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Abstract

This papers presents an overview of gradient based methods for mini-
mization of noisy functions. It is assumed that the objective functions is
either given with error terms of stochastic nature or given as the math-
ematical expectation. Such problems arise in the context of simulation
based optimization. The focus of this presentation is on the gradient based
Stochastic Approximation and Sample Average Approximation methods.
The concept of stochastic gradient approximation of the true gradient can
be successfully extended to deterministic problems. Methods of this kind
are presented for the data fitting and machine learning problems.

Key words: unconstrained optimization, stochastic gradient, stochas-
tic approximation, sample average approximation

1 Introduction

Stochastic optimization problems appear in all areas or engineering, physical and
social sciences. Typical applications are model fitting, parameter estimation,
experimental design, performance evaluation etc. The models we are considering
here can be written in the form

min
x∈Ω

f(x) (1)

where f : Rn → R is either observed with noise or is defined as the mathematical
expectation. In fact the objective function depends on a vector of random vari-
ables ξ from some probability space that might be know or unknown, depending
on application. Thus the exact evaluation of f(x) is impossible to evaluate and
it is necessary to use simulation to estimate the objective function value.

The feasible set Ω can be defined by constraints of different types - simple
box constraints, deterministic constraints, chance constraints, constraints in the
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form of mathematical expectation etc. In this paper we consider only the case
Ω = Rn. More precisely, we consider only two types of stochastic problems. The
first type are problems with random objective function,

min
x
F (x, ξ),

where ξ represents the noise (or randomness) and x is the decision variable. Such
models appear when the decision has to be taken before the full information
about the problem parameters is known. The lack of information in that case is
represented by random vector ξ. The second type of problems are the problems
with the mathematical expectation as the objective function

min
x
E(F (x, ξ)). (2)

Although the noise is technically removed in the above problem, it is rather hard
to solve it as the expectation is hard or even impossible to state analytically
even if the distribution of ξ is known.

Methods for solving stochastic optimization problems are combination of
ideas from numerical optimization and statistics. Thus the class of popu-
lar methods include simulation-based methods, direct methods for stochastic
search, annealing type algorithms, genetic algorithms, methods of reinforced
learning, statistical methods and many others, [34], [7]. Among all of them we
restrict our attention here on two methods typically used in simulation based
optimization: Stochastic Approximation, SA, and Sample Average Approxima-
tion, SAA.

Stochastic Approximation methods are introduced in the seminal paper of
Robbins and Monro, [30] and remain a popular choice for solving stochastic
optimization problems. They relay mainly on noisy gradient evaluations and
depend heavily on the choice of steplength sequence. The choice of this sequence
is the subject of many research efforts as well as other techniques for accelerating
the convergence of SA methods. Sample average Approximation methods can
be seen as an alternative to SA methods. In this approach a sample from
the underlying distribution is used to construct a deterministic sample average
problem which can be solved by optimization methods. However the sample used
for the SAA approximation very often needs to be large and a naive application
of standard nonlinear optimization techniques is not feasible. Therefore there
has been extensive research in variable sample size methods that reduce the cost
of SAA.

Both SA and SAA methods are considered here in the framework of gradient-
related optimization (gradient methods, subgradient methods, second order
quasi Newton methods) as well as in the derivative-free framework. This survey
will largely deal with gradient methods for stochastic optimization and an inter-
ested reader can look at Spall, [34] for an overview of other methods. This paper
is organized as follows. In Section 2 we discuss the SA method and its mod-
ifications. Section 3 contains results for the SAA methods and unconstrained
problems with the mathematical expectation objective function. Two important
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deterministic problems that are rather similar to SAA problem are discussed in
Section 4 as well as methods for obtaining their solution that rely on stochastic
gradients. Finally, some conclusion and research perspectives are presented in
Section 5.

2 Stochastic Approximation Methods

There have been countless applications of Stochastic Approximation (SA) method
since the work of Robbins and Monro, [30]. In this section we give an overview
of its main properties and some of its generalizations. The problem we consider
is

min
x∈Rn

f(x) (3)

assuming that only the noisy measurements f̂(x) of the function and its gradi-
ent ĝ(x) are available. Let us start by considering the SA algorithm for solving
systems of nonlinear equations as it was defined originally in [30]. The con-
vergence theory presented here relays on imposition of statistical conditions on
the objective function and the noise. Convergence analysis can be conducted
throughout differential equations as well, see [34] and [25] for further references.

Consider the system of nonlinear equations

g(x) = 0, g : Rn → Rn, (4)

with g(x) being the gradient of f(x). Suppose that only the measurements with
noise that depends on the iteration as well as on the decision variable x

ĝk(x) = g(x) + ξk(x) (5)

are available. Then the SA is defined by

xk+1 = xk − akĝk(xk). (6)

The sequence of step sizes {ak}k∈N is also called the gain sequence and it has
dominant influence on the convergence.

Let {xk} be a sequence generated by an SA method. Denote by Fk the
σ-algebra generated by x0, x1, . . . , xk. If the problem has an unique solution x∗

the set of assumptions that ensures the convergence of an SA method is the
following.

S 1. The gain sequence satisfies:

ak > 0, lim
k→∞

ak = 0,

∞∑
k=0

ak =∞ and

∞∑
k=0

a2
k <∞

.

S 2. For some symmetric, positive definite matrix B and for every η ∈ (0, 1),

inf
η<‖x−x∗‖< 1

η

(x− x∗)TBg(x) > 0.
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S 3. For all x and k, E[ξk(x)|Fk] = 0, E[‖ξk(x)‖2] <∞.

S 4. There exists a constant c > 0 such that for all x and k,

‖g(x)‖2 + E
[
‖ξk(x)‖2|Fk

]
≤ c(1 + ‖x‖2).

