses which come from low-frequency high-impact events?

Over the recent years, researchers have started to explore whether Extreme
Value Theory (EVT), as a set of statistical techniques, can be used in measuring
OR exposure. It appears that for the tail of the data EVT is an useful method.
It can handle the modelling of large losses and estimation of high quantiles of
a loss distribution. Particulary, the extreme (limit) distributions from the EVT
theory are considered.

EVT is a scientific approach and has solid foundations in the mathematical
theory of the behavior of extremes, as the name says. It was set up by Fisher
and Tippet in 1928, [18]. The theory is focused only on analysis of the tail
area and, hence, reduce the influence of the small/meduim-sized losses. Hence,
EVT does not need all loss data, it requires only large loss data. Moreover,
EVT is applied in various fields such as structural engineering, aerospace, ocean
and hydraulic engineering, material strength, studies of pollution, meteorology,
highway traffic, and, more recently, in the financial and insurance fields. Since
the original underlying distribution of all data is generally unknown, what is good
about EVT is that it does not require some particular assumptions on the nature
of the underlying distribution.

There are two related approaches in which EVT is applied. The first one is
the Block Maxima and the second one is the Peaks Over Threshold (POT).
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Figure 4.6: The EVT Methods

4.5.1 Block Maxima

Block Maxima is a basic approach considers the maxima (or minimum) values
that random variable (e.g. operational loss data) takes in successive periods,
for example months or years. To be more precise, EVT deals with the limiting
distribution of sample extremes. See Figure 4.6.

Let denote a sequence of independent identically distributed (i.i.d.) ran-
dom variables by X = (X1, . . . , Xn) with a cumulative distribution function
FX(x). As usual FX(x) is unknown distribution function which describe the
behavior of OR data for a considered business line or event type. Further,
Mn = max{X1, . . . , Xn} is the sample maximum also called extreme event, block
maxima or per-period maxima.

The ”three-types theorem” by Fisher and Tippet, [18] states that there
are only three types of distributions which can arise as limiting distributions of
extreme values in random samples. These three types of extremes distributions
are: Weibull, Gumbel and Frechet type. This implies that the asymptotic
distribution of the maxima Mn always belongs to one of these three distributions,
regardless of the original one i.e. the distribution FX .
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The Weibull, Gumbel and Frechet distributions can be represented as the
Generalised Extreme Value distribution(GEV)

GEVξ,µ,σ(x) =















exp(−(1 + ξ
x− µ

σ
)−

1

ξ ) if ξ 6= 0

exp(− exp(−x− µ

σ
)) if ξ = 0

(4.37)

where 1 + ξx > 0. Following, from GEV for different values of ξ three type of
distribution can be obtained

• Weibull distribution Ψα : ξ = −α−1 < 0

• Gumbel distribution Λ : ξ = 0

• Frechet distribution Φα : ξ = α−1 > 0

The parameters µ and σ correspond to location and scale while ξ the third
parameter (the shape index) indicates the thickness of the tail of the distribution.
The smaller the shape index ξ is, the thicker the tail is.

Obviously, distributions can be classified according to their tail thickness.
There are light-tailed distributions, medium-tailed distributions and heavy-tailed
distributions. However, there is no common agreed-upon definition but one of
the definition is based on a distribution’s maximal moment. Namely, if the max-
imal moments supr {E(Xr) <∞} are finite of all orders than the distribution is
considered light-tailed, and heavy-tailed otherwise. So concretely,

• Light-tailed distribution (ξ < 0) has all finite moments, is characterised by
finite right endpoint in tails and converge to the Weibull curve (e.g. Weibull,
Uniform, Beta);

• Medium-tailed distribution (ξ = 0) is also with all finite moments, but the
cumulative distribution functions decline exponentially in the tails like the
Gumbel curve (e.g. Normal, Gamma, LogNormal, Exponential);

• Heavy-tailed distribution (ξ > 0) has the cumulative distribution functions

which decline like a power function x−
1

ξ in the tails like Frechet curve (e.g.
Pareto, LogGamma, GPD, Burr, LogLogistic, T-Student).

The purpose of tail estimation approach is to estimate the random values
X outside the range of existing data. To do this, researchers have taken into
consideration both extreme events, and exceedances over the specified threshold.
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4.5.2 Peaks Over Threshold

Peaks over threshold (POT), the second approach to EVT, considers only data
which are bigger than a given (chosen) high threshold. See Figure 4.6.

In modelling the severity of operational losses POT method use a two pa-
rameter distribution Generalised Pareto Distribution (GPD), with cumu-
lative function expressed as:

GPDξ,σ(x) =















1− (1 + ξ
x

σ
)−

1

ξ , ξ 6= 0

1− exp(−x

σ
) , ξ = 0

(4.38)

where

x ∈
{

[0,∞] , ξ ≥ 0
(0,−σ

ξ
] , ξ < 0

The parameter σ is the scale parameter while ξ is the shape index.

The GPD distributions can be extended by adding a location parameter µ.
In that case the GPD is defined as:

GPDξ,µ,σ(x) =















1− (1 + ξ
x− µ

σ
)−

1

ξ , ξ 6= 0

1− exp(−x− µ

σ
) , ξ = 0

(4.39)

The interpretation of shape index ξ in the GPD is the same as in the GEV.
Namely, all relevant information on the tail of the original (unknown) distribution
F is embedded in this parameter, since POT method considers only the data
that exceed the threshold and those are the data that constitute the tails of
distribution. So concretely, the maxima of samples of events from GPD are GEV
distributed with shape parameter equal to the shape parameter of the GPD.
Furthermore, there is a simple relationship between the standard GPD and GEV:

GPD(x) = 1 + logGEV (x) if logGEV (x) > −1 .

Same as for GEV, the GPD gives the different distributions for different
values of ξ:

• Pareto ”Type II” distribution (ξ < 0),

• Exponential distribution (ξ = 0) and
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• Pareto distribution (ξ > 0).

It is evident that this distributions together with the shape index ξ coincide
with the given classification of distributions based on their tail-thickness.

Consider again the a sequence of i.i.d. random variables X = (X1, . . . , Xn)
with right-endpoint xF and with an underlying distribution FX(x). What draws
our attention now is the distribution of excesses over the high threshold u. Y is
the excess random variable defined as

Y := X − u,

where u is a given threshold and the Fu(y) is its excess distribution at the thresh-
old u.

The excess distribution can be viewed and expressed through a conditional
distribution function, that is:

Fu(y) = P (X − u ≤ y;X > u) =
FX(x)− FX(u)

1− FX(u)
, (4.40)

for y = x− u > 0.

Obviously, the (4.40) represents the probability of the event that the loss
X exceed the u by at most an amount y , if it is given that a loss X exceeds the
threshold u.

According to the theory of Balkema-De Haan (1974) and Pickands (1975),
for a large class of underlying distributions F , the excess distribution Fu(y) con-
verges asymptotically to a GPD as the threshold tends to the right-endpoint xF ,
that is:

lim
u→xF

sup | Fu(y)−GPDξ,β(y) |= 0 . (4.41)

Although, the conditions under which this it true are quite big.

