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Abstract

Nonmonotone line search methods for unconstrained minimization
with the objective functions in the form of mathematical expectation
are considered. The objective function is approximated by the sam-
ple average approximation (SAA) with a large sample of fixed size.
The nonmonotone line search framework is embedded with a variable
sample size strategy such that different sample size at each iteration
allow us to reduce the cost of the sample average approximation. The
variable sample scheme we consider takes into account the decrease in
the approximate objective function and the quality of the approxima-
tion of the objective function at each iteration and thus the sample
size may increase or decrease at each iteration. Nonmonotonicity of
the line search combines well with the variable sample size scheme as
it allows more freedom in choosing the search direction and the step
size while the sample size is not the maximal one and increases the
chances of finding a global solution. Eventually the maximal sample
size is used so the variable sample size strategy generates the solution
of the same quality as the SAA method but with significantly smaller
number of function evaluations. Various nonmonotone strategies are
compared on a set of test problems.
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1 Introduction

The problem that we consider is an unconstrained optimization problem of
the form

min
x∈Rn

f(x) := E[F (x, ξ)]

where ξ ∈ Ω is a random vector. As f(x) is rarely available analytically, one
of the common approaches is to approximate the problem with

min
x∈Rn

f̂N(x) =
1

N

N∑
i=1

F (x, ξi). (1)

applying the sample average approximation [1], [28]. Here N represents the
sample size and {ξ1, . . . , ξN} is a fixed sample generated at the beginning of
the optimization process and kept throughout the whole process. In general,
F (x, ξi) does not have to be random. Many data fitting problems can be
formulated in the same form as (1). For further references one can see [12].
The same type of problems arise in machine learning, see [5, 6]. We will treat
N as the sample size in this paper.

In general, the sample size N is some large number and the evaluation
of f̂N is expensive. Thus applying an optimization method on the function
f̂N(x) can be very costly. Therefore, methods that start with a small sample
and increase the sample size throughout the optimization process are devel-
oped in many papers, see [9], [12], [16], [24], [25], [27]. In these methods, at
each iteration one considers an approximate objective function of the form
given by (1) but with the current sample size Nk that might be smaller than
N. The dominant way of dealing with the sample sizes (the schedule sequence
from now on) is to consider an increasing sequence and thus ensure increas-
ing precision during the optimization procedure regardless of the progress
made, or not made, in decreasing the objective function given by (1). Intu-
itively it might be appealing to take the progress in the objective function
as well as the error of the sample average approximation into account when
designing the schedule sequence. An algorithm that allows the sample size to
oscillate according to some measure of the decrease of the objective function
is proposed in [1], [2], [3] for the trust region approach. A similar frame-
work for the schedule sequence in the line search framework is developed in
[17]. In this paper we are extending this schedule to the nonmonomotone
line search framework. The main advantage of the proposed methods is the
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fact that they result in approximate solutions for the SAA problem but with
significantly smaller computational costs than the classical SAA method.

A strong motivation for using nonmonotone line search is coming from
problems where the search direction is not necessary descent. This happens,
for instance, when derivatives are not available. This scenario is very realistic
in stochastic optimization framework where only input-output information
are available. When a variable schedule sample average approximation is
used, the objective function at an arbitrary iteration is not necessarily equal
to (1) and thus a descent direction for f̂N does not need to be descent for
the current approximation of the objective function f̂Nk

. Furthermore, some
efficient quasi-Newton methods, for example the SR1 update, do not produce
descent direction at every single iteration, see [23]. It is well known that
even some very efficient gradient-related methods do not posses monotonicity
property at all, for example the spectral gradient methods, [19], [26], [30]. In
these cases, it is useful to consider nonmonotone rules which do not require
decrease of the objective function at every iteration. Moreover, when it
comes to global convergence, numerical results in [32], [8], [26], [31] suggest
that nonmonotone techniques have better chances of finding global optimizers
than their monotone counterparts.

Evaluating optimization methods is a problem itself and it has been the
main issue of some research efforts [21], [11]. Methods considered in this
paper are evaluated mainly by means of the efficiency index [18] and the
performance profile [11]. Both quantities are defined with respect to the
number of function evaluations.

In this paper we introduce and analyze a class of algorithms that use
nonmonotone line search rules which fit the variable sample size context de-
veloped in [17]. The nonmonotone line search framework for (1) as well as the
schedule sequence are defined in the following section. In Section 3 we prove
global convergence results for general search direction. A generalization of
the results regarding the descent directions and R-linear convergence, which
are obtained in [32] and [8], is presented in Section 4. A set of numerical ex-
amples that illustrate the properties of the considered methods is presented
in Section 5. Two sets of examples are considered, the first one consists of
academic optimization problems in noisy environment where the mathemat-
ical expectation is the true objective function that is approximated by (1).
The second example comes from a research on various factors affecting the
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metacognition and the feeling of knowing among 746 students in Serbia. 1

and this example fits the framework of data fitting as defined in [12].

2 The algorithms

Suppose that Nmax is some substantially large but finite positive integer and
{ξ1, . . . , ξNmax} is a generated sample. The problem we consider is (1) with
N = Nmax, i.e.

min
x∈Rn

f̂Nmax(x). (2)

The algorithm we state allows us to vary the sample size Nk ≤ Nmax across
iterations and therefore we are considering different functions f̂Nk

during the

optimization process. Eventually f̂Nmax will be considered and (2) will be
solved.

The line search rule we consider seeks for a step size αk that satisfies the
condition

f̂Nk
(xk + αkpk) ≤ C̃k + εk − ηdmk(αk), (3)

where η ∈ (0, 1], C̃k is a parameter related to the approximate objective
function f̂Nk

(xk), εk provides nonmonotonicity and dmk(αk) measures the

decrease. The function f̂Nk
(x) is computed by (1) using the subset of the

first Nk elements of {ξ1, . . . , ξNmax}. This rather general form of the line
search rule allows us to consider the stochastic counterparts of the main
nonmonotone line search algorithms.

Let us first consider the measure of decrease represented by the function
dmk(α) defined in the following two ways. The first one is

dmk(α) = −αpTk∇f̂Nk
(xk). (4)

This definition is used only if pTk∇f̂Nk
(xk) < 0 and in that case dmk(α) > 0

for every α > 0. The second option is to define

dmk(α) = α2βk, (5)

where {βk} is a bounded sequence of positive number satisfying the following
implication

lim
k∈K

βk = 0⇒ lim
k∈K
∇f̂Nmax(xk) = 0, (6)

1We are grateful to Ivana Rančić who provided the data. The research is done within
the project no. 179010, financed by the Ministry of Education, Science and Technological
Development, Republic of Serbia.
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for every infinite subset of indices K ⊆ N. This sequence is introduced in
[10]. Besides some increasingly accurate approximation of ‖∇f̂Nmax(xk)‖, a
suitable choice for βk can be even some positive constant.

The parameters εk > 0 make the line search (3) well defined for an arbi-
trary search direction pk. The nonmonotone rules which contain a sequence
of nonnegative parameters {εk}k∈N were introduced in [20] for the first time
and successfully used in many other algorithms, see [4] for example. The
following property of the parameter sequence is assumed

εk > 0,
∑
k

εk = ε <∞. (7)

Finally, let us comment the parameters C̃k. Again, two different parame-
ters are considered. The first one is defined as

C̃k = max{Ck, f̂Nk
(xk)}. (8)

Here Ck is a convex combination of the objective function values in previous
iterations as introduced in [32]. A nonmonotone generalized of the Armijo
type rule with such Ck is considered in [7]. However, we are dealing with a
different function at every iteration and Ck ≥ f̂Nk

(xk) might not be true. In
order to make the algorithm well defined an additional definition is specified
in (8) to ensure C̃k ≥ f̂Nk

(xk). The definition of Ck is conceptually the same
as in [32] except for a modification needed due to the variable sample size
scheme. Therefore, we define Ck recursively with

Ck+1 =
η̃kQk

Qk+1

Ck +
1

Qk+1

f̂Nk+1
(xk+1), C0 = f̂N0(x0), (9)

where
Qk+1 = η̃kQk + 1, Q0 = 1, η̃k ∈ [0, 1]. (10)

The parameter η̃k determines the level of monotonicity regarding Ck. Notice
that η̃k−1 = 0 yields C̃k = f̂Nk

(xk). On the other hand, the choice η̃k = 1 for
every k generates the average

Ck =
1

k + 1

k∑
i=0

f̂Ni
(xi). (11)

Clearly, 1 ≤ Qk ≤ k + 1 for every k. Furthermore, one can see that Ck
is a convex combination of f̂N0(x0), ..., f̂Nk

(xk). Moreover, it can be proved
that the following lemma, analogous to the statements in [32] (Theorem 2.2,
(2.15)), holds.
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Lemma 2.1. Suppose that η̃k ∈ [ηmin, ηmax] for every k where 0 ≤ ηmin ≤
ηmax ≤ 1 and Qk is defined by (10).