The first assumption which implies that the step sizes converge to zero is
standard in stochastic algorithms, see [34]. The second condition,

∑∞
k=0 ak =∞

is imposed in order to avoid inefficiently small step sizes. On the other hand,
the summability condition on a2

k ensures stability. Its role is to decrease the
influence of the noise when the iterates come into a region around the solution.
An example of a sequence that satisfies the first assumption is

ak =
a

(k + 1)α
(7)

where α ∈ (0.5, 1] and a is some positive constant. The condition of zero mean
is also standard in stochastic optimization. Its implication is that ĝk(x) is an
unbiased estimator of g(x). Notice that under assumption S3, the condition in
S4 is equal to

E
[
‖ĝk(x)‖2

]
≤ c(1 + ‖x‖2).

Therefore, the mean of ‖ĝk(x)‖2 can not grow faster than a quadratic function
of x. Under these assumptions, the almost sure convergence of the SA algorithm
can be established. The convergence in mean square i.e. E[|xk − x∗|]2 → 0 as
k →∞ was proved in [30] and the theorem bellow states a stronger result, the
almost sure convergence.

Theorem 2.1. [34] Consider the SA algorithm defined by (6). Suppose that
assumptions S1 - S4 hold and that x∗ is a unique solution of the system (4).
Then xk converges almost surely to x∗.

Closely related and more general result is proved in Bertsekas, Tsitsiklis [6]
where the gradient-related method of the form

xk+1 = xk + ak(sk + ξk) (8)

is considered. Here ξk is either stochastic or deterministic error, ak is a sequence
of diminishing step sizes that satisfy assumption S1 and sk is a descent direction.
In this context, the direction sk is not necessarily the gradient but it is gradient-
related. The convergence is stated in the following theorem.

Theorem 2.2. [6] Let {xk} be a sequence generated by (8), where sk is a descent
direction. Assume that S1 and S3 - S4 hold and that there exist positive scalars
c1 and c2 such that

c1‖∇f(xk)‖2 ≤ −∇f(xk)T sk, ‖sk‖ ≤ c2(1 + ‖∇f(xk)‖).

Then, either f(xk)→ −∞ or else f(xk) converges to a finite value and limk→∞∇f(xk) =
0. Furthermore, every limit of {xk} is a stationary point of f.
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The gain sequence is the key element of the SA method. It has impact
on stability as well as on convergence rate. Under some regularity conditions,
Fabian [13], the asymptotic normality of xk is obtained. More precisely,

k
α
2 (xk − x∗)→d N (0,Σ), k →∞

where →d denotes the convergence in distribution, α refers to (7) and Σ is the
covariance matrix that depends on the gain sequence and on the Hessian of f .
Therefore, the iterate xk approximately has normal distribution N (x∗, k−αΣ)
for large k. Due to assumption S1, the maximal convergence rate is obtained
for α = 1. However, this reasoning is based on the asymptotic result. Since the
algorithms are finite in practice, it is often desirable to set α < 1 because α = 1
yields smaller steps. Moreover, if we want to minimize ‖Σ‖, the ideal sequence
would be

ak =
1

k + 1
H(x∗)−1

where H(x) denotes the Hessian matrix of f, Benveniste et al. [5]. Even though
this result is purely theoretical, sometimes the Hessian at x∗ can be approxi-
mated by H(xk) and that way one can enhance the rate of convergence.

Two main drawbacks of the SA method are slow convergence and the fact
that the convergence theory applies only if the solution of (4) is unique i.e. only
if f has an unique minimizer. Thus several generalizations are developed to
address these two issues. One can easily see from (7) that the gain coefficients
increase with the increase of a. On the other hand a large a might have negative
influence on stability. Therefore several generalizations of the gain coefficients
are considered in the literature. One possibility, Spall [35], is to introduce the
so called stability constant A > 0, and obtain

ak =
a

(k + 1 +A)α
.

Now, the values of a and A can be chosen together to ensure effective practical
performance of the algorithm, allowing for larger a and thus producing larger
step sizes in latter iterations, when the effect of A is small, and avoiding insta-
bility in early iterations. The empirically recommended value of A is at most
10% of the iterations allowed or expected during the optimization process, for
more details see [35].

Several generalizations of the SA method are based on adaptive step sizes
that try to adjust the step size at each iteration to the progress achieved in the
previous iterations. The first attempt of this kind has been made in Kesten [20]
for one dimensional problems. The main idea is to monitor the changes in the
sign of xk+1−xk. If the sign of the difference between two consecutive iterations
starts to change frequently we are probably in the domain of noise and therefore
small steeps are needed to avoid oscillations. This idea is generalized in Delyon,
Juditsky [11] for multidimensional problems. The gain coefficients are defined
as

ak =
a

sk + 1
, sk+1 = sk + I(ĝTk+1ĝk),
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where I is the identification function defined as I(t) = 1 if t < 0 and I(t) = 0
if t ≥ 0. The method is accelerating the convergence of SA and its almost sure
convergence is proved under the standard assumptions.

The idea of sign changes is further developed in Xu, Dai [38]. It is shown
that the sequence {sk/k} stands for the change frequency of the sign of ĝTk+1ĝk
in some sense. The assumption in [38] is that the noise ξk is state independent.
The theoretical analysis shows that in that case sk/k converges to P (ξT1 ξ2 < 0)
in the mean square sense. Based on that result, a switching algorithm that uses
the switching parameter tk, defined as

tk =
∣∣∣sk
k
− P (ξT1 ξ2 < 0)

∣∣∣ (9)

is proposed. Then the gain coefficients are defined as

ak =

{
a

(k+1+A)α , if tk ≥ v
a

(k+1+A)β
, if tk < v

, (10)

where 0.5 ≤ α < β ≤ 1, v is a small positive constant and a,A are the constants
from assumption S1. To prove the convergence of the switching algorithm (9)-
(10) one additional assumption is introduced in [38].