In this case, GPD with two parameters (ξ, β) and the argument y is called
”excess GPD” with the following form

GPDξ,β(y) =















1− (1 + ξ
y

β
)−

1

ξ , ξ 6= 0

1− exp(− y

β
) , ξ = 0

(4.42)

where y = x− u is excess, ξ shape index, β scale, and

y ∈ [0, xF − u] if ξ ≥ 0,
y ∈ [0,−β/ξ] if ξ < 0.
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The limit condition (4.41) holds even if the exceedances x take place of the
excesses y. Basically, with this change of the argument, the Fu(y) and GPDξ,β(y)
transform respectively to Fu(x) and GPDξ,u,β(x). Therefore, when the thresh-
old tends to the right endpoint xF , the exceedance distribution Fu(x) converges
asymptotically to a GPD with the same shape ξ, scale β and location µ equal to
the threshold u (µ = u and x > u). To stress the difference, GPDξ,u,β(x) will be
called the ”exceedance GPD”, since it deals with the exceedances x at u.

Stability of GPD. One of the most important properties of the GPD is
its stability under an increase of the threshold.

To show that, let isolate FX(x) from (4.40)

FX(x) =

[

1− FX(u)

]

Fu(y) + FX(u) . (4.43)

According to limit condition (4.41) and above conclusion from it, both the
excess distribution Fu(y) and the exceedance distribution Fu(x) can be well ap-
proximated by suitable GPDs. By using the ”exceedance GPD”, one obtains

FX(x) ≈
[

1− FX(u)

]

GPDξ,u,β(x) + FX(u) . (4.44)

Now, substituting the GPDξ,u,β(x) expression in (4.44) one gets

FX(x) ≈ [1− FX(u)]

[

1− (1 + ξ
x− u

β
)−

1

ξ

]

+ FX(u) . (4.45)

It is evident, that the only ”unknown” element for identification of FX(x) is
FX(u); that is the value of the (unknown) distribution function in correspondence
with the threshold u. One of the possible empirical estimator for FX(x) computed
at level u can be empirical cdf

Fn(u) =
1

n

n
∑

i=1

I(xi ≤ u) =
n− nu

n
(4.46)

where n is the total number of observation and nu the number of observation
above the threshold u.

However, the problem of choosing the right threshold u is quite important,
since the empirical estimation of FX(u) requires sufficient number of observations
which exceed the given threshold u. Obviously, if there is not enough observations,
the estimations could not be reliable.
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Further, FX(x) can be completely expressed by the number of observation
(total and over the threshold) and by the parameters of the GPDξ,u,β as

FX(x) ≈
nu
n

[

1− (1 + ξ
x− u

β
)−

1

ξ

]

+ (1− nu
n
) .

Simplified,

FX(x) ≈ 1− nu
n

[

1 + (1 + ξ
x− u

β
)−

1

ξ

]

. (4.47)

This obtained measure (4.47) is called the ”tail estimator” of FX(x), as it
is valid only for x > u. It is possible to demonstrate that the ”tail estimator” is
also GPD distributed; it is the semiparametric form of the GPD (GPDξ,µ,σ) which
refer to all the original data, with the shape index ξ, location µ and the scale σ.
Since the GPDξ,µ,σ is fitted to all data in the tail area, it will be considered as
”full GPD”. Namely, this semiparametric form of GPD provides information on
the frequency of the exceedances (excesses) over the threshold through the Fn(u)
which uses the total number and above threshold number of observations, unlike
the exceedance GPD (GPDξ,u,β) and excess GPD (GPDξ,β).

Semiparametric estimates for the full GPD parameters can be derived from
those of the exceedance GPD

σ = β

(

nu
n

)ξ

, (4.48)

µ = u− β

ξ

[

1−
(

nu
n

)ξ]

. (4.49)

Further, the scale parameter β can be expressed as

β = σ + ξ(u− µ) . (4.50)

Apparently, it should be noted that, while the scale parameter β of the
exceedance GPD depends on where the threshold u is located, the shape index
ξ, the location µ and scale σ of the full GPD are independent of the threshold.
Thus, a nice practical method to check the robustness of the model for some
specific data is to evaluate the degree of stability of the parameters (ξ, µ, σ) over
a variety of thresholds.

In practice, we should estimate for each chosen threshold u the parameters
of exceedance GPD (ξ and β) and after that the corresponding values of the
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full GPD parameters (µ and σ). Now, having all these parameters one should
investigate the approximate equality of ξ, µ and σ for increasing thresholds.

By applying the GPD stability property, it is possible to move easily from
the excess data (y = x−u) to the tail of the original data (x > u) and hence, from
the excess distribution Fu(y) to the underlying (unknown) distribution FX(x).

2

An immediate consequence of the GPD stability is that if the exceedances
of a threshold u follow a GPDξ,u,β the exceedances over a higher threshold v
(v > u) are GPDξ,v,β+ξ(v−u) distributed. That is, they are also GPD distributed
with the same shape index ξ, the location equal to v (the new threshold) and the
scale equal to β + ξ(v − u) (following from (4.50)).

4.6 Simulation of Aggregated Loss Distribution

It was mentioned before that, in most situations, the analytical representation of
aggregated loss distribution G is difficult to get. Thus, the approximation of G
is done by means of simulation techniques. Monte Carlo simulation is the most
common one, but, also, some others can be found in the literature. Frachot(2001)
uses Panjer’s recursive approach and inverse of characteristic function introduced
by Heckman and Mayers (1983).

In this paper, for the empirical study, the Monte Carlo simulation is adopted,
and hence, the statistical background of the method is presented together with
applied algorithm.

Monte Carlo Simulation - Theoretical Background. Let assume again that
we are given a sequence of i.i.d. random variables X = (X1, X2, . . . , Xn)
with density function f . What we want to calculate is the expectation
of g(X), where g is some n-dimensional function. When this n-multiple
integral

E(g(X)) =

∫ ∫

. . .

∫

n

g(X)f(X)dX

can not be computed neither analytically nor numerically, the simulation
is the only way for getting the approximation of E(g(X)). The simulation
begin with random draw from the density function f in order to generate
first random vector x(1) = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
n ). Then, the next step is to

calculate g(x(1)). These two steps of generating and computing g(x(i)) are

2It is also possible to move from semiparametric full GPD to its completely parametric form,
but in this case it is necessary to know all the information on the original data (the amounts
of the data under and over the threshold).
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done independently for N times. If we denote Y (i) := g(X(i)), i = 1, . . . , N
we will get independent and identically distributed random variable Y . Fol-
lowing the strong low of large numbers it holds that

lim
N→∞

Y (1) + · · ·+ Y (N)

N
= E(Y (i)) = E(g(X)) .

It follows that the estimate of E(g(X)) is the average of generated Y random
variables meaning that in OR modelling expected loss can be computed as
a mean value of the aggregated distribution.

Monte Carlo Simulation - Algorithm for OR. After we have chosen the fre-
quency and severity distribution functions Pi,j(n), Fi,j(x) for the (i, j) cell
we can apply the Monte Carlo simulation for approximation of the corre-
sponding aggregated loss distribution Gi,j(x).

1. The number of loss events in k-th year is drawn at random from the
frequency distribution Pi,j , and is denoted with nk.

2. From the severity distribution Fi,j(x) nk individual losses are drawn.
Let denote them by (x1, x2, ..., xnk).

3. The aggregate loss for k-th year is l(k) =
∑nk

i=1 xi.

4. Repeat first three steps for N simulated years in order to get sample
of aggregated losses l = (l(1), l(2), . . . , l(N)).

The result of the above described algorithm is a generated independent and iden-
tically distributed random sample of annual aggregated losses.