1) If ηmin = 1, then limk→∞Q
−1
k = 0.

2) If ηmax < 1, then 0 ≤ Qk ≤ (1− ηmax)−1 and limk→∞Q
−1
k > 0.

The previous lemma distinguishes two cases regarding Ck or more pre-
cisely regarding η̃k. It turns out that the average (11) is a special case in
terms of the convergence analysis too and a stronger result can be obtained
by excluding η̃k = 1.

In order to cover all relevant nonmonotone line search rules, we define the
second possibility for C̃k,

C̃k = max{f̂Nk
(xk), . . . , f̂Nmax{k−M+1,0}(xmax{k−M+1,0})}, (12)

where M ∈ N is arbitrary but fixed. This rule originates from [14] and can
be found in many successful algorithms, see [10] and [15] for example.

The following assumption ensures that the problem is well defined.

A 1. There exists a constant MF such that for every ξ, x, MF ≤ F (x, ξ).

The consequence of this assumption is that every function f̂Nk
is bounded

from below with the same constant MF and therefore the sequence Ck is also
bounded from below, i.e. MF ≤ Ck. The same holds for C̃k as well.

Each iteration of the method we consider generates a new iteration xk+1

and a new sample size Nk+1. The new iteration xk+1 is obtained as xk+1 =
xk + αkpk using (3) and the function f̂Nk

. After that the sample size and
the objective function are updated as follows. The new sample size Nk+1

is determined by Algorithms 1 and 2 which are stated below. Besides the
schedule sequence {Nk}, two additional sequences Nmin

k and N+
k are also

defined. The sequence Nmin
k is nondecreasing and represents the lower bounds

for the schedule sequence. The sequence N+
k is generated by Algorithm

1 and represents the candidate sample sizes which are further considered in
Algorithm 2. The Algorithms 1 and 2 presented in this paper are adjustments
of the corresponding algorithms analyzed in [17]. The adjustments are made
to fit the nonmonotone framework and are mainly technical. A more detailed
analysis can be found in [17] but we state the algorithms here for the sake of
completeness.

The following algorithm yields the candidate sample size N+
k . Notice that

it is constructed to provide Nmin
k ≤ N+

k ≤ Nmax. The algorithm relies on a
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good balance between the progress made in decreasing the objective function
(measured by dmk) and the (lack of) precision in the current approximate
objective function f̂Nk

. The lack of precision is defined as

εNk
δ (xk) = σ̂Nk

(xk)
αδ√
Nk

, (13)

which is an approximate width of the confidence interval around f(xk) with
σ̂Nk

(xk) being the sample standard deviation and αδ the corresponding quan-
tile of the Gaussian distribution N (0, 1) with δ = 0.95.

ALGORITHM 1.

S0 Input parameters: dmk, N
min
k , εNk

δ (xk), ν1 ∈ (0, 1), d ∈ (0, 1].

S1 Determine N+
k

1) dmk = d εNk
δ (xk) → N+

k = Nk.

2) dmk > d εNk
δ (xk)

Starting with N = Nk, while dmk > d εNδ (xk) and N > Nmin
k ,

decrease N by 1 and calculate εNδ (xk) → N+
k .

3) dmk < d εNk
δ (xk)

i) dmk ≥ ν1d ε
Nk
δ (xk)

Starting with N = Nk, while dmk < d εNδ (xk) and N < Nmax,
increase N by 1 and calculate εNδ (xk) → N+

k .

ii) dmk < ν1d ε
Nk
δ (xk) → N+

k = Nmax.

Acceptance of the candidate sample size is decided within Algorithm 2.
Notice that Nk+1 ≥ N+

k .

ALGORITHM 2.

S0 Input parameters: N+
k , Nk, xk, xk+1.

S1 Determine Nk+1

1) If N+
k > Nk then Nk+1 = N+

k .

2) If N+
k < Nk compute

ρk =

∣∣∣∣∣ f̂N+
k

(xk)− f̂N+
k

(xk+1)

f̂Nk
(xk)− f̂Nk

(xk+1)
− 1

∣∣∣∣∣ .
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i) If ρk <
Nk−N+

k

Nk
put Nk+1 = N+

k .

ii) If ρk ≥
Nk−N+

k

Nk
put Nk+1 = Nk.

The safeguard algorithm stated above is supposed to prohibit an unpro-
ductive decrease in the sample size. The right-hand side of the inequalities
in S1 2) i)-ii) imply that if the proposed decrease Nk−N+

k is relatively large,
then the chances of accepting the smaller sample size N+

k are larger. This
reasoning is motivated by the empirical results which suggest that a large
decrease in the sample size is almost always productive. On the other hand
if Nk is close to Nmax and the proposed decrease is relatively small it is far
less likely that the decrease in the schedule sequence is meaningful.

The lower bound Nmin
k is updated as follows.

• If Nk+1 ≤ Nk then Nmin
k+1 = Nmin

k .

• If Nk+1 > Nk and

– Nk+1 is a sample size which has not been used so far then Nmin
k+1 =

Nmin
k .

– Nk+1 is a sample size which has been used before and we have
made a big enough decrease of the function f̂Nk+1

since the last
time it has been used, then Nmin

k+1 = Nmin
k .

– Nk+1 is a sample size which has been used before and we have not
made a big enough decrease of the function f̂Nk+1

since the last
time, then Nmin

k+1 = Nk+1.

The decrease of the function is not big enough if

f̂Nk+1
(xh(k))− f̂Nk+1

(xk+1)

k + 1− h(k)
<
Nk+1

Nmax

ε
Nk+1

δ (xk+1).

where h(k) is the iteration at which we started to use the sample size Nk+1

for the last time. Notice that the average decrease of the function f̂Nk+1
after

the iteration h(k) is obtained on the left-hand side The average decrease is
compared to the lack of precision throughout the ratio Nk+1/Nmax. This
means that a stronger decrease is required if the function f̂Nk+1

is closer to

f̂Nmax as the real objective function is f̂Nmax .
Now, we can state the main algorithm. The important modifications re-

garding the algorithm from [17] are in steps S4 and S6. The search direction
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does not have to be decreasing in general and the line search rule is changed.
Consequently, the definition of dmk is altered and therefore the input pa-
rameter of Algorithm 1 is modified, but the mechanism for searching N+

k

remains the same. Another important modification in comparison with [17]
is that Algorithm 3 does not have any stopping criterion. The reason is that
in general the gradient of function f̂Nmax is not available.

ALGORITHM 3.

S0 Input parameters: M,Nmax, N
min
0 ∈ N, x0 ∈ Rn, δ, β, ν1 ∈ (0, 1), η ∈

(0, 1], 0 ≤ ηmin ≤ ηmax ≤ 1, {εk}k∈N satisfying (7).

S1 Generate the sample realization: ξ1, . . . , ξNmax .

Set N0 = Nmin
0 , C0 = f̂N0(x0), Q0 = 1, C̃0 = C0, k = 0.

S2 Compute f̂Nk
(xk) and εNk

δ (xk).

S3 Determine the search direction pk.

S4 Find the smallest nonnegative integer j such that αk = βj satisfies

f̂Nk
(xk + αkpk) ≤ C̃k + εk − ηdmk(αk).

S5 Set sk = αkpk and xk+1 = xk + sk.

S6 Determine the candidate sample size N+
k using Algorithm 1 and dmk =

dmk(αk).

S7 Determine the sample size Nk+1 using Algorithm 2.

S8 Determine the lower bound of sample size Nmin
k+1 .

S9 Determine C̃k+1 using (8) or (12).

S10 Set k = k + 1 and go to step S2.
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3 General search direction

In this section, we analyze the case where the search direction might be non-
descent. The convergence analysis is conducted in two main stages. First,
we prove that Algorithm 3 eventually ends up with Nk = Nmax for all k large
enough and thus (2) is eventually solved. The second part of the analysis
deals with the function f̂Nmax . In order to prove that the schedule sequence
becomes stationary with Nk = Nmax for k large enough, we need to prove
that a subsequence of {dmk(αk)}k∈N tends to zero. This is done by con-
sidering separately two definitions of C̃k. Result for the line search with
C̃k = max{Ck, f̂Nk

(xk)} is stated in the next lemma. An additional assump-
tion stated below is needed.