S 5. G(x) = g(x)−x is a weighted maximum norm pseudo-contraction operator.
That is for all x ∈ Rn there exists a positive vector w and some x∗ ∈ Rn such
that

‖G(x)− x∗‖w ≤ β‖x− x∗‖w,

where β ∈ [0, 1) and ‖ · ‖w is defined as ‖x‖w = max{x(i)w(i)−1, i = 1, . . . , n}
where x(i) and w(i) are the ith components of x and w respectively.

Theorem 2.3. [38] Suppose that assumptions S1 - S2 and S5 hold. Then for
{xk} generated through (9)-(10) we have xk → x∗ as k →∞ with probability 1.

If the objective function is given in the form of mathematical expectation
the adaptive step length sequence can be determined as proposed in Yousefian
et al. [36]. For the problem

min
x
f(x) := E[F (x, ξ)] (11)

the following assumptions are stated.

S 6. The function F (·, ξ) is convex on a closed and convex set D ⊂ Rn for every
ξ ∈ Ω, and the expected value E[F (x, ξ)] is finite for every x ∈ D.

S 7. The errors ξk in the noisy gradient ĝk are such that for some µ > 0,

E[‖ξk‖2|Fk] ≤ µ2 a.s. for all k ≥ 0.

A self-adaptive scheme is based on the error minimization and the conver-
gence result is as follows.
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Theorem 2.4. [36] Let assumptions S6 and S7 hold. Let the function f be
differentiable over the set D with Lipschitz gradient and assume that the optimal
set of problem (11) is nonempty. Assume that the step size sequence {ak} is
generated through the following self-adaptive scheme

ak = ak−1(1− cak−1) for all k ≥ 1,

where c > 0 is a scalar and the initial step size is such that 0 < a0 < 1/c. Then
the sequence {xk} converges almost surely to a random point that belongs to the
optimal set.

An important choice for the gain sequence is a constant sequence. Although
such sequences do not satisfy assumption S1 and almost sure convergence to
solution can not be obtained, it can be shown that a constant step size can
conduct the iterations to a region that contains the solution. This result initiated
development of a cascading steplength SA scheme in [36] where a fixed step size
is used until some neighborhood of the solution is reached. After that, in order
to come closer to the solution, the step size is decreased and again the fixed step
size is used until the ring around the solution is sufficiently tighten up. That
way, the sequence of iterates is guided towards the solution.

A hybrid method which combines the SA gain coefficients and the step sizes
obtained from the inexact Armijo line search under the assumptions valid for the
SA method is considered in Krejić et al. [24]. The method takes the advantages
of both approaches, safe convergence of SA method and fast progress obtained
by line search if the current iterate if far away from the solution (where the SA
steps would be unnecessarily small). The step size is defined according to the
following rule. For a given C > 0 and a sequence {ak} that satisfies assumption
S1 we define

αk =

{
ak if ‖ĝ(xk)‖ ≤ C
βk if ‖ĝ(xk)‖ > C,

(12)

where βk is obtained from the Armijo inequality

f̂(xk − βkĝ(xk)) ≤ f̂(xk)− cβk‖ĝ(xk)‖2.

After that the new iteration is obtained as

xk+1 = xk − βkĝ(xk). (13)

The existence of C such that the gain coefficient (12) is well defined as well as
the convergence of the sequence generated by (13) is proved in [24] under one
additional assumption.

S 8. Observation noise is bounded and there exists a positive constant M such
that ‖ξk(x)‖ ≤M a.s. for all k and x.

Theorem 2.5. [24] Assume that Assumptions S1-S4 and S8 hold, the gradient
g is Lipschitz continuous with the constant L, and the Hessian matrix H(x∗)
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exists and is nonsingular. Let

C ≥ max

{
4(1− c1)

αc1
,
M + 2

√
2ML+ 1

1− c1

}
where

α =
(1− c1)(2

√
2ML+ 1)

2L(M + 2
√

2ML+ 1)
.

Let {xk} be an infinite sequence generated by (13). Then xk → x∗ a.s.

Many important issues regarding the convergence of the SA methods are
not mentioned so far. One effective possibility to speed up the convergence is to
apply the averaging to the sequence of gradient estimations ĝ(xk) as suggested
in Andradottir [1]. It is shown that the rate of convergence could be significantly
better than the rate of SA if two conditionally independent gradient estimations
are generated and the new iteration is obtained using a scaled linear combination
of the two gradients with the gain coefficient. More details on this procedure
are available in [1]. Let us also mention a robust SA scheme that determines an
optimal constant step length based on minimization of the theoretical error for
a pre-specified number of steps [27].

We have assumed in the above discussion that the noisy gradient values are
available. This is the case for example if the analytical expression of F in (11) is
available. In this case, under certain assumption we can interchange the expec-
tation and derivative and thus a sample average approximation of the gradient
can be calculated. It is important to be able to use a sample gradient estimation
with relatively modest sample size as calculation of the sample gradient is in
general expensive for large samples. However it is safe to claim that the analyt-
ical expression for the gradient calculation is not available in many cases and
thus the only input data we have are (possibly noisy) function values. Thus the
gradient approximation with finite differences appears to be a natural choice in
many applications. The first method of this kind is due to Keifer, Wolfowitz,
[21]. Many generalizations and extensions are later considered in the literature,
see Fu [15] for example. Among many methods of this kind the Stochastic Per-
turbation method is particularly efficient as it uses one two function values to
obtain a good gradient approximation, see [35] for implementation details.

The questions of stopping criteria, global convergence, search directions
which are not gradient related, and other important questions are beyond the
scope of this paper. An interested reader might look at Spall [34], Shapiro et
al. [32] for guidance on these issues and relevant literature.