The number of simulations N should be a very large number, and in the
literature it varies from 5,000 to 1 million. In Moscadelli, [19] it is stated that
David Lawrence (Citigroup) has showed that for calculation of 99th percentile
of aggregated losses 1 million data points are required. In this paper for the
empirical study N is also, set to be 1 million.

4.7 Correlation of OR Losses and Capital Charge

Let recall that the standard formula for calculation of total capital charge under
LDA is given, as a sum of all capital charges across the OR matrix i.e.

CCα =
∑

i

∑

j

CCi,j;α (4.51)

=
∑

i

∑

j

VaRi,j
α,∆t .



4.7. CORRELATION OF OR LOSSES AND CAPITAL CHARGE 65

Namely, in this section we will investigate the issue of correlation between loss
events.

Perfect Correlation. Basically, the formula (4.51) holds only if we assume a
perfectly correlation among aggregated losses Li,j. This means that losses
from different BL-ET combinations would occurred simultaneously in same
time during the holding period ∆t. Furthermore, it implies that all losses are
driven from the same (one) randomness, not from the possible 56 different
ones (7 BL × 8 ET). Of course, this situation is hardly realistic. Thus, the
figure of capital charge under this assumption can be overestimated and
much higher then the capital charge under Standardized Approach (SA) or
Basic Indicator Approach (BIA). This is in contrast to the basic idea of the
usage of Advanced Measurement Approach (AMA) models, meaning that
AMA capital charge estimate should be much less than computed capital
charge under BIA or SA. Moreover, banks are only willing to use the internal
models on condition to reduce theirs OR capital charges. Consequently, the
problem of correlation of OR loss events is very important and the proposed
formula should be taken with caution.

Correlation Effect. The second case deals with the correlated losses. The stan-
dard Assumption 1 and Assumption 2 from LDA say that frequency Ni,j

and severity Xi,j are independent random variables and that Xi,j is i.i.d.
within (i, j) cell. Apparently, it implies that aggregated losses Li,j can have
possible 56 source of randomness, and that their correlation is not explained
by assumptions. To be more precise, a correlation effect which we inves-
tigate is the correlation between different cells, not the one within single
cell. The correlation can be examined on the level of severity, frequency
and aggregated losses.

Firstly, the independence of frequency of losses for different BL or ET, can
be viewed through the behaviour of annual number of losses during the past.
Secondly, the dependence of the mean value of the severity random variables
can provide information on severity correlation. Therefore, considering the
aggregated loss dependence it is naturally driven by frequency and/or sever-
ity. For the empirical estimation of correlation degree a sufficient number of
historical data is needed. In [12] these issues are investigated. It states that
the correlation degree of aggregated losses between different cells is less than
5% under the standard LDA assumptions. Additionally, the non-standard
LDA model is introduced where dependance between frequency and sever-
ity within one cell is allowed. Even though the correlation degree was not



66 CHAPTER 4. MODELLING OR LOSSES UNDER LDA

higher than 10%. Consequently, the following formula can be adopted

CCα =
∑

m

ELm +

√

√

√

√

√

∑

m,n

m 6= n

km,n(CCm − ELm)(CCn − ELn) (4.52)

for m,n = 1, 2, . . . 56 cells, where km,n is a correlation degree set to constant
in the range from 5% to 10%.



Chapter 5

Empirical Study

In Section 3 and Section 4 the methodology for implementing the LDA model
was explained. In this section the exact way of applying LDA model on a given
OR loss data is presented together with results, graphics and conclusions.

The operational loss data used in our empirical study are internal data
obtained from one serbian middle size bank. They are collected in time period of
three years, from 2003 to 2006.

As mentioned before, OR loss data should be classified according to the
loss event types (ET) and business lines (BL) and put in Basel (ET × BL) OR
matrix. In our case only three ET-s and four BL-s have observations as shown in
Table 5.1.

numb. of data % of total

Event Types

ET2: External Fraud 15 18.29 %
ET4: Clients, Products & B.Practices 46 56.10 %
ET7: Delivery & Process Management 21 25.61 %

Business Lines

BL2: Trading & Sales 12 14.63 %
BL3: Retail Banking 31 37.80 %
BL4: Commercial Banking 27 32.93 %
BL5: Payment & Settlement 12 14.63 %

TOTAL 82 100 %

Table 5.1: Number of Observations in ET and BL

67
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The total number of observations is 82 what makes the analysis and modelling
quite specific. Namely, from statistical point of view it is hard to provide a
good fit of data and accurate parameters estimate in the case where there is
less than 100 data points. However in practice, banks need to provide at least
some information on theirs risk exposures and they can not wait for the required
number of loss events. Obviously, this small number of observations is a limiting
factor for analysis but in the same time a realistic situation which most risk
managers face, at least in local serbian environment.

The standard LDA approach starts with the modelling of every cell, that is
for one ET and one BL, and latter it considers the whole OR matrix. It is evident
that in our case small number of data (less than 10 per cell) and missing data for
some ET and BL require the adjustment of LDA model. In light of that we have
decided to perform two separate analysis, one for ET and one for BL data sets.
Following the idea, under the term data set we will consider those loss events
which come from one business line or one event type depending what analysis is
performed.

5.1 Descriptive Analysis

The descriptive statistics provide the basic information about severity of OR loss
data in the terms of the mean value, the standard deviation, the skewness, the
kurtosis etc.

min max mean st.dev skewness kurtosis

Event Types

ET2 1,000 1,133,537 129,959 310,588 2.53 8.45
ET4 69 27,291,441 1,178,079 4,125,876 5.72 36.49
ET7 200 2,990,109 255,871 681,057 3.39 13.80

Business Lines

BL2 69 2,990,109 424,972 876,619 2.35 7.35
BL3 200 1,133,537 74,005 220,693 3.94 18.63
BL4 2,924 27,291,441 1,995,859 5,270,771 4.31 21.20
BL5 1,000 102,765 19,357 31,217 1.87 5.34

Table 5.2: Descriptive Statistics of ET and BL

From Table 5.2 it can be seen that the standard deviation values are much
higher than the mean values meaning that there is quite a large number of outliers.
Further, from the positive skewness values one can conclude that all data sets are
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left-skewed meaning that the probability mass is concentrated on the left side of
the mean. Moreover, the kurtosis values are greater than 3. It implies that data
sets have high level of tail-heaviness.
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Figure 5.1: ET2, ET4 and ET7: Box-plot, Histogram

Naturally, this findings are in line with box-plots and histograms of data
sets. The graphics for ET are presented in Figure 5.1 and for BL in Figures 5.2
and 5.3.

In order to obtain an empirical density function of the data set we have
used the Epanechnikov kernel smoothing technique explained in Section 4. These
density functions are shown in Figure 5.4 and Figure 5.5. As expected, they
suggest the left-skewness property of the data.

Since the tail-heaviness is not clearly viewed from the kernel density func-
tion we have also obtained the empirical cumulative density function (cdf). The
empirical cdf for the ET data sets are presented in Figure 5.6, and for the BL
data sets in Figure 5.7. Apparently, the high kurtosis values imply the heavier
tailed cumulative density functions.
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BL 3: Histogram
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Figure 5.2: BL2 and BL3: Box-plot, Histogram

BL 5: Box-plot

BL 5: Histogram
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Figure 5.3: BL4 and BL5: Box-plot, Histogram
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Figure 5.7: BL2, BL3, BL4 and BL5: Empirical cdf
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Figure 5.8: ET2, ET4 and ET7: Tail Plot
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Figure 5.9: ET2, ET4 and ET7: Mean Excess Plot

The last part of the descriptive statistics considers the tail of data sets. It
is clear that skewness, kurtosis and above graphics suggest that data sets are
more probably driven from heavier tailed and left-skewed distributions. For more
information on tail behavior the tail plot and the mean excess plot can be used.