A 2. For every ξ, F (·, ξ) ∈ C1(Rn).

Lemma 3.1. Suppose that assumptions A1 - A2 are satisfied and there exists
ñ ∈ N such that Nk = N for every k ≥ ñ. Then Algorithm 3 with C̃k defined
by (8) satisfies

lim inf
k→∞

dmk(αk) = 0.

Moreover, if ηmax < 1 it follows that

lim
k→∞

dmk(αk) = 0.

Proof. First of all, recall that the line search is such that for every k ≥ ñ
we have

f̂N(xk+1) ≤ C̃k + εk − ηdmk (14)

where dmk = dmk(αk). Furthermore, Ck ≤ max{Ck, f̂Nk
(xk)} = C̃k. There-

fore, the following is true for every k ≥ ñ

Ck+1 =
η̃kQk

Qk+1

Ck +
1

Qk+1

f̂N(xk+1)

≤ η̃kQk

Qk+1

C̃k +
1

Qk+1

(C̃k + εk − ηdmk)

= C̃k +
εk
Qk+1

− η dmk

Qk+1

The previous equality follows from the equality Qk+1 = η̃kQk + 1. Moreover,
using Qk+1 ≥ 1 we obtain

Ck+1 ≤ C̃k + εk − η
dmk

Qk+1

. (15)
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Now, from (14) and (15) there follows

C̃k+1 = max{Ck+1, f̂N(xk+1)} (16)

≤ max{C̃k + εk − η
dmk

Qk+1

, C̃k + εk − ηdmk}

= C̃k + εk − η
dmk

Qk+1

and for every s ∈ N

C̃ñ+s ≤ C̃ñ +
s−1∑
j=0

εñ+j − η
s−1∑
j=0

dmñ+j

Qñ+j+1

. (17)

The sequence {εk}k∈N satisfies (7). Furthermore, assumption A1 implies
Ck ≥MF and we obtain

0 ≤ η
s−1∑
j=0

dmñ+j

Qñ+j+1

≤ C̃ñ −MF + ε := C.

Now, letting s→∞ we obtain

0 ≤
∞∑
j=0

dmñ+j

Qñ+j+1

≤ C

η
<∞. (18)

Suppose that dmk ≥ d̄ > 0 for all k sufficiently large. Then Qk ≤ k + 1
implies

∞∑
j=0

dmñ+j

Qñ+j+1

≥
∞∑
j=0

d̄

ñ+ j + 2
=∞

which is the contradiction with (18). Therefore, there must exist a subset
of iterations K such that limk∈K dmk = 0 and the statement of this lemma
follows.

Finally, assume that ηmax < 1. From (18) we conclude that limk→∞Q
−1
k dmk =

0. Since Lemma 2.1 implies that limk→∞Q
−1
k > 0 it follows that limk→∞ dmk =

0. This completes the proof. �
The analogous statement can be proved for

C̃k = max{f̂Nk
(xk), . . . , f̂Nmax{k−M+1,0}(xmax{k−M+1,0})}.
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The existence of a subsequence of {dmk(αk)}k∈N that vanishes will be enough
to prove the first stage result in the convergence analysis. In order to
specify the subsequence that tends to zero, suppose that ñ ≥ M is the
iteration such that for every k ≥ ñ the sample size is fixed. Further-
more, if we define s(k) = ñ + kM then by the definition of C̃k we have
C̃s(k) = max{f̂N(xs(k)), . . . , f̂N(xs(k)−M+1)}. Let v(k) be the index such that

C̃s(k) = f̂N(xv(k)) and notice that v(k) ∈ {s(k − 1) + 1, . . . , s(k − 1) + M}.
Finally, define

K = {v(k)− 1}k∈N.
The proof of the following lemma is essentially the same as the proof of
Proposition 1 from [10], applied on the function f̂N and thus we omit it here.

Lemma 3.2. Suppose that assumptions A1 - A2 are satisfied and there exists
ñ ∈ N such that Nk = N for every k ≥ ñ. Then Algorithm 3 with C̃k defined
by (12) satisfies:

1) C̃s(k+1) ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i − ηdmv(k+1)−1, k ∈ N,

2) C̃s(m+1) ≤ C̃s(1) +
m∑
k=1

M−1∑
i=0

εs(k)+i − η
m∑
k=1

dmv(k+1)−1, m ∈ N,

3) limk∈K dmk(αk) = 0.

The result stated in Lemma 3.1 concerning the case ηmax < 1 is attainable
in this case as well, but under stronger assumptions on the search directions
and the objective function as will be shown in Section 4.

The previous two lemmas imply that

lim inf
k→∞

dmk(αk) = 0. (19)

Now we are able to state the conditions which ensure that the schedule
sequence eventually becomes stationary with Nk = Nmax for k large enough.
The conditions are essentially the same as for the monotone line search rule
from [17], Lemma 4.1. The main difference with respect to the monotone
case lies in Lemma 3.2 and Lemma 3.1. Thus we give a short version of the
proof here. The following assumption is needed.

A 3. There exist κ > 0 and n1 ∈ N such that εNk
δ (xk) ≥ κ for every k ≥ n1.
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Lemma 3.3. Suppose that the assumptions A1 - A3 are satisfied. Then there
exists q ∈ N such that for every k ≥ q the sample size used by Algorithm 3
is maximal, i.e. Nk = Nmax.

Proof. First of all, recall that Algorithm 3 does not have any stopping
criterion and the number of iterations is infinite by default. Notice that
Algorithm 2 implies that Nk+1 ≥ N+

k is true for every k. Now, let us prove
that sample size can not be stacked at a size that is lower than the maximal
one.

Suppose that there exists ñ > n1 such thatNk = N1 < Nmax for every k >
ñ and define dmk = dmk(αk). In that case (19) is valid, i.e. lim infk→∞ dmk =
0. On the other hand, we have that εN

1

δ (xk) ≥ κ > 0 for every k ≥ ñ which
means that ν1d ε

Nk
δ (xk) is bounded from below for every k sufficiently large.

Therefore, there exists at least one p ≥ ñ such that dmp < ν1d εN
1

δ (xp).
However, the construction of Algorithm 1 would then imply N+

p = Nmax and
we would have Np+1 = Nmax > N1 which is in contradiction with the current
assumption that sample size stays at N1.

We have just proved that sample size can not stay on N1 < Nmax. The
rest of the proof is completely analogous to the proof of Lemma 4.1 in [17].
�

Now, we prove that after a finite number of iterations, all the remaining
iterates of the algorithm belong to the level set defined in the next lemma
no matter which of the two definitions of dmk is used. The level set does not
depend on the starting point x0 as it is usual in deterministic framework,
but on the point at which the schedule sequence becomes stationary with
Nk = Nmax.

Lemma 3.4. Suppose that A1 - A3 are satisfied. Then there exists a finite
q ∈ N such that for every k ≥ q the iterates xk belong to the level set

L = {x ∈ Rn | f̂Nmax(x) ≤ C̃q + ε}. (20)

Proof. Lemma 3.3 implies the existence of a finite number ñ such that
Nk = Nmax for every k ≥ ñ. If C̃k is defined by (8), for every s ∈ N inequality
(17) is true. Therefore, we conclude that for every s ∈ N

C̃ñ+s ≤ C̃ñ +
s−1∑
j=0

εñ+j − η
s−1∑
j=0

dmñ+j

Qñ+j+1

≤ C̃ñ + ε.
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Since f̂Nmax(xñ+s) ≤ C̃ñ+s by definition, we obtain that

f̂Nmax(xk) ≤ C̃ñ + ε

holds for every k ≥ ñ which proves the statement with q = ñ. On the other
hand, if (12) is used for C̃k, Lemma 3.2 implies

C̃s(m+1) ≤ C̃s(1) +
m∑
k=1

M−1∑
i=0

εs(k)+i − η
m∑
k=1

dmv(k+1)−1 ≤ C̃s(1) + ε

where s(m) = ñ+mM and f̂Nmax(xv(m)) = C̃s(m). In fact, C̃s(k) ≤ C̃s(1)+ε for

every k ∈ N. Moreover, since C̃s(k) = max{f̂Nmax(xs(k−1)+1), . . . , f̂Nmax(xs(k−1)+M)}
we have that f̂Nmax(xs(k−1)+j) ≤ C̃s(k) for every j ∈ {1, . . . ,M} and every

k ∈ N. Notice that C̃s(1) = max{f̂Nmax(xñ+1), . . . , f̂Nmax(xñ+M)}. Therefore,
for every k > ñ

f̂Nmax(xk) ≤ C̃s(1) + ε = C̃ñ+M + ε

which yields the result with q = ñ+M . �
The rest of this section is devoted to general search directions. Therefore,

the decrease measure is defined by (5) and the line search rule is

f̂Nk
(xk + αkpk) ≤ C̃k + εk − α2

kβk. (21)

The convergence results are stated in the following theorems and the
statements are generalizations of the corresponding results from [32], [7] and
[10] given that we consider different objective functions, C̃k and the sequence
εk.