3 Sample Average Approximation

Sample Average Approximation (SAA) is a widely used technique for approach-
ing the problems of the form

min
x
f(x) = E [F (x, ξ)] . (14)
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The basic idea is to approximate the objective function f(x) with the sample
mean

f̂N (x) =
1

N

N∑
i=1

F (x, ξi) (15)

where N is the size of a sample represented by i.i.d. random vectors ξ1, . . . , ξN .
Under the standard assumption such as finite variance of F (x, ξ) the (strong)

Law of Large Numbers implies that f̂N (x) converges to f(x) almost surely.
Moreover, if F (x, ξ) is dominated by an integrable function, then the uniform

almost sure convergence of f̂N (x) on the compact subsets of Rn is obtained.
Within the SAA framework the original problem (14) is replaced by the

approximate problem
min
x
f̂N (x), (16)

and thus the key question is the relationship between their respective solutions
as N tends to infinity. Denote by X∗ the set of optimal solutions of the problem
(14) and let f∗ be the optimal value of the objective function. Furthermore,

denote by X̂∗N and f̂∗N the set of optimal solutions and the corresponding optimal
values, respectively, of the problem (16). Then, the following result holds.

Theorem 3.1. [32] Suppose that there exists a compact set C ⊂ Rn such that
X∗ is nonempty and X∗ ⊂ C. Assume that the function f is finite valued and
continuous on C and that f̂N converges to f almost surely, uniformly on C.
Also, suppose that for N large enough the set X̂∗N is nonempty and X̂∗N ⊂ C.

Then f̂∗N → f∗ and the distance between sets X̂∗N and X∗ tends to zero almost
surely as N →∞.

Let x̄N be an approximate solution of the problem (14). Clearly f̂N (x̄N )
can be calculated for a given sample. The Central Limit Theorem can be used
to obtain an approximation of the error bound cN (x̄N ) such that the inequality

|f̂N (x̄N ) − f(x̄N )| ≤ cN (x̄N ) holds with some high probability δ ∈ (0, 1). For

example, using the sample variance σ̂2
N (x̄N ) = 1

N−1

∑N
i=1(F (x̄N , ξi)− f̂N (x̄N ))2

the following error bound is obtained

εNδ (x̄N ) =
σ̂N (x̄N )√

N
z 1+δ

2
, (17)

with z being the quantile of the standard normal distribution. The error bound
is directly proportional to the variance of the estimator V ar(f̂N (x̄N )). There-
fore, in order to provide a tight bound one can consider some techniques for
reducing variance such as the quasi-Monte Carlo or Latin hypercube sampling
[32]. However, these techniques tend to deteriorate the i.i.d. assumption. This
issue is addressed further on in this section.

The gap g(x̄N ) = f(x̄N ) − f(x∗) where x∗ is a solution of the original
problem can be estimated as well. Clearly g(x̄N ) ≥ 0. To obtain an up-
per bound suppose that M independent samples of size N are available, i.e.
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we have i.i.d. sample ξm1 , . . . , ξ
m
N , m = 1, . . . ,M . Denote by f̂m∗N the rele-

vant (nearly) optimal values and define f̂∗N,M = 1
M

∑M
m=1 f̂

m∗
N and σ̂2

N,M =

1
M

(
1

M−1

∑M
m=1

(
f̂m∗N − f̂∗N,M

)2
)
. Then, the upper bound estimator for the

gap g(x̄N ) is

f̂N ′(x̄N ) + zδ
σ̂N ′(x̄N )√

N ′
− f̂∗N,M + tM−1,δσ̂N,M

where N ′ is some large enough sample size and tM−1,δ is the quantile of Stu-
dent’s distribution with M − 1 degrees of freedom. It should be mentioned that
the sample size bounds such that the solutions of an approximate problem are
nearly optimal for the true problem with some high probability are mainly too
conservative for practical applications in general. For further references on this
topic, see [32] for instance.

Recall that almost sure convergence f̂N (x) towards f(x) is achieved if the
sample is i.i.d. under standard assumptions. However, if the sample is not i.i.d.
the almost sure convergence of f̂N is achievable only if the sample size N which
defines the SAA problem grows at the certain rate, Homem-de-Mello [19]. The

analysis presented in [19] allows for biased estimators f̂N (x) if f̂N (x) is at least
asymptotically unbiased. Let us first assume that the sample ξk1 , . . . , ξ

k
Nk

gen-
erated at the iteration k is independent of the sample at the previous iteration
for every k. The following assumptions are needed.

R 1. For each x, there exists M(x) > 0 such that supi,k F (x, ξki ) ≤ M(x) with
probability 1.

R 2. For each x, we have that limk→∞E(f̂N (x)) = f(x).

Theorem 3.2. [19] Suppose that assumptions R1-R2 hold and that the sample

size sequence {Nk} satisfies
∑∞
k=1 α

Nk < ∞ for all α ∈ (0, 1). Then f̂Nk(x)
converges to f(x) almost surely.

For example, Nk ≥
√
k satisfies the previously stated summability condition.

The rate of convergence is also addressed in [19], i.e. the error bounds for

|f̂Nk(x) − f(x)| are developed. In the case where Nk ≥ c1k
ρ for c1 > 0 and

ρ > 2 it can be proved, under some additional assumptions, that for every k
sufficiently large the following inequality holds almost surely

|f̂Nk(x)− f(x)| ≤
√
V ar(F (x, ξk1 ))

√
lnNk
Nk

+ |E(f̂Nk(x))− f(x)|.

Moreover, if the sample is cumulative, the corresponding error bound is

|f̂Nk(x)− f(x)| ≤ C

√
ln(ln(N1 + . . .+Nk))

N1 + . . .+Nk
(18)

where C is some positive constant.
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The above analysis provides a justification for the SAA approximation as
well as a guidance for choosing N in (16). Thus from now on we concentrate
on gradient methods for solving (16). Several papers exploit ideas from deter-
ministic optimization. Generally speaking we are interested in solving the SAA
problem for some finite, possibly very large N as well as obtaining asymptotic
results i.e. the results that cover the case N → ∞ even if in practical applica-
tions one deals with a finite value of N. A naive application of an optimization
solver to (16) is very often prohibitively costly if N is large due to the cost of

calculating f̂N (x) and its gradient. Thus there is a vast literature dealing with
variable sample scheme for solving (16).