In Figure 5.8 and Figure 5.10 the tail plots for event types and for business
lines are shown, respectively. Since all plots are above the reference line of the
slope -1 once again it follows that all data sets are driven from heavier tailed
distributions.

The mean excess plots for the given data sets are presented in Figure 5.9
and Figure 5.11, and they provide the same conclusion. That is, all plots have a
positive slope meaning that data sets belong to heavier tailed distributions.



74 CHAPTER 5. EMPIRICAL STUDY

0 5 10 15
-2.5

-2

-1.5

-1

-0.5

0

4 6 8 10 12 14
-4

-3

-2

-1

0

6 8 10 12 14 16
-4

-3

-2

-1

0

6 8 10 12
-2.5

-2

-1.5

-1

-0.5

0

L
o

g
(1

-
F

(x
))

Log(x)

L
o

g
(1

-
F

(x
))

Log(x)

BL 2: Tail Plot BL 3: Tail Plot

BL 5: Tail PlotBL 4: Tail Plot
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Figure 5.11: BL2, BL3, BL4 and BL5: Mean Excess Plot

Apparently, all graphics and measures are in line and suggest a heavier
tailed property of severity of data sets. This can cause problems in finding the
most suitable distribution of data since there is a small number of distributions
that could fit well and explain the tail of this kind of data. The next section deals
with these issues.



76 CHAPTER 5. EMPIRICAL STUDY

5.2 Fitting the Data

Before we start to fit distributions to data sets it is important to note the following
characteristic of given OR loss data. Namely, examining the data we have noticed
that the minimum recorded loss varies within different data sets. Naturally,
one explanation is that loss events occurred in one business line/event type can
be more sever than in some other. However, it can also be due to the fact
that the bank set some threshold below which the data are not fully recorded.
Moreover, this threshold could be different for different data sets. In fact, in every
bank the process of collecting and recording the OR loss events is considerably
different. The threshold above which the loss events are recorded is a subject
of risk managers’ decisions. Therefore, we wanted to investigate the influence of
different threshold for our data sets. In light of that we have constructed two
sets.

A-set is the first considered set that includes all loss events that the bank has
provided. The minimum loss event is 69 and it is set to be the threshold
for all data sets.

B-set is the second observed set where the threshold for every BL and ET is set
to be 3,000. This means that all loss events which are less than 3,000 have
been excluded from the data sets.

Now, consequently, in our analysis every BL or ET data set have A-set with
small threshold and B-set with high threshold. Table 5.1 presents the numbers of
loss events for A-sets while Table 5.3 for B-sets. Let recall that A-set has in total
82 observations while B-set has 61. It means that 25.61 % of data were excluded.

numb. of data % of total

B-set

ET2 4 6.56 %
ET4 40 65.57 %
ET7 17 27.87 %

BL2 10 16.39 %
BL3 18 29.51 %
BL4 26 42.62 %
BL5 7 11.48 %

TOTAL 61 100 %

Table 5.3: Number of Observations for B-set in ET and BL
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The first aim in LDAmodel is to find the most appropriate distribution func-
tions for the frequency and severity of the data set. In Section 4 the parametrical
distributions used in the fitting process are listed. For fitting a distribution to
the frequency of data set we have used two distributions: Poisson and Negative
Binomial. For fitting a distribution to the severity of data set we have used
four distributions: Weibull (light-tailed distribution), LogNormal, LogLogistic
(medium-tailed) and Pareto (heavy-tailed distribution).

Computation of distributions’ parameters is performed in two ways, stan-
dard and adjusted approach, as explained in Section 4.

5.2.1 Standard Approach

Under the standard approach the method of Maximum Likelihood Estimation
(MLE) is performed. In the following tables the parameters estimates are reported
together with results from Kolmogorov-Smirnov goodness of fit test(K-S) (i.e.
the values of K-S test and the corresponding p-values). A level of significance or
confidence level is 95%.

Event Types - Frequency fitting

Starting from ET data sets, in Table 5.4 and Table 5.5 the fitting results for
Poisson and Negative Binomial distribution function are presented, respectively.

Poisson distribution function

Parameter estimate K-S test results
λ K-S value p-value

A-set

ET2 5 0.282 0.931
ET4 15.333 0.425 0.519
ET7 7 0.584 0.162

B-set

ET2 1.333 0.286 0.923
ET4 13.333 0.328 0.824
ET7 5.666 0.483 0.358

Table 5.4: ET Frequency - Results of Poisson Fitting
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Figure 5.12: ET2: Frequency

Negative Binomial d.f.

Parameters estimate K-S test results
r p K-S value p-value

A-set

ET2 - - - -
ET4 4.266 0.217 0.246 0.979
ET7 1.027 0.127 0.257 0.968

B-set

ET2 5.212 0.796 0.298 0.899
ET4 3.853 0.224 0.230 0.989
ET7 0.536 0.086 0.268 0.953

Table 5.5: ET Frequency - Results of Negative Binomial Fitting

In general, for all ET data sets Poisson and Negative Binomial distributions
provided good fit. The exception is ET2 A-set for Negative Binomial distribution.
The fitting results can be also seen graphically in Figure 5.12 and Figure 5.13.
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Figure 5.13: ET4 and ET7: Frequency

Event Types - Severity Fitting

The second part of fitting process deals with the severity of data. The results are
presented in the same way as for the frequency of data, meaning that parameters
estimates and K-S test results are given in the following tables and illustrated
with graphics.

First we will start with the results from Weibull distribution fit to severity
of ET data sets. See Table 5.6. Note that the K-S test values for A-set are smaller
than the ones for B-set and that only for ET2 A-set p-value is not higher than
the critical one.
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Weibull d.f.

Parameters estimate K-S test results
a b K-S value p-value

A set

ET2 17,520 0.342 0.372 < 0.05
ET4 231,881 0.379 0.143 0.273
ET7 68,645 0.412 0.165 0.145

B set

ET2 414,649 0.698 0.371 0.532
ET4 360,683 0.422 0.154 0.273
ET7 124,985 0.486 0.176 0.623

Table 5.6: ET Severity - Results of Weibull Fitting

LogNormal d.f.

Parameters estimate K-S test results
µ σ K-S value p-value

A-set

ET2 8.391 2.549 0.355 < 0.05
ET4 10.992 2.726 0.098 0.744
ET7 9.887 2.528 0.090 0.992

B-set

ET2 11.951 2.633 0.390 0.467
ET4 11.604 2.318 0.141 0.376
ET7 10.714 1.991 0.147 0.824

Table 5.7: ET Severity - Results of LogNormal Fitting

The second distribution applied to the ET data sets is LogNormal distribu-
tion. Table 5.7 presents the fitting results which suggest good fit for all data sets
apart from ET2 A-set. However, for ET2 B-set higher p-value is gained mean-
ing that the data above higher threshold have been fitted better by LogNormal
distribution than the one from A-set.