Theorem 3.1. Suppose that A1 - A3 hold together with (6) and that the
sequences of search directions {pk}k∈N and iterates {xk}k∈N of Algorithm 3
with the line search rule (21) are bounded. Then there exists an accumula-
tion point (x∗, p∗) of the sequence {(xk, pk)}k∈N that satisfies the following
inequality

p∗T∇f̂Nmax(x∗) ≥ 0.

If, in addition, C̃k is defined by (8) with ηmax < 1, then the previous inequality
holds for every accumulation point (x∗, p∗).

Proof. Notice that under these assumptions, Lemma 3.3 implies the exis-
tence of ñ ∈ N such that Nk = Nmax for every k ≥ ñ. Moreover, there exists
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a subset K0 ⊆ N such that limk∈K0 dmk(αk) = limk∈K0 α
2
kβk = 0. Further-

more, since {(xk, pk)}k∈N is bounded, there exists at least one subset K ⊆ K0

and points x∗ and p∗ such that limk∈K xk = x∗ and limk∈K pk = p∗. There-
fore it follows that limk∈K α

2
kβk = 0. Moreover, if C̃k is defined by (8) with

ηmax < 1, then Lemma 3.1 implies that the whole sequence α2
kβk converges

to zero and thus any subsequence also converges to zero. The rest of the
proof is completely analogous to the proof of Theorem 1 in [10]. �

Roughly speaking, the previous theorem give the conditions under which
the algorithm generates limit points such that no further descent direction is
attainable. An additional assumption concerning the search directions pk is
needed to ensure that these limit points are stationary for f̂Nmax .

A 4. The sequence of search directions pk is bounded and satisfies the fol-
lowing implication for any subset of iterations K

lim
k∈K

pTk∇f̂Nk
(xk) = 0 ⇒ lim

k∈K
∇f̂Nk

(xk) = 0.

A 5. Search directions pk satisfy the condition limk→∞ p
T
k∇f̂Nmax(xk) ≤ 0.

Notice that the previous assumption is satisfied if we are eventually able
to produce a descent search directions for f̂Nmax . One possibility would be to
use increasingly accurate finite differences to approximate the gradient.

Theorem 3.2. Suppose that A1 - A5 and (6) hold and that the sequence
{xk}k∈N of Algorithm 3 with the line search rule (21) is bounded. Then
there exists an accumulation point of {xk}k∈N which is stationary for func-
tion f̂Nmax. If, in addition, C̃k is defined by (8) with ηmax < 1, then every
accumulation point of {xk}k∈N is stationary for f̂Nmax.

Proof. Theorem 3.1 implies the existence of an accumulation point (x∗, p∗)
of the sequence {(xk, pk)}k∈N that satisfies

p∗T∇f̂Nmax(x∗) ≥ 0. (22)

If C̃k is defined by (8) with ηmax < 1, x∗ can be considered as an arbi-
trary accumulation point. Let K ⊆ N be the subset of indices such that
limk∈K(xk, pk) = (x∗, p∗). Since the search directions are bounded by as-
sumption A4 and ∇f̂Nmax is continuous as a consequence of assumption A2,
assumption A5 implies that

p∗T∇f̂Nmax(x∗) = lim
k∈K

pTk∇f̂Nmax(xk) ≤ 0
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which together with (22) implies p∗T∇f̂Nmax(x∗) = 0. Finally, assumption A4
implies that ∇f̂Nmax(x∗) = 0. �

Notice that the nonmonotone line search rules proposed in this section
yielded the same result regarding achievement of the maximal sample size
Nmax as in the case of the monotone rule presented in [17]. The convergence
results rely on the analysis applied on the function f̂Nmax . The main result
is the existence of an accumulation point which is stationary for f̂Nmax with-
out imposing the assumption of descent search directions. Moreover, if the
parameter C̃k is defined by (8) with ηmax < 1, every accumulation point is
stationary under the same assumptions.

4 Descent search direction

This section is devoted to the case where the gradient of f̂Nk
is available and

a descent search direction is used at every iteration. Therefore, throughout
this section we consider Algorithm 3 with the line search

f̂Nk
(xk + αkpk) ≤ C̃k + εk + ηαkp

T
k∇f̂Nk

(xk), η ∈ (0, 1). (23)

The parameters εk allow an additional degree of freedom for the step length
and thus increase the chances of larger step sizes. This framework yields the
possibility of obtaining convergence result where every accumulation point is
stationary for the relevant objective function. Moreover, the R-linear rate of
convergence is attainable if the sequence {εk} is chosen such that it converges
to zero R-linearly. Let us first introduce two additional assumptions and state
an important technical results.

A 6. For every ξ the gradient function ∇xF (·, ξ) is Lipschitz continuous on
any bounded set.

A 7. There exist positive constants c1 and c2 such that for all k sufficiently
large search directions pk satisfy

pTk∇f̂Nk
(xk) ≤ −c1‖∇f̂Nk

(xk)‖2,

‖pk‖ ≤ c2‖∇f̂Nk
(xk)‖.
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Lemma 4.1. Suppose that assumptions A1 - A3 and A6 - A7 are satisfied.
Then there exist positive constants β̄0 and c3 such that for every k sufficiently
large the following two inequalities hold

dmk(αk) ≥ β̄0‖∇f̂Nmax(xk)‖2, (24)

‖∇f̂Nmax(xk+1)‖ ≤ c3‖∇f̂Nmax(xk)‖ (25)

Proof. Lemma 3.3 implies the existence of ñ such that for every k ≥ ñ
the sample size is Nk = Nmax. Let us distinguish two types of iterations for
k ≥ ñ. The first type is when the full step is accepted, i.e. when αk = 1. In
that case, A7 directly implies that dmk(αk) ≥ c1‖∇f̂Nmax(xk)‖2. The second
type is when αk < 1, i.e. there exists α′k = αk/β such that

f̂Nmax(xk + α′kpk) > f̂Nmax(xk) + ηα′kp
T
k∇f̂Nmax(xk).

Furthermore, assumption A6 implies the Lipschitz continuity of the gradient
∇f̂Nmax on {x ∈ Rn|x = xk + tpk, t ∈ [0, 1], k ≥ ñ}. Therefore, there exists a
constant L > 0 such that

f̂Nmax(xk + α′kpk) ≤
L

2
(α′k)

2‖pk‖2 + f̂Nmax(xk) + α′k(∇f̂Nmax(xk))
Tpk

Combining the previous two inequalities and using the assumption A7 we
obtain αk ≥ c12β(1−η)/Lc22 and dmk(αk) ≥ ‖∇f̂Nmax(xk)‖2 c212β(1−η)/Lc22.
Therefore, we conclude that for every k ≥ ñ inequality (24) holds with β̄0 =

min{c1, c
2
12β(1−η)
c22L

}. Moreover, A6 and A7 imply that (25) holds with c3 =

1 + Lc2. �
The conditions for the global convergence are stated in the following two

theorems. In the case of C̃k being defined by (8), the convergence results is
stated in the following theorem. The proof is completely analogous to the
corresponding one in [7], although the line search rule is stated with C̃k. The
same technique is used in the proof of Theorem 4.1 in [17]. Thus we omit
the proof here.

Theorem 4.1. Suppose that A1 - A4 hold and that the level set (20) is
bounded. If C̃k is defined with (8), then there exists a subsequence of iterates
{xk}k∈N that converges to a stationary point of f̂Nmax. Moreover, if ηmax < 1
then every accumulation point of {xk}k∈N is a stationary for f̂Nmax.
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If C̃k is defined by (12), the statement and the proof are conceptually the
same as Theorem 2.1 in [8] but with some technical differences caused by C̃k
and εk > 0. For the sake of completeness we state the proof here.