Two main approaches can be distinguished. In the first approach the objec-
tive function f̂N is replaced with f̂Nk(x) at each iteration k and the iterative
procedure is essentially a two step procedure of the following form. Given the
current approximation xk and the sample size Nk one has to find sk such that
the value of f̂Nk(xk + sk) is decreased. After that we set xk+1 = xk + sk and
choose a new sample size Nk+1. The key ingredient of this procedure is the
choice of Nk+1. The schedule of sample sizes {Nk} should be defined in such
way that either Nk = N for k large enough or Nk → ∞ if one is interested in
asymptotic properties.

The second approach, often called the diagonalization scheme or the surface
response method, is again a two step procedure. It consists of a sequence of
SAA problems with different sample sizes that are approximately solved. So for
the current xk and Nk the problem (16) with N = Nk is approximately solved
(within an inner loop) for x̃Nk starting with xk as the initial approximation.
After that we set xk+1 = x̃Nk and choose the new sample size Nk+1. Two
important points in this procedure are the choice of Nk+1 and the precision in
solving each of the optimization problems min f̂Nk .

Let us now look into algorithms of the first kind. Keeping in mind that
min f̂Nk is just an approximation of the original problem and that the cost of
each iteration depends on Nk, it is rather intuitive to start the optimization
procedure with smaller samples and gradually increase the sample size Nk as
the solution is approached. Thus the most common schedule sequence would
be an increasing sequence N0, N1, . . . . The convergence theory for this kind of
reasoning is introduced in Wardi, [40] where an Armijo type line search method
is combined with SAA approach. In order to solve the problem of type (14),
the iterative sequence is generated as

xk+1 = xk − αk∇f̂Nk(xk) (19)

where Nk is the sample size used at iteration k and αk is the largest number in
(0, 1] satisfying the inequality

f̂Nk(xk − αk∇f̂Nk(xk)) ≤ f̂Nk(xk)− ηαk‖∇f̂Nk(xk)‖2. (20)

The method is convergent with zero upper density [40], assuming that Nk →∞.
More precisely, the following statement is proved.
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Theorem 3.3. [40] Assume that the function f is given by (14) and that F is
twice continuously differentiable on Rn for every ξ. Furthermore assume that
for every compact set D ⊂ Rn, there exists K > 0 such that for every x ∈ D
and every ξ

|F (x, ξ)|+ ‖∂F
∂x

(x, ξ)‖+ ‖ ∂
2F

(∂x)2
(x, ξ)‖ ≤ K.

If Nk → ∞ then the sequence {xk} given by (19) converges with zero upper
density on compact sets.

An extension of the above work is presented in Yan, Mukai [37] where the
adaptive precision is proposed i.e. the sequence {Nk}k∈N is not determined in
advance as in [40] but it is adapted during the iterative procedure. Neverthe-
less the sample size has to satisfy Nk → ∞. The convergence result is slightly
stronger as the convergence with probability 1 is proved under the set of ap-
propriate assumptions. The more general result that applies to both gradient
and subgradient methods is obtained in Shapiro, Wardi [33] where the conver-
gence with probability 1 is proved for sample average gradient and subgradient
methods assuming that the sample size tends to infinity.

In practical applications, the sample size is finite. So, let us now suppose
that Nmax is the sample size which makes f̂Nmax good approximation of the
original objective function. Very often we assume that the sample is generated
at the beginning of the process which justifies considering the SAA objective
function as deterministic. In this case one wishes again to decrease the cost
of the optimization process by decreasing the number of function and gradient
evaluations. Let us now look closer at the possible schedule of Nk. Clearly the
sample size should be equal to Nmax at the final stages of the optimization
procedure to ensure that the problem (16) with N = Nmax is solved. Thus
one can consider even some heuristic schedule [14] to generate a non-decreasing
sequence {Nk} which eventually becomes stationary with Nk = Nmax for k large
enough. For example, a simple way to define such sequence could be to increase
Nk by a fixed number every K iterations.

The problem of scheduling can be approached from a different perspective
in the following manner. Instead of constantly increasing the sample size one
could monitor the progress in decreasing the (approximate) objective function
and choose the next sample size according to that progress. One algorithm
of this kind is presented in Deng, Ferris [12] where the Bayes risk is used to
decide the scheduling sequence within a trust region method. Another class
of results in the framework of trust region methods is presented in Bastin [2]
and Bastin et al. [3], [4]. The key point of the approach considered in [2, 3, 4]
is that the sample sizes might oscillate during the iterative process, i.e. {Nk}
is not necessarily non-decreasing at the initial stages of the iterative process.
Eventually Nk = Nmax is reached and (16) is solved, but very often with smaller
costs if compared with an increasing scheduling. The efficiency of this approach
comes from the fact that there is a balance between the precision of the objective
function approximation f̂Nk and the progress towards the solution. The same
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idea is further developed for the line search methods in Krejić,Krklec [22] as
follows.

Let us assume that the gradient of ∇F is available and that the search
direction pk satisfies pTk∇f̂Nk(xk) < 0. The Armijo rule with η ∈ (0, 1) is
applied to find αk such that xk+1 = xk + αkpk where

f̂Nk(xk + αkpk) ≤ f̂Nk(xk) + ηαk(∇f̂Nk(xk))T pk.

The sample size is updated as follows. First, the candidate sample size N+
k

is determined by comparing the measure of decrease in the objective function
dmk = −αk(∇f̂Nk(xk))T pk and the so called lack of precision εNδ (x) defined by

(17). The main idea is to find the sample size N+
k such that dmk ≈ ε

N+
k

δ (xk).
The reasoning behind this idea is the following. If the decrease measure dmk is

greater than the lack of precision ε
N+
k

δ (xk), the current approximation is prob-
ably far away from the solution. In that case, there is no need to impose high
precision and therefore the sample size is decreased if possible. The candi-
date sample size does not exceed Nmax, but there is also the lower bound, i.e.
Nmin
k ≤ N+

k ≤ Nmax. This lower bound is increased only if Nk+1 > Nk and

there is not enough progress concerning the function f̂Nk+1
. After finding the

candidate sample size, a safeguard check is performed in order to prohibit the
decrease of the sample size which might be unproductive. More precisely, if
N+
k < Nk the following parameter is calculated

ρk =
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk(xk)− f̂Nk(xk+1)
.