Fitting results for LogLogistic distribution are shown in Table 5.8. As ex-
pected all data sets are well fitted. For ET2 data set we have the same situation
as for LogNormal distribution fit. Only in this case, according to K-S test, LogLo-
gistic distribution has provided better fit than LogNormal.
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LogLogistic d.f.

Parameters estimate K-S test results
µ σ K-S value p-value

A set

ET2 7.803 1.233 0.325 0.064
ET4 10.918 1.559 0.088 0.844
ET7 9.837 1.422 0.089 0.993

B set

ET2 12.392 1.270 0.348 0.615
ET4 11.443 1.352 0.122 0.557
ET7 10.533 1.128 0.133 0.903

Table 5.8: ET Severity - Results of LogLogistic Fitting

Pareto d.f.

Parameters estimate K-S test results
xm k K-S value p-value

A-set

ET2 1,000 0.674 0.533 <0.05
ET4 69 0.147 0.342 < 0.05
ET7 200 0.217 0.296 < 0.05

B-set

ET2 3,200 0.257 0.462 0.266
ET4 3,056 0.279 0.185 0.114
ET7 4,277 0.425 0.128 0.923

Table 5.9: ET Severity - Results of Pareto Fitting

The fourth distribution adopted in fitting the severity of ET data sets is
heavy-tailed Pareto distribution. The results are shown in Table 5.9. For all
ET A-sets K-S test have rejected the hypothesis that they come from Pareto
distribution since the K-S test values are smaller than critical ones. On the other
side, for B-sets p-values are higher than 0.05, but only ET7 B-set provided good
fit with p-value equal to 0.923.
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ET 2 A-set: Fitting the severity ET 2 B-set : Fitting the severity
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Figure 5.14: ET2 and ET4: Severity

The graphical presentation of fits for loss event type data sets are shown in
Figure 5.14 and Figure 5.15.

However, the general conclusion from standard approach for loss event types
can be summarized in the following way. In Table 5.10 and Table 5.11 the best
choices of distributions according to K-S test are listed for both A-sets and B-sets
data, respectively. The chosen distributions have the p-values varying from 0.5
to 0.99. Nevertheless, it should be noted non of considered distrtu did not that
only for ET2 A-set data all considered distributions did not provide a good fit,
apart from LogLogistic with the p-value equal to 0.064.
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ET 7 A-set: Fitting the severity ET 7 B-set : Fitting the severity
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Figure 5.15: ET7: Severity

Standard Approach - MLE
Frequency Severity

A-set

ET2 Poisson LogLogistic
5 7.803 1.233

(0.931) (0.064)

ET4 Neg.Bin LogLogistic
4.266 0.217 10.918 1.559

(0.979) (0.844)

ET7 Neg.Bin LogLogistic
1.027 0.127 9.837 1.422

(0.968) (0.993)

Table 5.10: ET A-set: Summary of Fitting Results
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Standard Approach - MLE
Frequency Severity

B-set

ET2 Poisson LogLogistic
1.333 12.392 1.270
(0.923) (0.615)

ET4 Neg.Bin LogLogistic
3.853 0.224 11.443 1.352

(0.989) (0.557)

ET7 Neg.Bin Pareto
0.536 0.086 4,277 0.425

(0.953) (0.923)
LogLogistic

10.533 1.128
(0.903)

Table 5.11: ET B-set: Summary of Fitting Results
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Business Lines - Frequency fitting

Now, we will consider the frequency of BL data sets. Generally, the fit results are
quite good with the p-values range from 0.4 to 0.9. The exception are obviously
the BL2 and BL4. The reported p-values for BL2 data set are quite low and close
to critical one suggesting a poor fit of both distributions. Further, Negative Bino-
mial distribution could not fit BL4 data while Poisson distribution has provided
a very good fit with extremely high p-value of 0.97.

Poisson distribution function

Parameter estimate K-S test results
λ K-S value p-value

A-set

BL2 4 0.648 0.091
BL3 10.333 0.475 0.379
BL4 9 0.254 0.971
BL5 4 0.428 0.510

B-set

BL2 3.333 0.631 0.107
BL3 6 0.324 0.834
BL4 8.666 0.297 0.900
BL5 2.333 0.343 0.779

Table 5.12: BL Frequency - Results of Poisson Fitting

Negative Binomial d.f.

Parameters estimate K-S test results
r p K-S value p-value

A set

BL2 0.134 0.032 0.631 0.107
BL3 9.986 0.491 0.376 0.677
BL4 - - - -
BL5 1.824 0.313 0.271 0.950

B set

BL2 0.144 0.041 0.631 0.107
BL3 1.864 0.237 0.228 0.990
BL4 - - - -
BL5 0.760 0.245 0.344 0.778

Table 5.13: BL Frequency - Results of Negative Binomial Fitting
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BL 2 A-set: Fitting the frequency BL 2 B-set : Fitting the frequency

BL 3 A-set: Fitting the frequency BL 3 B-set : Fitting the frequency
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Figure 5.16: BL2 and BL3: Frequency
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BL 4 A-set: Fitting the frequency BL 4 B-set : Fitting the frequency

BL 5 A-set: Fitting the frequency BL 5 B-set : Fitting the frequency
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Figure 5.17: BL4 and BL5: Frequency

Figure 5.16 and Figure 5.17 show fitted distributions for all BL data sets.
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Business Lines - Severity Fitting

Starting again from Weibull distribution, results of this severity fit are presented
in Table 5.14. Immediately seen, Weibull distribution failed to fit all BL A-sets
while for B-sets has provided a quite good fit.

The result of LogNormal fit are shown in Table 5.15. For all data set K-S
test have accepted the hypothesis that LogNormal distribution can be used for
their explanation.

Weibull d.f.

Parameters estimate K-S test results
a b K-S value p-value

A set

BL2 140,876 0.406 1 <0.05
BL3 19,021 0.434 1 <0.05
BL4 817,677 0.481 1 <0.05
BL5 13,404 0.643 1 <0.05

B set

BL2 270,757 0.540 0.245 0.519
BL3 57,385 0.520 0.207 0.377
BL4 916,092 0.502 0.128 0.758
BL5 31,252 0.942 0.238 0.763

Table 5.14: BL Severity - Results of Weibull Fitting

LogNormal d.f.

Parameters estimate K-S test results
µ σ K-S value p-value

A set

BL2 10.453 3.118 0.196 0.697
BL3 8.757 2.069 0.146 0.489
BL4 12.515 2.248 0.100 0.937
BL5 8.693 1.630 0.168 0.851

B set

BL2 11.551 1.931 0.217 0.678
BL3 10.016 1.804 0.144 0.818
BL4 12.689 2.098 0.105 0.920
BL5 9.770 1.236 0.235 0.774

Table 5.15: BL Severity - Results of LogNormal Fitting
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The same conclusion can be obtained from the results of LogLogistic fit to
BL data sets. If we compare the LogNormal and LogLogistic fit in terms of K-S
test then LogLogistic distribution is more favorable for BL2, BL3 and BL5, while
LogNormal distribution is for BL4.

Finally, the last used distribution is Pareto. As expected, BL A-sets were
not fitted well by Pareto distribution, and according to K-S test only BL5 A-set
and all B-sets have given a good test results. This is in line with the fact that
data sets with a higher threshold and heavier tail properties are better fitted with
heavy tailed distribution e.g. Pareto distribution.

LogLogistic d.f.