Theorem 4.2. Suppose that assumptions A1 - A3 and A6 - A7 are satis-
fied and that the level set (20) is bounded. If C̃k is defined by (12), then
every accumulation point of the sequence {xk}k∈N generated by Algorithm 3
is stationary for f̂Nmax.

Proof. Under the assumptions of this theorem, Lemma 3.3 implies the
existence of ñ such that for every k ≥ ñ the sample size is Nk = Nmax. Then,
Lemma 3.2 implies that lim infk→∞ dmk(αk) = 0 and the subset K such that

lim
k∈K

dmk(αk) = 0 (26)

is defined as K = {v(k)−1}k∈N, where v(k) is such that f̂Nmax(xv(k)) = C̃s(k),

C̃s(k) = max{f̂Nmax(xs(k)), . . . , f̂Nmax(xs(k)−M+1)} and s(k) = ñ+ kM . Notice
that v(k) ∈ {ñ + (k − 1)M + 1, . . . , ñ + kM} and v(k + 1) ∈ {ñ + kM +
1, . . . , ñ+ (k+ 1)M}. Therefore v(k+ 1)− v(k) ≤ 2M − 1. This implies that
for every k ∈ N, k ≥ ñ there exists k̃ ≥ k, k̃ ∈ K such that

k̃ − k ≤ 2M − 2. (27)

Let us define k ≥ q = ñ + M . Lemma 4.1 implies that for every k ≥ q
the inequality (24) holds which together with (26) implies

lim
k∈K
‖∇f̂Nmax(xk)‖ = 0. (28)

Also, (25) holds which together with (27) implies that for every k ∈ N, k > ñ
there exists k̃ ≥ k, k̃ ∈ K such that ‖∇f̂Nmax(xk)‖ ≤ c2M−23 ‖∇f̂Nmax(xk̃)‖.
The previous inequality together with (28) yields limk→∞ ‖∇f̂Nmax(xk)‖ = 0.
�

After proving the global convergence result, we will analyze the conver-
gence rate. Following the ideas from [32] and [8], we will prove that R-linear
convergence for strongly convex functions can be obtained. Notice that the
results presented in [7] do not include R-linear convergence rate and that
the rule considered in [8] assumes εk = 0. Thus the results presented here
generalize the existing theory. An additional assumption is needed.

A 8. For every ξ, F (·, ξ) is a strongly convex function.
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A consequence of assumption A8 is that for every sample size N , f̂N is a
strongly convex function as well. Therefore, there exists γ > 0 such that for
every N and every x, y ∈ Rn

f̂N(x) ≥ f̂N(y) + (∇f̂N(y))T (x− y) +
1

2γ
‖x− y‖2. (29)

Furthermore, if x∗ is the unique minimizer of f̂N then

1

2γ
‖x− x∗‖2 ≤ f̂N(x)− f̂N(x∗) ≤ γ‖∇f̂N(x)‖2 (30)

As the objective function is convex we have that L is bounded and the
iterative sequence is bounded. In order to prove R-linear convergence we
impose an additional assumption on the sequence {εk}k∈N which yields the
technical result presented in Lemma 4.2.

A 9. The sequence {εk}k∈N is positive and converges to zero R-linearly.

Lemma 4.2. If the assumption A9 is satisfied, then for every θ ∈ (0, 1) and
q ∈ N

sk =
k∑
j=1

θj−1εq+k−j

converges to zero R-linearly.

Proof. Assumption A9 implies the existence of a constant ρ ∈ (0, 1) and a
constant C > 0 such that εk ≤ Cρk for every k ∈ N. Now, since ρ, θ ∈ (0, 1),
we can define γ = max{ρ, θ} < 1 such that for every k ∈ N

sk ≤
k∑
j=1

θj−1Cρq+k−j ≤
k∑
j=1

Cγq+k−1 = C1ak

where C1 = Cγq−1 and ak = kγk. We will show that the sequence {ak}k∈N
converges to zero R-linearly. Define a constant s = (1+γ)/2γ. Clearly s > 1.
Furthermore, we define an additional sequence {ck}k∈N as follows

c1 =
(
s(ln s)

−1−1 ln s
)−1

,

ck+1 = ck
ks

k + 1
, k = 1, 2, . . . ,
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and obviously ck = c1s
k−1/k. In order to prove that ck ≥ 1 for every k ∈ N,

we define

f(x) =
sx−1

x

and search for its minimum on the interval (0,∞). As f ′(x) = sx−1(x ln s−
1)/x2 and f ′(x) = 0 for x∗ = (ln s)−1 > 0, i.e. x∗ ln s = 1, and f ′′(x∗) =
sx
∗
ln s

sx∗2
> 0, x∗ is the minimizer and for every k ∈ N

sk−1

k
= f(k) ≥ f(x∗) = s(ln s)

−1−1 ln s.

Therefore,

ck = c1
sk−1

k
≥
(
s(ln s)

−1−1 ln s
)−1 (

s(ln s)
−1−1 ln s

)
= 1.

Now, let us define bk = akck. Notice that ak ≤ bk. Moreover,

bk+1 = ak+1ck+1 = (k + 1)γk+1cks
k

k + 1
= sγkγkck = tbk

where t = sγ = 1+γ
2

< 1. So there exists a constant B > 0 such that
bk ≤ Btk−1. Finally, we obtain sk ≤ C1ak ≤ C1bk ≤ C2Bt

k−1, and thus
{sk}k∈N converges to zero R-linearly. �

Next, we prove the R-linear convergence result for the sequence of iterates.

Theorem 4.3. Suppose that the assumptions A1 - A4 and A6 - A9 are
satisfied and that C̃k is defined by (12) or by (8) with ηmax < 1. Then the
sequence of iterates {xk}k∈N generated by Algorithm 3 with the line search
(23) converges R-linearly to the unique minimizer x∗ of function f̂Nmax.

Proof. First, notice that the assumptions of this theorem imply the ex-
istence of a finite number ñ such that Nk = Nmax for every k ≥ ñ. More-
over, it follows that there exists a finite integer q ≥ ñ such that for every
k ≥ q iterate xk belongs to the level set (20). Furthermore, strong con-
vexity of the function f̂Nmax implies the boundedness and convexity of that
level set. Therefore, there exists at least one accumulation point of the
sequence {xk}k∈N. Moreover, Theorems 4.1 and 4.2 imply that every accu-
mulation point of that sequence is stationary for the function f̂Nmax . On
the other hand, strong convexity of the objective function implies that there
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is only one minimizer. Therefore, we conclude that limk→∞ xk = x∗. Fur-
thermore, according to Lemma 4.1, there are constants c3 = 1 + c2L and

β̄0 = min{c1, c
2
12β(1−η)
c22L

} such that (24) and (25) hold for every k > q. Since

(30) holds for N = Nmax, it is sufficient to prove that f̂Nmax(xk)− f̂Nmax(x∗)
converges to zero R-linearly.

Suppose that C̃k is defined by (8) with ηmax < 1. Then, (17) is valid
for every k ≥ q with dmk(αk) = −αkpTk∇f̂Nmax(xk). Moreover, Lemma 2.1
implies that 0 ≤ Qk ≤ (1− ηmax)−1 for every k and therefore for every k ≥ q

C̃k+1 ≤ C̃k + εk − η(1− ηmax)dmk(αk). (31)

Subtracting f̂Nmax(x∗) from both sides and using (24) we obtain

C̃k+1 − f̂Nmax(x∗) ≤ C̃k − f̂Nmax(x∗) + εk − β̄1‖∇f̂Nmax(xk)‖2 (32)

where β̄1 = η(1− ηmax)β̄0. Now, define b = (β̄1 + γ(Lc2 + 1)2)−1. We distin-
guish two types of iterations for k ≥ q.

If ‖∇f̂Nmax(xk)‖2 < b(C̃k − f̂Nmax(x∗)), inequalities (25) and (30) imply

f̂Nmax(xk+1)− f̂Nmax(x∗) < γ(1 + Lc2)
2b(C̃k − f̂Nmax(x∗)).

Setting θ1 = γ(1 + Lc2)
2b we obtain

f̂Nmax(xk+1)− f̂Nmax(x∗) < θ1(C̃k − f̂Nmax(x∗)) (33)

where θ1 ∈ (0, 1). If C̃k+1 = f̂Nmax(xk+1), then (33) obviously implies

C̃k+1 − f̂Nmax(x∗) < θ1(C̃k − f̂Nmax(x∗)).