If ρk is relatively small, then it is presumed that these two model functions
are too different and thus there is no gain in decreasing the sample size. So,
Nk+1 = Nk. In all the other cases, the decrease is accepted and Nk+1 = N+

k .
The convergence analysis relays on the following important result which states
that after some finite number of iterations, the objective function becomes f̂Nmax
and (16) is eventually solved.

Theorem 3.4. [22] Suppose that F (·, ξ) is continuously differentiable and bounded
from below for every ξ. Furthermore, suppose that there exist a positive constant
κ and number n1 ∈ N such that εNkδ (xk) ≥ κ for every k ≥ n1. Then there exists
q ∈ N such that Nk = Nmax for every k ≥ q.

Let us now present some results for the second type of methods, the so called
diagonalization methods described above. One possibility to determine the sam-
ple sizes in the sequence of optimization problems to be solved is presented in
Royset [31] where an optimality function is used to determine when to switch on
to a larger sample size. The optimality function is defined by mapping θ : Rn →
(−∞, 0] which, under standard conditions, satisfies θ(x) = 0 if and only if x is
a solution in some sense. For unconstrained problem θ(x) = − 1

2‖∇f(x)‖2 and

its SAA approximation is given by θN (x) = − 1
2‖∇f̂N (x)‖2. Under the set of
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standard assumptions, almost sure convergence of θN (x) towards θ(x) is stated
together with asymptotic normality.

Denote by x̃Nk the iterate obtained after a finite number of iterations of an
algorithm applied on the SAA problem with sample size Nk where x̃Nk−1

is the
initial point. The point x̃Nk is an approximate solution of (16) with N = Nk
and it is assumed that the optimization algorithm used to determine that point
is successful in the following sense.

R 3. For any Nk every accumulation point x̃Nk of the sequence generated by
the optimization method for solving

min f̂Nk(x)

satisfies θNk(x̃Nk) = 0 almost surely.

The algorithm proposed in [31] increases the sample size when

θNk(xk) ≥ −δ1∆(Nk),

where δ1 is some positive constant and ∆ is a function that maps N into (0,∞)
and satisfies limN→∞∆(N) = 0. The sample size is assumed to be strictly
increasing and unbounded, but the exact dynamics of increasing is not specified.
The convergence of the algorithm is proved under one additional assumption.

R 4. On any given set S ⊂ Rn, the function F (·, ξ) is continuously differentiable
and F (·, ξ) and ‖∇xF (·, ξ)‖ are dominated by an integrable function.

Theorem 3.5. [31] Suppose that the assumptions R3-R4 are satisfied and that
the sequence of iterates generated by the algorithm proposed in [31] is bounded.
Then, every accumulation point x̂ of that sequence satisfies θ(x̂) = 0 almost
surely.

The relation between the sample size and the error tolerance for each of the
optimization problems solved within the diagonalization methods is considered
in Pasupathy [28]. The error tolerance here is a small number εk which almost
surely satisfies ‖x̃Nk−x∗Nk‖ ≤ εk where x̃Nk and x∗Nk represent the approximate
and the true (unique) solution of the corresponding SAA problem, respectively.
A measure of effectiveness is defined as qk = ‖x̃Nk − x∗Nk‖

2Wk where Wk repre-
sents the number of simulation calls needed to obtain the approximate solution
x̃Nk . Since the almost sure convergence is analyzed, it is assumed that Nk →∞
and εk → 0. It is proved that the measure of effectiveness is bounded in a
stochastic sense if the following three conditions hold.

R 5. If the numerical procedure used to solve SAA problems exhibits linear con-
vergence, we assume that lim infk→∞ εk

√
Nk−1 > 0.

If the numerical procedure used to solve SAA problems exhibits polynomial con-
vergence of order p > 1, we assume lim infk→∞(ln(1/

√
Nk−1)/ ln(εk)) > 0.

R 6. lim supk→∞(
∑k
j=1Nj)ε

2
k <∞.
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R 7. lim supk→∞(
∑k
j=1Nj)N

−1
k <∞.

If any of the above conditions is violated, then qk tends to infinity in prob-
ability. The key point of analysis in [28] is that the error tolerance should not
be decreased faster than the sample size is increased. The dynamics of change
depends on the convergence rate of numerical procedures used to solve the SAA
problems. Moreover, the mean squared error analysis implies the choice of εk
and Nk such that

0 < lim sup
k→∞

εk
√
Nk <∞. (21)

In order to further specify the choice of the optimal sequence of sample sizes,
the following theorem is stated.

Theorem 3.6. [28] Suppose that (21) holds together with the assumptions R5-
R7. If the numerical procedure used to solve SAA problems exhibits linear
convergence, then lim supk→∞Nk/Nk−1 < ∞. If the numerical procedure used
to solve SAA problems exhibits polynomial convergence of order p > 1, then
lim supk→∞Nk/N

p
k−1 <∞.

More specific recommendations are given for linear, sublinear and polyno-
mial rates in [28]. For example, if the applied algorithm is linearly convergent,
then the linear growth of a sample size is recommended, i.e. it can be set
Nk+1 = d1.1Nke for example. Also, in that case, exponential or polynomial
growth of order p > 1 are not recommended. However, if the polynomial rate
of convergence of order p > 1 is achieved, then we can set Nk+1 = dN1.1

k e or

Nk+1 = deN1.1
k e for instance. Furthermore, it is implied that the error tolerance

sequence should be of the form K/
√
Nk where K is some positive constant.