Parameters estimate K-S test results
µ σ K-S value p-value

A set

BL2 10.974 1.674 0.166 0.862
BL3 8.535 1.132 0.127 0.665
BL4 12.521 1.307 0.109 0.887
BL5 8.578 0.940 0.155 0.910

B set

BL2 11.383 1.099 0.191 0.814
BL3 9.793 0.995 0.144 0.814
BL4 12.663 1.229 0.116 0.848
BL5 9.739 0.709 0.240 0.750

Table 5.16: BL Severity - Results of LogLogistic Fitting

Pareto d.f.

Parameters estimate K-S test results
xm k K-S value p-value

A-set

BL2 69 0.161 0.394 < 0.05
BL3 200 0.289 0.307 < 0.05
BL4 2,294 0.221 0.258 < 0.05
BL5 1,000 0.560 0.250 0.387

B-set

BL2 11,589 0.455 0.154 0.956
BL3 3,056 0.502 0.144 0.820
BL4 9,123 0.280 0.202 0.210
BL5 4,277 0.709 0.223 0.831

Table 5.17: BL Severity - Results of Pareto Fitting
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BL 2 A-set: Fitting the severity BL 2 B-set : Fitting the severity

BL severity3 A-set: Fitting the BL 3 B-set : Fitting the severity
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Figure 5.18: BL2 and BL3: Severity
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BL 4 A-set: Fitting the severity BL 4 B-set : Fitting the severity

BL severity5 A-set: Fitting the BL 5 B-set : Fitting the severity
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Figure 5.19: BL4 and BL5: Severity

The graphical presentation of fitting the severity of BL data set is shown in
Figure 5.18 and Figure 5.19.

The review of the best choices of distributions for business lines is given in
Table 5.18 and Table 5.19. In the case where two distributions are listed also the
second best choices are provided.
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Standard Approach - MLE
Frequency Severity

A-set

BL2 Neg.Bin LogLogistic
0.134 0.032 10.974 1.674

(0.107) (0.862)

BL3 Neg.Bin LogLogistic
9.986 0.491 8.535 1.132

(0.677) (0.665)

BL4 Poisson LogNormal
9 12.515 2.248

(0.971) (0.937)

BL5 Neg.Bin LogLogistic
1.824 0.313 8.578 0.940

(0.950) (0.910)

Table 5.18: BL A-set: Summary of Fitting Results

It can be conclude that as far as the A-set data is considered the LogLogistic
distribution is the most common one. This holds for both event types and business
lines. On the other hand, for business lines B-set data the most appropriate
distribution is Pareto according to K-S test. For loss event types B-set data it is
LogLogistic.

Although we can select the most used distribution in OR analysis and draw
some conclusions, it is important to note that there is no agrement and rules
which distributions will be more suitable for some other data set. That is why
every data set must be considered and fitted separately.
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Standard Approach - MLE
Frequency Severity

B-set

BL2 Poisson Pareto
3.333 11,589 0.455
(0.107) (0.956)

LogLogistic
11.838 1.099

(0.814)

BL3 Neg.Bin Pareto
1.864 0.237 3,056 0.502

(0.677) (0.820)
LogNormal

10.016 1.804
(0.818)

BL4 Poisson LogNormal
8.666 12.689 2.098
(0.900) (0.920)

BL5 Poisson Pareto
2.7333 4,277 0.709
(0.779) (0.831)

LogNormal
9.770 1.236

(0.774)

Table 5.19: BL B-set: Summary of Fitting Results
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5.2.2 Adjusted Approach

Results Obtained Using Numerical Optimization

1. Severity fitting

The Adjusted approach is performed according to the given explanation in Section
4. In order to solve the maximization problem in Equation 4.12 we have used
the numerical optimization tools. Naturally, since the parameters for frequency
depend on the estimation of severity parameters, we have first computed the
severity parameters and latter frequency parameters according to Equation 4.13.

It should be stressed that this adjusted approach is performed only on the
B-set for both of ET and BL. This is due to the fact that A-sets are consid-
ered as complete data sets while B-sets with higher threshold have property of
left-truncated sets and lack of information. Certainly, under this approach the
adjusted Kolmogorov-Smirnov goodness-of-fit test denoted by K-S? is performed.

We will start with the results for Weibull distribution in Table 5.20. They
imply that Weibull distribution does not provide a good fit since the p-values are
not much higher than α = 0.05. Only ET2 B-set is fitted well with p-value equal
to 0.42. If we want to give a general conclusion on usage of Weibull distribution for
fitting the severity of OR losses then there are facts against it. Namely, Weibull
distribution, according to K-S test and considering our data sample does not
provide a good fit, and thus, in vast majority of cases it can not be considered as
a good choice for severity distribution. Moreover, this conclusion holds for results
under standard and adjusted approach.

Adjusted approach: Weibull d.f.

Parameters estimate K-S test results
a b K-S? test p-value

ET B-set

ET2 414,645 0.623 0.564 0.420
ET4 360,686 0.353 2.035 < 0.05
ET7 124,992 0.401 1.515 < 0.05

BL B-set

BL2 270,753 0.465 1.072 0.101
BL3 58,377 0.423 1.781 0.050
BL4 916,082 0.452 0.922 0.371
BL5 30,258 0.774 1.071 0.100

Table 5.20: Results of Weibull Fit under Adjusted Approach
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Adjusted approach: LogNormal d.f.

Parameters estimate K-S test results
µ σ K-S? test p-value

ET B-set

ET2 11.387 2.725 0.651 0.370
ET4 10.601 2.975 1.423 0.251
ET7 8.979 2.904 1.526 0.113

BL B-set

BL2 11.321 2.043 0.693 0.312
BL3 2.167 4.342 3.851 0.184
BL4 12.598 2.159 0.495 0.767
BL5 9.206 1.518 0.937 0.265

Table 5.21: Results of LogNormal fit under Adjusted Approach

The second fitted distribution is LogNormal. The results shown in Table
5.21 suggest better fit than the one for Weibull distribution. Yet the p-values are
not much higher than α, apart from the BL4 where p-value is 0.767.

Adjusted approach: LogLogistic d.f.

Parameters estimate K-S test results
µ σ K-S? test p-value

ET B-set

ET2 12.025 1.508 0.592 0.335
ET4 10.633 1.741 1.363 0.291
ET7 9.315 1.599 1.348 0.159

BL B-set

BL2 11.133 1.262 0.653 0.412
BL3 5.446 1.813 3.429 < 0.05
BL4 12.537 1.327 0.562 0.670
BL5 9.162 0.944 0.955 0.262

Table 5.22: Results of LogLogistic Fit under Adjusted Approach

The results of fitting the LogLogistic distribution to the B-sets using the
adjusted approach presented in Table 5.22 are quite similar to the results of
LogNormal distribution fit. Going further, the forth considered distribution is
Pareto and according to the p-values almost all B-sets have shown a good fit with
exception of ET4 where p-value is close to α.
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Adjusted approach: Pareto d.f.

Parameters estimate K-S test results
xm k K-S? test p-value

ET B-set

ET2 3,200 0.254 0.443 0.881
ET4 3,056 0.278 1.045 0.150
ET7 4,277 0.369 0.815 0.892

BL B-set

BL2 11,589 0.282 2.007 0.786
BL3 3,056 0.497 0.540 0.610
BL4 9,123 0.214 2.437 0.665
BL5 4,277 0.567 0.608 0.891

Table 5.23: Results of Pareto Fit under Adjusted Approach

2. Frequency fitting

Having computed the severity parameters the calculation of frequency parameters
is quite simple. First we need to decide which severity distribution function is the
most appropriate according to the K-S? test and then compute the ”information
loss” F (u; θ̂adj). The second step is to divide already estimated MLE frequency
parameters by probability that loss is greater than threshold u, i.e.