If C̃k+1 = Ck+1, then

C̃k+1 − f̂Nmax(x∗) = Ck+1 − f̂Nmax(x∗)

=
η̃kQk

Qk+1

Ck +
f̂Nmax(xk+1)

Qk+1

− η̃kQk + 1

Qk+1

f̂Nmax(x∗)

≤ η̃kQk

Qk+1

(C̃k − f̂Nmax(x∗)) +
f̂Nmax(xk+1)− f̂Nmax(x∗)

Qk+1

≤ (1− 1

Qk+1

)(C̃k − f̂Nmax(x∗)) +
θ1(C̃k − f̂Nmax(x∗))

Qk+1

= (1− 1− θ1
Qk+1

)(C̃k − f̂Nmax(x∗))

≤ (1− (1− ηmax)(1− θ1))(C̃k − f̂Nmax(x∗)).
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In the last inequality, we used the fact that Qk+1 ≤ (1− ηmax)−1. Therefore,
we conclude that

C̃k+1 − f̂Nmax(x∗) ≤ θ̄1(C̃k − f̂Nmax(x∗)) (34)

where θ̄1 = max{θ1, 1− (1− ηmax)(1− θ1)} ∈ (0, 1).
On the other hand, if ‖∇f̂Nmax(xk)‖2 ≥ b(C̃k− f̂Nmax(x∗)), inequality (32)

implies C̃k+1 − f̂Nmax(x∗) ≤ θ̄2(C̃k − f̂Nmax(x∗)) + εk where θ̄2 = 1− bβ̄1 and
therefore θ̄2 ∈ (0, 1). So, for every k ∈ N0

C̃q+k+1 − f̂Nmax(x∗) ≤ θ(C̃q+k − f̂Nmax(x∗)) + εq+k

where θ = max{θ̄1, θ̄2} ∈ (0, 1). By the induction argument we obtain that
for every k ∈ N

C̃q+k − f̂Nmax(x∗) ≤ θk(C̃q − f̂Nmax(x∗)) +
k∑
j=1

θj−1εq+k−j.

Finally, recalling that f̂Nk
(xk) ≤ C̃k, we obtain

f̂Nmax(xq+k)− f̂Nmax(x∗) ≤ θk(C̃q − f̂Nmax(x∗)) +
k∑
j=1

θj−1εq+k−j.

which together with Lemma 4.2 implies the existence of θ3 ∈ (0, 1) and
Mq > 0 such that for every k ∈ N

‖xq+k − x∗‖ ≤ θk3Mq.

Now, suppose that C̃k is defined by (12). Then, for every k ∈ N

C̃s(k+1) ≤ C̃s(k) +
M−1∑
i=0

εs(k)+i − ηdmv(k+1)−1 (35)

where s(k) = ñ + kM and f̂Nmax(xv(k)) = C̃s(k). Together with (24), the
previous inequality implies

C̃s(k+1) − f̂Nmax(x∗) ≤ C̃s(k) − f̂Nmax(x∗)− ηβ̄0‖∇f̂Nmax(xv(k+1)−1)‖2

+
M−1∑
i=0

εs(k)+i.

22



Define b = (β̄0 + γc23)
−1. If ‖∇f̂Nmax(xv(k+1)−1)‖2 ≥ b(C̃s(k) − f̂Nmax(x∗)), for

θ1 = (1− ηβ̄0b) ∈ (0, 1) we obtain

C̃s(k+1) − f̂Nmax(x∗) ≤ θ1(C̃s(k) − f̂Nmax(x∗)) +
M−1∑
i=0

εs(k)+i.

On the other hand, if ‖∇f̂Nmax(xv(k+1)−1)‖2 < b(C̃s(k) − f̂Nmax(x∗)) then (30)

and C̃s(k+1) = f̂Nmax(xv(k+1)) imply

C̃s(k+1) − f̂Nmax(x∗) ≤ γc23‖∇f̂Nmax(xv(k+1)−1)‖2 < θ2(C̃s(k) − f̂Nmax(x∗))

where θ2 = γc23b ∈ (0, 1). Therefore, for every k ∈ N

C̃s(k+1) − f̂Nmax(x∗) ≤ θ(C̃s(k) − f̂Nmax(x∗)) +
M−1∑
i=0

εs(k)+i

where θ = max{θ1, θ2} ∈ (0, 1). Using the induction argument, we obtain

C̃s(k+1) − f̂Nmax(x∗) ≤ θk(C̃s(1) − f̂Nmax(x∗)) +
k∑
j=1

M−1∑
i=0

θj−1εs(k+1−j)+i

Moreover, f̂Nmax(xs(k)+j) ≤ C̃s(k+1) holds for every j ∈ {1, . . . ,M} and every
k ∈ N and therefore

f̂Nmax(xs(k)+j)− f̂Nmax(x∗) ≤ θkV + rk (36)

where V = C̃s(1)− f̂Nmax(x∗) ≥ 0 and rk =
∑k

j=1

∑M−1
i=0 θj−1εs(k+1−j)+i. Now,

assumption A9 implies the existence of ρ ∈ (0, 1) and C > 0 such that
εk ≤ Cρk for every k. Defining C1 = MCρñ and γ1 = max{ρM , θ} we obtain
γ1 < 1 and

rk ≤
k∑
j=1

M−1∑
i=0

θj−1Cρs(k+1−j)+i ≤MC
k∑
j=1

θj−1
(
ρM
)(k+1−j)

ρñ

≤ MCρñ
k∑
j=1

γj−11 γk+1−j
1 = C1

k∑
j=1

γk1 = C1kγ
k
1 .
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Following the ideas from the proof of Lemma 4.2, we conclude that rk con-
verges R-linearly and therefore there exist D > 0 and θ̄ = max{θ, t} ∈ (0, 1)
such that

f̂Nmax(xs(k)+j)− f̂Nmax(x∗) ≤ θ̄kD.

The previous inequality and (30) imply the existence of θ3 ∈ (0, 1) and Mh >
0 such that for every k ∈ N and j ∈ {1, . . . ,M}

‖xñ+kM+j − x∗‖ ≤ θk3Mh

or equivalently for every j ∈ {1, . . . ,M} and every s ∈ N, s ≥M

‖xñ+s − x∗‖ ≤ θ
s−j
M

3 Mh ≤ θ
s
M
−1

3 Mh = θs4Mm.

where θ4 = θ
1
M
3 ∈ (0, 1) and Mm = Mh

θ3
> 0 which completes the proof. �

If the rate of convergence in the above theorem is compared with the
precise rates known for gradient methods, like those presented in [22], several
differences can be commented. First of all, the rate of descent gradient
methods with monotone line search is q-linear. The R-linear obtained here is
a natural consequence of the nonmonotonicity and variable sample scheme.
All estimates in Theorem 4.3 are true only for the iterates with Nk = Nmax.
The nonmonotonicity implies R-linear convergence even with εk = 0, see
[8, 32]. Thus the additional freedom in the step length selection obtained with
adding εk is not causing a decrease in the convergence rate providing that
{εk} converges R-linearly. However, the upper bounds obtained in [22] for
the monotone gradient methods are more precise than the bounds obtained
here. For example, Theorem 2.1.15 in [22] states that

‖xk − x∗‖ ≤
(
Qf − l
Qf + l

)k
‖x0 − x∗‖

for the monotone gradient method with constant step size αk = h ∈ (0, 2/(γ+
L)), where Qf = L/γ and l = 1/2γ. The bounds in Theorem 4.3 are expressed
in terms of constants that depend on γ, L as well, but also on the rate of
convergence of {εk}, the back-tracking parameter β, ηmax or M, and the
iteration in which the scheduling sequence becomes stationary with Nk =
Nmax. Thus, a more precise estimation like the one cited above is not likely
to be obtained for the nonmonotone methods with variable sample scheme.
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5 Numerical results

In this section we apply Algorithm 3 with the safeguard proposed in Algo-
rithm 2 and compare six different line search methods with different search
directions. The advantages of the variable sample scheme with respect to
the classical SAA methods as well as with respect to some heuristic schedule
updates are demonstrated in [17]. Thus our main interest here is to compare
different line search rules, in particular monotone versus nonmonotone ones,
for solving the SAA problem. In the first subsection, we consider a set of de-
terministic problems which are transformed to include the noise. The second
subsection is devoted to a problem with real data. The data is collected from
a survey that examines the influence of the various factors on the metacog-
nition and the feeling of knowing of the students. The total sample size is
746. Linear regression is used as the model and the least squares problem
is considered. This is the form of the objective function which is considered
in [12] and therefore we compare Algorithm 3 with the scheme proposed in
that paper.