The diagonalization methods are defined for a finite N as well. One pos-
sibility is presented in Polak, Royset [29] where the focus is on finite sample
size N although the almost sure convergence is addressed. The idea is to ap-
proximately solve the sequence of SAA problems with N = Nk, k = 1, . . . , s
applying nk iterations at every stage k. The sample size is nondecreasing and
the sample is assumed to be cumulative. The method consists of three phases.
The first phase provides the estimates of relevant parameters such as the sample
variance. In the second phase, the scheduling sequence is obtained. Finally, the
sequence of the SAA problems is solved in the last phase.

An additional optimization problem is formulated and solved in the second
phase in order to find the number s of the SAA problem to be solved, the
sample sizes Nk, k = 1, . . . , s and the number of iterations nk that are applied to
solve the corresponding SAA problem. The objective function of this additional
problem is the overall cost

∑s
k=1 nkw(Nk), where w(N) is the estimated cost

of one iteration of the algorithm applied on the function f̂N . For example
w(N) = N . The constraint for this problem is motivated by the stopping
criterion f(x)−f∗ ≤ ε(f(x0)−f∗) where f∗ is the optimal value of the objective
function. More precisely, the cost-to-go is defined as ek = f(xknk) − f∗ where

xknk is the last iteration at the stage k. Furthermore, the upper bound estimate
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for es is determined as follows. Let ∆(N) be the function defined as in Royset
[31].

R 8. There exists strictly decreasing function ∆(N) : N → (0,∞) such that

limN→∞∆(N) = 0 and |f̂Nk(x)− f(x)| ≤ ∆(Nk) holds almost surely.

One may use a bound like (18), but it is usually too conservative for practical
implementations. Therefore, ∆(N) is estimated with the confidence interval
bound of the form (17) where the variance is estimated in the first stage. The
following bound is derived

es ≤ e0θ
l0(s) + 4

s∑
k=1

θlk(s)∆(Nk),

where lk(s) represents the remaining number of iterations after the stage k and
θ defines the rate of convergence of the deterministic method applied on SAA.
The initial cost-to-go from e0 = f(x1

0)− f∗ is also estimated in the first phase.
Finally, the efficient strategy is obtained as the solution of the following problem

min
s∈N

min
nk,Nk

s∑
k=1

nkw(Nk) s.t. e0θ
l0(s) + 4

s∑
k=1

θlk(s)∆(Nk) ≤ εe0, Nk ≥ Nk−1.

In order to prove the asymptotic result, the following assumption regarding
the optimization method used at each stage is imposed.

R 9. The numerical procedure used to solve SAA problems almost surely exhibits
linear rate of convergence with parameter θ ∈ (0, 1).

Theorem 3.7. [29] Suppose that the assumptions R8-R9 hold and that the
sample size sequence tends to infinity. Then lims→∞ es = 0 almost surely.

4 Applications to deterministic problems

A number of important deterministic problems can be written in the form of

min
x

f̂N (x) =
1

N

N∑
i=1

fi(x) (22)

where fi(x) are given functions and N is a large integer. For example, least
squares and maximum likelihood problems are of this form. The objective func-
tion in (22) and its gradient are generally expensive to compute if N is large.
On the other hand for a given sample realization ξ1, ..., ξN and fi(x) = F (x, ξi)
the SAA problems discussed in Section 3 are the same as (22). Therefore the
SAA methods that deal with finite N can be used for solving the deterministic
problems specified in (22). The main idea of this approach is to use the same
reasoning as in the variable sample schemes to decrease the cost of calculating
the objective function and its gradient i.e. to approximate the function and the
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gradient with f̂Nk and ∇f̂Nk . One application of a variable sample method to
the data fitting problem is presented in Krejić, Krklec Jerinkić, [23]. In this
section we consider two important problems, data fitting and machine learning,
and methods for their solutions that use stochastic gradient approximation in
the sense of approximate gradient as explained above.

The data fitting problem of the form (22) is considered in Friedlander,
Schmidt [14]. The problem is solved a by quasi Newton method but the gradi-
ent approximation of the SAA type is used. Let the gradient estimation at the
current iteration k be given as gk = ∇f(xk) + εk where ε is the error term. The
following assumptions are stated.

P 1. The functions f1, . . . , fN are continuously differentiable and the function
f is strongly convex with parameter µ. Also, the gradient ∇f is Lipschitz con-
tinuous with parameter L.

P 2. There are constants β1 ≥ 0 and β2 ≥ 1 such that ‖∇fi(x)‖2 ≤ β1 +
β2‖∇f(x)‖2 for all x and i = 1, . . . , N .

The algorithm can be considered as an increasing sample size method where
the sample size is bounded with N . The main issue in [14] is the rate of conver-
gence and the convergence analysis is done with the assumption of a constant
step size. More precisely

xk+1 = xk −
1

L
gk.

Two approaches are considered: deterministic and stochastic sampling. The
deterministic sampling assumes that if the sample size is Nk then the gradi-
ents to be evaluated ∇fi(xk), i = 1, . . . , Nk, are determined in advance. For
example, the first Nk functions are used to obtain the gradient approximation
gk = 1

Nk

∑Nk
i=1∇fi(xk). On the other hand, stochastic sampling assumes that

the gradients ∇fi(x), i = 1, . . . , Nk, to be evaluated are chosen randomly. We
state the relevant results considering R-linear rate of convergence. In the case of
deterministic gradient, q-linear convergence is also attained but under stronger
conditions on the increase of the sample size.

Theorem 4.1. [14] Suppose that the assumptions P1-P2 hold and that (N −
Nk)/N = O(γk/2) for some γ ∈ (0, 1). Then for any ε > 0, σ = max{γ, 1 −
µ/L}+ ε and every k, in deterministic case we obtain

f(xk)− f(x∗) = (f(x0)− f(x∗))O((1− µ/L+ ε)k) +O(σk).