τ̂adj =
τ̂mle

1− F (u; θ̂adj)
.

Since the cumulative distribution function is from the range [0,1] we expect that
the adjusted frequency parameters will be higher than the one estimated by MLE
method. In this way we have ”corrected” the estimated parameters by the infor-
mation that all given and recorded losses come from area x ≥ u.

In the following table the new estimated frequency parameters are listed.
The best choice of frequency distributions is done by the means of results in
standard approach, and the selected severity distributions are marked in the
table.
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Adjusted Approach: Frequency

Poisson Neg. Binomial K-S test results
λ p r K-S value p-value

ET B-set

ET2 Pareto (0%) 1.333 0.286 0.923
ET4 LogL (18.11%) 4.706 0.274 0.264 0.959
ET7 Pareto (0%) 0.536 0.086 0.268 0.953

BL B-set

BL2 Pareto (0%) 3.333 0.631 0.107
BL2 LogL (7.75%) 3.613 0.639 0.099
BL3 Pareto (0%) 1.864 0.237 0.228 0.990
BL4 LogN (1.67%) 8.813 0.278 0.938
BL5 Pareto (0%) 2.333 0.343 0.779

Table 5.24: Adjusted Frequency Distribution Results

In the Table 5.24 it is also reported the percentage of ”information loss” as
the value of F (u; θ̂adj) in the brackets. In the case of Pareto severity distribution
there is no changes in values of frequency parameters since the cumulative Pareto
distribution for the threshold (min(x)) is equal to zero. That is the property of
Pareto distribution and it can also be seen in Figure 4.5.

The other adjustments are not so severe meaning the difference is around
10−2. This is on the account of the fact that our threshold u is not a big number.
For the bigger threshold the bigger difference in values is expected.

Results of EM algorithm

The EM algorithm for LogNormal-Poisson aggregated loss distribution explained
in Section 4 was applied on the considered data. This is an alternative way of
including the effect of missing data in parameters estimation. Naturally, the EM
algorithm was applied only on B-set data and the K-S? test is performed for
LogNormal severity distribution. The results are given in Table 5.25.

According to K-S? test for ET2 and BL4 data set the p-values are 0.721 and
0.810, respectively, suggesting a good fits.

If we compare these results for severity parameters µ and σ with the one
from Standard approach (Table 5.7 and Table 5.13) we can see that there is a
difference between estimated parameters. Namely, the difference is around 10−2.
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EM algorithm: LogNormal-Poisson d.f.

Poisson LogNormal K-S test results
λ µ σ K-S? test p-value

ET B-set

ET2 1.352 11.948 2.283 0.557 0.721
ET4 13.599 11.599 2.294 1.334 0.145
ET7 5.825 10.706 1.937 1.095 0.278

BL B-set

BL2 3.363 11.551 1.833 0.792 0.574
BL3 6.271 9.993 1.764 1.238 0.144
BL4 8.699 12.689 2.058 0.572 0.810
BL5 2.382 9.767 1.146 0.907 0.212

Table 5.25: EM for LogNormal-Poisson d.f.

On the other side, the frequency parameter λ calculated under the EM
algorithm is higher than the one from MLE estimation (Table 5.4 and Table
5.12). Obviously, if the effect of left-truncated data is included, the number of
loss events is expected to be higher.

Summary of Adjusted Approach

Adjusted Approach
Frequency Severity

ET B-set

ET2 Poisson Pareto
1.333 3,200 0.254
(0.923) (0.881)

ET2 EM Poisson LogNormal
1.352 11.948 2.283
(0.927) (0.721)

ET4 Neg. Binomial LogLogistic
4.706 0.274 10.633 1.741

(0.959) (0.291)

ET7 Neg. Binomial Pareto
0.536 0.086 4,277 0.369

(0.953) (0.892)

Table 5.26: ET: Summary of Adjusted Approach
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Adjusted Approach
Frequency Severity

BL B-set

BL2 Poisson Pareto
3.333 11,589 0.282
(0.107) (0.786)
Poisson LogLogistic
3.613 11.133 1.262
(0.099) (0.412)

BL3 Neg. Binomial Pareto
1.864 0.237 3,056 0.497

(0.990) (0.610)

BL4 Poisson LogNormal
8.813 12.598 2.159
(0.779) (0.767)

BL4 EM Poisson LogNormal
8.699 12.689 2.058
(0.909) (0.810)

BL5 Poisson Pareto
2.333 4,277 0.567
(0.799) (0.891)

Table 5.27: BL: Summary of Adjusted Approach

5.2.3 EVT Analysis

EVT theory has two methods Black Maxima and Peak Over Threshold (POT).
In our case, there was no point in applying the the first method. The main reason
lays in the fact that it is really hard to find at least 5 maximums for considering
time intervals. Namely, if we divide our time horizon in time intervals (e.g.
months) it is more probably that there will be lack of data (no observations) in
the vast majority of intervals. Also, if we take years as time intervals then only 3
data points will be gained. Consequently, this method was excluded from analysis
and only Peak Over Threshold method was conducted, even though the number
of excess the threshold is sometimes less than 10.

The EVT analysis was performed only on the B-set data meaning that all
data sets have the threshold 3,000. The GPD(x; ξ, β) distribution fitted to the
data was explained before by Equation 4.39. The estimated parameters ξ and β
are reported in the following table.
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GPD

number of excess Parameters estimate
n ξ β

ET2 4 -2.131 848,856
ET4 40 2.064 47,381
ET7 17 1.629 24,912

BL2 10 1.658 62,l532
BL3 18 1.439 13,145
BL4 26 1.594 213,704
BL5 7 0.224 24,714

Table 5.28: Results of GDP Fit

If we put our attention on estimated parameter ξ it can be concluded that
all data sets apart from ET2 have a heavy tail property since it holds ξ > 0. Of
course, this is in line with all previous findings. Yet, it should be noted that the
analysis for ET2 and BL5 with only 4 and 7 excesses can not give us the reliable
results. Obviously, the number of excesses can be limiting factor.

In Figure 5.20 and Figure 5.21 it can be seen how well GDP has fitted the
data sets.

ET 2: GPD fitting ET 4: GPD fitting ET 7: GPD fitting

Figure 5.20: GDP
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BL 2: GPD fitting BL 3: GPD fitting

BL 4: GPD fitting BL 5: GPD fitting

The fitting plot could not
be provided.

Figure 5.21: GDP

5.3 Monte Carlo Simulation

Having selected the best fitted distributions for both of frequency and severity
of loss data sets the process of theirs aggregation is performed via Monte Carlo
simulation.

It should be noted that the results from OR VaR Monte Carlo simulation
for 99% and 99.9% level are omitted from the paper. Namely, the results for these
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high percentiles can not be considered as transparent measures since we have start
the analysis with very small number of observations, and thus, the high precision
could not be obtained. Following the reasoning, the reported results are for the
levels 90% and 95%.