Algorithm 3 is implemented with the stopping criterion ‖gNmax
k ‖ ≤ 0.1

where gNmax
k is an approximation or the true gradient of the function f̂Nmax .

The maximal sample size is Nmax = 100 for the first set of problems and
the initial sample size is N0 = 3. Alternatively, the algorithm terminates if
107 function evaluations is exceeded. When the gradient is used each of its
components is counted as one function evaluation. In the first subsection, the
results are obtained from eight replications of each algorithm and the average
values are reported. All the algorithms use the backtracking technique with
β = 0.5. The parameters from Algorithm 1 are ν1 = 0.1 and d = 0.5. The
confidence level is δ = 0.95 which yields the lack of precision parameter
αδ = 1.96.

We list the line search rules as follows. The rules where the parameter
η̃k = 0.85 is given refer to C̃k defined by (8), while M = 10 determines the
rule with C̃k defined by (12). The choice for this parameters is motivated
by the results in [32] and [8]. We denote the approximation of the gradient
∇f̂Nk

(xk) by gk. When the gradient is available, gk = ∇f̂Nk
(xk).

(B1) f̂Nk
(xk + αkpk) ≤ f̂Nk

(xk) + ηαkp
T
k gk

(B2) f̂Nk
(xk + αkpk) ≤ f̂Nk

(xk) + εk − α2
kβk

(B3) f̂Nk
(xk + αkpk) ≤ C̃k + εk − α2

kβk, η̃k = 0.85
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(B4) f̂Nk
(xk + αkpk) ≤ C̃k + ηαkp

T
k gk, M = 10

(B5) f̂Nk
(xk + αkpk) ≤ C̃k + εk − α2

kβk, M = 10

(B6) f̂Nk
(xk + αkpk) ≤ C̃k + ηαkp

T
k gk, η̃k = 0.85

The rules B1, B4 and B6 assume the descent search directions and the
parameter η is set to 10−4. The initial member of the sequence which makes
the nondescent directions acceptable is defined by ε0 = max{1, |f̂N0(x0)|}
while the rest of it is updated by εk = ε0k

−1.1 but only if the sample size
does not change, i.e. if Nk−1 = Nk. Otherwise, εk = εk−1.

The search directions are of the form

pk = −Hkgk.

We make 4 different choices for the matrix Hk and obtain the following
directions, [29].

(NG) The negative gradient direction is obtained by setting Hk = I where I
represents the identity matrix.

(BFGS) This direction is obtained by using the BFGS formula for updating the
inverse Hessian

Hk+1 = (I − 1

yTk sk
sky

T
k )Hk(I −

1

yTk sk
yks

T
k ) +

1

yTk sk
sks

T
k

where yk = gk+1 − gk, sk = xk+1 − xk and H0 = I.

(SG) The spectral gradient direction is defined by setting Hk = γkI where

γk =
‖sk−1‖2

sTk−1yk−1

(SR1) The symmetric rank-one direction is defined by H0 = I and

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)Tyk
.
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If the gradient is available, the negative gradient is descent direction. More-
over, BFGS and SG implementations also ensure the descent search direction.
Furthermore, we define βk = |gTkHkgk| where Hk is one of the matrices defined
above.

We also tested the algorithm with the following gradient approximations.
FD stands for the centered finite difference estimator while FuN represents
the simultaneous perturbations approximation that allows the standard nor-
mal distribution for the perturbation sequence [13].

(FD) For i = 1, 2, . . . , n

(gk)i =
f̂Nk

(xk + hei)− f̂Nk
(xk − hei)

2h
,

where ei is the ith column of the identity matrix and h = 10−4.

(FuN) For i = 1, 2, . . . , n

(gk)i =
f̂Nk

(xk + h∆k)− f̂Nk
(xk − h∆k)

2h
∆k,i,

where h = 10−4 and random vector ∆k = (∆k,1, ...,∆k,n)T follows the
multivariate standard normal distribution.

The criterion for comparing the algorithms is the number of function
evaluations.

5.1 Noisy problems

We use 7 test functions from the Moré test collection available at the web
page [33]: Freudenstein and Roth, Jennrich and Sampson, Biggs EXP6, Os-
borne II, Trigonometric, Broyden Tridiagonal and Broyden Banded. They
are converted into noisy problems in two ways. The first one is by adding
the noise, and the second one involves multiplication by random vector which
then affects the gradient as well. The noise is represented by the random vec-
tor ξ with the Normal distribution N (0, 1). If we denote the deterministic
test function by h(x), we obtain the objective functions f(x) = E(F (x, ξ))
by the following modifications:

(N1) F (x, ξ) = h(x) + ξ
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(N2) F (x, ξ) = h(x) + ‖ξx‖2.

These modifications yield 14 test problems. The average number of function
evaluations in 8 replications is used as the main criterion for comparison. Let
us denote the average by φji where i represents the method (determined by
the line search and the search direction) and j represents the problem. We
define the efficiency index as in [18], i.e. for the method i the efficiency index
is

ωi =
1

14

14∑
j=1

mini φ
j
i

φji
.

We also report the level of nonmonotonicity. If the number of iterations is k
and s is the number of iterations at which the accepted step size would not be
accepted if the line search rule was B1, then we define the nonmonotonicity
index by

µ =
s

k
.

The numbers in the following two tables refer to the average values of 8
independent runs. Table 1 represents the results obtained by applying the
methods with the gradient, while the subsequent table refers to the gradient
approximation approach. The SR1 method is not tested with the line search
rules which assume the descent search directions and therefore the efficiency
index is omitted in that cases. The same is true for the nonmonotonicity.
For the same reason we omit the line search rules B1, B4 and B6 in Table 2.

Efficiency index (ω) Nonmonotonicity index (µ)
NG SG BFGS SR1 NG SG BFGS SR1

B1 0.2471 0.3975 0.5705 � 0.0000 0.0000 0.0000 �
B2 0.0774 0.4780 0.5474 0.4750 0.4835 0.2081 0.1616 0.2541
B3 0.0783 0.4927 0.5306 0.4401 0.4426 0.2083 0.1708 0.2810
B4 0.0620 0.6468 0.4200 � 0.4070 0.1049 0.0998 �
B5 0.0798 0.5157 0.5043 0.4725 0.4060 0.1998 0.1722 0.2593
B6 0.1064 0.6461 0.4690 � 0.3430 0.1050 0.0944 �

Table 1: The gradient-based methods
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Efficiency index (ω)
SG-FD SG-FuN BFGS-FD SR1-FD

B2 0.6832 0.4536 0.7316 0.6995
B3 0.6957 0.4164 0.7149 0.6576
B5 0.7255 0.4286 0.6808 0.7156

Nonmonotonicity index (µ)
SG-FD SG-FuN BFGS-FD SR1-FD

B2 0.1693 0.1008 0.1349 0.2277
B3 0.1682 0.1166 0.1449 0.2516
B5 0.1712 0.1248 0.1453 0.2410

Table 2: The gradient-free methods

Among the 21 tested methods presented in Table 1, the efficiency index
suggests that the best one is the spectral gradient method combined with the
line search rule B4. However, we can see that the results also suggest that
the negative gradient and the BFGS search direction should be combined
with the monotone line search rule B1. The SR1 method works slightly
better with the line search B2 than with B5 and we can say that it is more
efficient with lower levels of nonmonotonicity. Looking at the SG method, we
can conclude that large nonmonotonicity was not beneficial for that method
either. In fact, B4 has the lowest nonmonotonicity if we exclude B1.

The results considering the spectral gradient method are consistent with
the deterministic case because it is known that the monotone line search can
inhibit the benefits of scaling the negative gradient direction. However, these
testings suggest that allowing too much nonmonotonicity can deteriorate the
performance of the algorithms.

The results from Table 2 imply that B5 is the best choice if we consider
the spectral gradient or SR1 method with the finite difference gradient ap-
proximation. Furthermore, the finite difference approximation for the BFGS
direction achieves the best performance when combined with B2. This line
search is the best choice for simultaneous perturbation approach as well.
However, the simultaneous perturbation approximation of the gradient pro-
vided the least preferable results in general. The reason is probably the fact
that the simultaneous perturbation provided rather poor approximations of
the gradient in our test examples as the number of iterations is not very large
and the asymptotic features of that approach could not develop.