Moreover, if (N −Nk)/(NkN) = O(γk), in stochastic case we obtain

E [f(xk)− f(x∗)] = (f(x0)− f(x∗))O((1− µ/L+ ε)k) +O(σk).

Machine learning applications which usually assume large number of training
points can also be viewed as problems of the form (22). Methods for solving
such problems are the subject of Byrd et al. [8] and Byrd et al. [9]. The
main idea in [8] is to create methods which use the second order derivative
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information but with cost comparable to the steepest descent method. The
focus is on using a cheep Hessian approximations ∇2f̂Sk(xk) where Sk is a
number of training points, i.e. the Hessian-related sample size at iteration k.
More precisely, matrix-free conjugate gradient method is applied in order to
obtain the search direction pk as an approximate solution of the system

∇2f̂Sk(xk)p = −∇f̂Nk(xk).

Here, Nk is a sample size related to the gradient and the function approximation.
This can be considered as an inexact Newton method. In the relevant examples,
pk is guaranteed to be a descent search direction and therefore the Armijo line
search is applied. The proposed method (named S-Newton) does not specify the
dynamic of changing the sample sizes. It only requires that the variable sample
strategy is used and Sk < Nk. The analysis is conducted for the full gradient
case.

Theorem 4.2. [8] Suppose that the function f̂N is twice continuously differ-
entiable and uniformly convex and that there exists a constant γ > 0 such that
xT∇2f̂Sk(xk)x ≥ γ‖x‖ for every k and x. Then the sequence generated by the

S-Newton method with Nk = N satisfies limk→∞ ‖∇f̂N (xk)‖ = 0.

The same result can be obtained for the so called SLM method which uses
matrix-free limited memory BFGS method. In that case, the conjugate gradient
method is used to obtain the search direction where the sub-sampled Hessian
approximation ∇2f̂Sk(xk) is used for the initial matrix-vector product at every
iteration. The line search uses Wolfe conditions for choosing the suitable step
size.

The dynamic of increasing the sample size in the machine learning problem
is addressed in [9]. The main idea is to estimate the sample size which makes

the search direction pk descent for the objective function f̂N without evaluating
the true gradient ∇fN (x). The approximation of the negative gradient pk =

−∇f̂Nk(xk) is a descend direction if for some θ ∈ [0, 1], the following inequality
holds

‖∇f̂N (xk)−∇f̂Nk(xk)‖ ≤ θ‖∇f̂Nk(xk)‖. (23)

Since E[‖∇f̂N (xk)−∇f̂Nk(xk)‖2] = ‖V ar(∇f̂Nk(xk))‖1 and N is large, inequal-
ity (23) is approximated by

‖σ̂2
Nk

(∇fi(xk))‖1
Nk

≤ θ2‖∇f̂Nk(xk)‖2 (24)

where σ̂2
Nk

is a sample variance related to the chosen sample of the size Nk.
The algorithm for the sample size schedule proposed in [9] can be described as

follows. After finding the step size αk such that f̂Nk(xk + αkpk) < f̂Nk(xk)
and setting xk+1 = xk + αkpk, a new sample of the same size Nk is chosen. If
inequality (24) holds for the new sample, the sample size remains unchanged,

18



i.e. Nk+1 = Nk. Otherwise, the sample is augmented and the new sample size
is determined by

Nk+1 =

⌈
‖σ̂2

Nk
(xk)‖1

θ2‖∇f̂Nk(xk)‖2

⌉
.

In order to conduct the complexity analysis, the constant step size is con-
sidered and the q-linear convergence rate is analyzed.

Theorem 4.3. [9] Suppose that the function f̂N is twice continuously dif-

ferentiable and x∗ is a solution of the problem (22) with f̂N (x∗) = 0. Fur-
thermore, assume that there are constants 0 < λ < L such that λ‖h‖2 ≤
hT∇2f̂N (x)h ≤ L‖h‖2 for all x and h. Let the sequence of iterates be gen-

erated by xk+1 = xk − α∇f̂Nk(xk) where α = (1 − θ)/L and θ ∈ (0, 1). If the
condition (23) is satisfied at iteration k, then

f̂N (xk+1) ≤ (1− βλ

L
)f̂N (xk)

where β = (1−θ)2
2(1+θ)2 . Moreover, if (23) holds for every k, then

lim
k→∞

xk = x∗.

The schedule {Nk} for the gradient estimations is extended to the second
order approximations to define a Newton-type method, the S-Newton method
defined in [8]. This method uses the updating of Nk described above while
the Hessian-related sample size Sk follows the dynamic of Nk. More precisely,
Sk = RNk where R is some positive number substantially smaller than 1. Also,
the sample used for the Hessian approximation is assumed to be a subset of the
sample used for the gradient and the function approximations. The stopping
criterion for the conjugate gradient method used for obtaining the search direc-
tion is more complex than in [8] since it is related to the sample size. Wolfe
conditions are imposed to obtain a suitable step size.

5 Conclusions

In this survey we considered unconstrained problems with the stochastic or ex-
pectation objective function. We focused our attention on two specific classes of
gradient-related methods: Stohastic Approximation and Sample Average Ap-
proximation and many other important approaches are left out for the sake of
brevity. An interested reader should consults [32, 34] for the initial guidance
into stochastic optimization problems. Several natural extensions are easily
incorporated in the framework considered in this paper, for example search di-
rections with second order information which usually yield faster convergence,
but also require additional cost, [8, 9, 10]. In order to decrease the linear al-
gebra costs, one can consider preconditioners as their construction might be a
nontrivial issue due to the presence of random variable. On the other hand,
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given that there are a lot of problems yielding only input-output information,
an interesting approach within SA and SAA frameworks is based on zero order
information, [17]. Constrained problems are always of great interest and some
recent research of penalty methods within SA methodology is presented in [39].
Projection and filter methods with variable sample size might be a valuable
topic of future research. Among the others, chance constrained problems are
especially challenging. In all the considered methods, deriving some complexity
bounds can be of great interest from practical point of view.
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