5.3.1 Standard Approach Results

OR VaR (in 000)

90% 95%

ET A-set

ET2 340 773
ET4 152,535 435,534
ET7 8,876 22,973

ET B-set

ET2 6,217 15,749
ET4 80,399 194,840
ET7 PR 48,021 270,144
ET7 LL? 4,934 10,363

Table 5.29: ET- OR VaR

OR VaR (in 000)

90% 95%

BL A-set

BL2 18,782 85,898
BL3 1,203 2,428
BL4 61,120 101,377
BL5 234 418

BL B-set

BL2 PR 24,258 113,999
BL2 LL? 4,673 9,660
BL3 PR 10,451 42,261
BL3 LN? 1,645 2,508
BL4 LN 51,886 82,636
BL5 PR 400 1,022
BL5 LN? 208 293

Table 5.30: BL -OR VaR

The mark ? in the above tables suggests that the second best choice for
severity distribution function was considered. The idea was to see the difference
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between OR VaR values if the heavy tailed Pareto or medium tailed LogNormal
and LogLogistic distribution is selected. Obviously, the difference in some cases
can be quite big, up to 102 at the level 95% and even more for higher levels. This
findings are in the line with the fact that Pareto distribution puts more weights
to tail of data sets.

On the other side, the question is does the Kolmogorov-Smirnov test provide
the appropriate choice of fitted distribution function. Namely, test calculates the
maximum difference between fitted and empirical distribution without consider-
ing where the difference has occurred. Perhaps some other goodness of fit tests
such as Anderson-Darling, Cramer von Mises, would lead to other conclusions.
These issues are left for further investigations.

5.3.2 Adjusted Approach Results

OR VaR (in 000)

90% 95%

ET B-set

ET2 PR 72,022 1,193,310
ET2 EM? 4,659 10,217
ET4 LL 187,155 618,978
ET7 PR 185,425 1,139,170

BL B-set

BL2 PR 2,513,882 32,379,317
BL2 LL? 8,785 20,711
BL3 PR 11,227 45,847
BL4 LN 54,425 87,992
BL4 EM? 48,073 75,169
BL5 PR 1,136 3,835

Table 5.31: Adj. App. - OR VaR

Table 5.31 gives results of Monte Carlo simulation for adjusted approach.
Firstly, as it was expected the OR VaR values under adjusted approach are much
higher than the ones calculated under standard approach. The influence of the
threshold and missing values is apparently important since it considerably changes
the OR VaR value. Thus, OR risk management should record as much as possible
of loss events leaving the number of missing data at reasonable low level. These
issues are investigated in more details in papers [14], [15] and [16].

Secondly, the empirical results suggest that severity Pareto distribution
gives much higher OR VaR values than some other medium-tailed distributions.
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Apparently, in some cases the deference can be more than 103 for 95% level and
up to 106 for higher confidence levels. Knowing that our analysis was started
with very small number of data, it seems reasonable not to consider the Pareto
distribution for BL2 and ET2 data set under 95% level. Obviously, in these par-
ticular cases the difference in OR VaR values is quite big and more probably
driven from limiting number of data then from the fact that Pareto distribution
provided better fit.

Further, in Table 5.31 we have results for BL4 B-set from numerical op-
timization and EM algorithm for Poisson-LogNormal aggregated distribution.
Certainly, the reported difference among OR VaR values comes from the differ-
ence in the estimated parameters µ and σ. If we go back to Table 5.27 the results
under EM algorithm are higher for µ and smaller for σ. Also, the frequency pa-
rameter λ is smaller suggesting less number of simulated events. This explains
the difference in OR VaR values.

5.4 OR Capital Charge

In this section the final estimated values for OR capital charge for the whole
bank are given. The results are arranged according to performed ET or BL
analysis. Once again the mark ? denotes that the second best choice for severity
distribution is used.

Capital Charge - Standard App.

90% 95%

ET A-set

CC1 161,750,593 459,280,002
CC2 18,544,674 32,915,159

ET B-set

CC1 134,637,142 480,732,729
CC2 23,025,246 62,188,531

ET B-set ?

CC1 91,549,989 220,951,592
CC2 14,939,319 24,338,676

Table 5.32: ET Capital Charge

CC1 is the capital charge calculated under the assumption of perfect corre-
lation among event types or business lines. The formula is simply the sum of the
corresponding OR VaR values.
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CC2 is the capital charge computed when the correlation effect is included
according to following equation

CC2α =
∑

m

ELm +

√

∑

m,n m6=n

km,n(CCm − ELm)(CCn − ELn) (5.1)

In our case, the correlation factor k is set to be 5% for all data sets, and for
expected loss the median of sample is used. The main reason for using the
median measure instead of mean value is the high kurtosis and skewness values
of data sets and also the small number of data. These properties of data sets
lead to big difference between mean and median values. In our particular case
the mean value is sometimes higher than the 90th quantile. Accordingly, we have
decided to use median as expected loss measure.

Capital Charge - Standard App.

90% 95%

BL A-set

CC1 81,428,228 190,120,649
CC2 28,845,949 48,792,425

BL B-set

CC1 86,995,636 239,917,561
CC2 29,209,043 54,233,210

BL B-set ?

CC1 58,412,075 95,096,664
CC2 24,189,726 32,321,376

Table 5.33: BL Capital Charge

Capital Charge - Adjusted App.

90% 95%

ET B-set ?

CC1 377,243,287 1,998,365,837
CC2 50,372,306 215,555,354

BL B-set ?

CC1 69,220,079 145,561,941
CC2 25,738,589 39,795,831

Table 5.34: ET and BL Capital Charge
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In Table 5.32 and Table 5.33 the computed capital charges for ET and BL
analysis are listed, respectively. Immediately seen, for both analysis CC2 values
are smaller than CC1. This implies that including the correlation effect leads to
reduction of the capital charge.

Also, as expected the results from adjusted approach in Table 5.34 suggest a
higher capital charge than the one under standard approach. Further, the values
CC1 are still less than CC2.

5.4.1 Summary of OR VaR Estimated Values

ET analysis - Capital Charge

90% 95%

Standard App: ET B-set ? CC2

MIN 14,939,319 24,338,676
in eur 186,741 304,233

Adjusted App: ET B-set ? CC1

MAX 377,243,287 1,998,365,837
in eur 4,715,541 24,979,572

Table 5.35: Summary of ET Analysis

BL analysis - Capital Charge

90% 95%

Standard App: BL B-set ? CC2

MIN 24,189,726 32,321,376
in eur 302,372 404,017

Standard App: BL B-set CC1

MAX 86,995,636 239,917,561
in eur 1,087,445 2,998,969

Table 5.36: Summary of BL Analysis

The above Tables 5.35 and 5.36 give the minimum and maximum capital
charges that were obtained from diverse analysis. Apparently, the differences
are huge, up to 108. The minimum capital charges are obtained from second
best choices of severity distributions, and maximum from adjusted approach and
Pareto distribution. It is evident that the medium-tailed distributions LogNor-
mal and LogLogistic provided smaller capital charges when correlation effect was
included.
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All this suggests that risk managers should take the measuring of oper-
ational risk with more caution since the final values are very sensitive to the
choices of distributions, parameters estimation methods, recorded threshold, cor-
relation effect ect. Indeed, a very little difference in estimated parameters can
produces a great difference in final capital charge figure. Also, according to our
empirical study based on provided historical data the effect of correlation is not
irrelevant as well as the choice of heavy-tailed or medium-tailed severity distri-
bution function.
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Naučna oblast: Matematika

NO
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