The number of iterations where a decrease of sample size is proposed
in Algorithm 1 varies across the methods and problems and it goes up to
46% of iterations. The safeguard rule defined in Algorithm 2 prevents some
of these decreases so the average number of iterations with decrease of the
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sample size for BFGS and SR1 is approximately 6% and for NG it is around
7%. The corresponding number for SG method is 9% and it goes down to
4% when FuN approximation of the gradient is used. The following exam-
ple of the sample size sequence obtained by a single run of the SG with
the line search B4 for Biggs EXP6 problem is obtained: (N0, . . . , N17) =
(3, 100, 7, 3, 100, 15, 3, 3, 100, 100, 100, 100, 100, 100, 56, 100, 100, 100).

The modification N1 is supposed to be suitable for examining the con-
vergence towards local versus global optimizers. However, the numerical
results we obtained are not conclusive in that sense and we list here only the
results regarding particular cases which are contrary to the common belief
that nonmonotonicity implies more frequent convergence to global optimiz-
ers. In the Freudenstein and Roth problem for example, B1 converges to the
global minimum in all 8 replications, B6 converges to the global minimum
only once while the other methods are trapped at the local solutions. Fur-
thermore, in the Broyden Banded problem, B4 and B6 are carried away from
the global solution, while the other methods converge towards it. The case
where the noise affects the gradient is harder for tracking global optimizers.
However, the SG method with the line searches that allow only the descent
directions (B1, B4 and B6) converges to the point with the lower function
value when the Broyden Tridiagonal problem is concerned. Furthermore, in
the Osborne II problem the SG with the Armijo line search B1 provided the
lowest function value.

The efficiency index yields similar conclusions as the performance profile
analysis [11]. At the end of this subsection, we show the performance profiles
for the best methods on this particular test collection: SG in the gradient-
based case (Figure 1) and BFGS-FD in the gradient-free case (Figure 2). The
first graphic in both figures provides the results when the problems of the
form (N1) are considered, the second one refers to the problems (N2) while
the third one gathers all 14 problems together.

Figure 1 shows that B4 clearly outperforms all the other line search rules
in (N1) case, while in (N2) case B6 is highly competitive. If we take a look
at all of the considered problems together, B4 is clearly the best choice. In
the BFGS-FD case, B2 and B3 seem to work better than B5 with B2 being
the better one in the cases where the noise affects the search direction, i.e.
when (N2) formulation is considered. Clearly, all the conclusions we have
presented here are influenced by the test examples we consider.
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Figure 1: The SG methods in noisy environment
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Figure 2: The BFGS-FD methods in noisy environment
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5.2 Application to the least squares problems

As we already mentioned, this subsection is devoted to the real data problem.
The data comes from a survey that was conducted among 746 students in
Serbia. The goal of this survey was to determine how different factors affect
the feeling of knowing (FOK) and metacognition (META) of the students.
We will not go into further details of this survey since our aim is only to
compare different algorithms. Therefore, we only present the number of
function evaluations (φ) and nonmonotonicity index (µ) defined above.

Linear regression is used as the model and the parameters are searched
for throughout the least squares problem. Therefore, we obtain two problems
of the form minx∈Rn f̂N(x) where

f̂N(x) =
1

N

N∑
i=1

(xTai − yi)2.

The sample size is N = Nmax = 746 and the number of factors exam-
ined is n = 4. Vectors ai, i = 1, 2, . . . , 746 represent the factors and yi,
i = 1, 2, . . . , 746 represent the FOK or the META results obtained from the
survey.

The same type of problem is considered in [12]. Therefore, the variable
sample size scheme proposed in this paper is compared with the dynamics
of increasing the sample size that is proposed in [12] (Heuristic). We state
the results in Table 3 and Table 4. Heuristic assumes that the sample size
increases by the rule Nk+1 = dmin{1.1Nk, Nmax}e. Since the gradients are
easy to obtain the gradient-based approach is a good choice and we use the
spectral gradient method with the different line search rules. Algorithm 3
is used with the same parameters like in the previous subsection and the
stopping criterion ‖gNmax

k ‖ ≤ 10−2.

Algorithm 3 Heuristic
SG φ µ φ µ
B1 9.4802E+04 0.0000 1.2525E+05 0.0000
B2 5.3009E+04 0.2105 6.0545E+04 0.2105
B3 5.3009E+04 0.2105 6.0545E+04 0.2105
B4 4.4841E+04 0.1765 9.4310E+04 0.2121
B5 5.3009E+04 0.2105 7.1844E+04 0.1967
B6 4.5587E+04 0.1176 1.1178E+05 0.1343

Table 3: The FOK analysis results, φ - efficiency index, µ - nonmonotonicity index
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Algorithm 3 Heuristic
SG φ µ φ µ
B1 1.6716E+05 0.0000 2.1777E+05 0.0000
B2 3.3606E+04 0.0909 6.2159E+04 0.2632
B3 3.3606E+04 0.0909 6.1408E+04 0.1897
B4 3.8852E+04 0.1538 6.6021E+04 0.1607
B5 3.3606E+04 0.0909 6.1408E+04 0.1897
B6 3.8852E+04 0.1538 1.4953E+05 0.1053

Table 4: The META analysis results, φ - efficiency index, µ - nonmonotonicity index

First of all notice that the Algorithm 3 performs better than Heuristic
in all cases. Also, the monotone line search B1 performs the worst in both
problems and both presented algorithms. When the FOK problem is con-
sidered, the best results are obtained with the line search B4 applied within
Algorithm 3, although B6 is highly competitive in that case. Both of the
mentioned line search rules have modest but strictly positive nonmonotonic-
ity coefficients. However, when the Heuristic is applied, the additional term
εk turns out to be quite useful since the best performance is obtained by B2
and B3.

While the analysis of FOK provides the results similar to the ones in the
previous subsection, the META yields rather different conclusions. In that
case, the lowest number of function evaluations is achieved by the line search
rules B2, B3 and B5. However, the results are not that different because the
level of nonmonotonicity for those methods is not too large. Similar results
are obtained for Heuristic where B3 and B5 were the best with the medium
level of nonmonotonicity.

6 Conclusions

The methods presented in the paper combine nonmonotone line search rules
with a variable sample size strategy and aim to cost efficient algorithms for
solving the SAA problem. At each iteration a new sample size is chosen in
accordance with the progress made in decreasing the objective function and
the precision measured by an approximate width of the confidence interval.
The intuitive motivation is the fact that nonmonomotonicity appears natu-
rally in stochastic environment and nonmonotone rules provide more freedom
in choosing the search direction as well as the step size.

The convergence results that are obtained include global convergence
statements for the two dominant nonmonotone line search strategies as well
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as an analysis of the rate of convergence. It is shown that R-linear conver-
gence could be achieved with nonmonotone rules if the search directions are
descent.

The influence of nonmontonicity is tested numerically using four different
search directions and six different line search rules. The obtained results
clearly favor the nonmonotone rules. One important conjecture is that the
level of nonmonotonicity should not be too hight i.e. the best results are
obtained with the nonmonotone rules that allow relatively modest number of
iterations with large step sizes or nondescent directions. On the other hand it
appears that the strictly decreasing directions, like BFGS, combine slightly
better with the Armijo type monotone rule. The SG direction appears to
be more efficient with some level of nonmonotonicity, which is the same
behavior as in deterministic problems. The best results we obtained are
with the SG direction embedded in B4 if the gradients are available. The
possibility of nonmonotone strategy appears to be particularly important
if the gradients are not available and one is using finite difference gradient
approximations. The gradient approximations by finite differences seems to
work equally well regardless of the the choice of second order direction. All
our conclusions are clearly influenced by the test collection. The academic
set of test examples is chosen such that the objective functions posses local
and global minimizers. The ideas was to investigate if the nonmonotone
strategies would force the convergence towards global minimizers, following
the common belief for deterministic problems. Contrary to our expectations,
the experiments did not confirm this belief and further research is needed in
this direction. In fact, as one of the referees pointed out, a broad comparison
of nonmonotone rules for either deterministic or stochastic problems has
never been done and it would be an interesting and useful result. Future
research direction we plan to pursue is an extension of the variable sample
size strategy presented here to constrained problems.
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