
Barzilai-Borwein method with variable sample
size for stochastic linear complementarity

problems

Nataša Krejić, Nataša Krklec Jerinkić, Sanja Rapajić
Department of Mathematics and Informatics, University of Novi Sad,

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

October 5, 2013

Abstract. ABSTRACT

Key words. Stochastic linear complementarity problems, variable sample

size, semismooth systems, BB direction

AMS subject classifications. 65H10 ; 90C33

1 Introduction

Uvodna prica!!!!!!!!!!!!!!!!!!!!!!!!!

1

The stochastic linear complementarity problem (SLCP) consists of finding
a vector x ∈ Rn such that

x ≥ 0, M(ω)x+ q(ω) ≥ 0, x>(M(ω)x+ q(ω)) = 0, ω ∈ Ω,

where Ω is underlying sample space and M(ω) ∈ Rn,n and q(ω) ∈ Rn for
each ω.

One way of dealing with SLCP, presented in Chen, Fukushima [3], is
considering its expected residual minimization (ERM) reformulation of the
form

f(x) = E(‖Φω(x)‖2)→ min, x ≥ 0,

where Φω : Rn × Ω→ Rn is defined by

Φω(x) =


φ (x1, [M(ω)x]1 + q1(ω))
φ(x2, [M(ω)x]2 + q2(ω))

...
φ(xn, [M(ω)x]n + qn(ω))

 ,

and φ : R2 → R is a NCP function. In this paper, we focus on the ERM
reformulation based on ”min” function φ(a, b) = min{a, b} which is expressed
as

f(x) = E(‖min{x,M(ω)x+ q(ω)}‖2)→ min, x ≥ 0. (1)

This is nonconvex, nonsmooth constrained optimization problem. It is shown
in Lemma 2.2 Chen et al. [5] that this problem always has a solution if
Ω = {ω1, ω2, . . . , ωN} is a finite set.

Since we focus on

Φω(x) = min{x,M(ω)x+ q(ω)} (2)

and if we define Θω(x) = 1
2
‖Φω(x)‖2 then (1) is equivalent to

f(x) = E(2Θω(x))→ min, x ≥ 0. (3)

The function f(x) in ERM reformulation is in the form of mathematical
expectation, so it is well known that in general, is very difficult to compute
it accurately. Because of that, the Sample Average Approximation (SAA) is
usually employed in practice for estimating f(x).

2

Assume that {ω1, ω2, ..., ωN} from Ω is a sample of random vectors that
are independent and identically distributed. Then problem (1) can be ap-
proximated by Monte Carlo sampling with

f̂N(x) =
1

N

N∑
j=1

F (x, ωj)→ min, x ≥ 0, (4)

where F (x, ωj) = 2Θωj(x) = ‖Φωj(x)‖2 and our focus will be on it. Since the
problem (4) is nonsmooth, it can be solved by using smoothing methods. In
this paper we propose a new smoothing method based on Brazilai-Borwein
search direction defined in Li et al. [9].

The corresponding smoothing problem for ERM reformulation was intro-
duced in Li et al. [9] and Zhang, Chen [14] and is defined for a smoothing
parameter µ > 0.

A smoothing approximation for ”min” function defined in Chen, Man-
gasarian [2] is

φ(a, b, µ) =


b, if a− b ≥ µ

2

a− 1
2µ

(a− b+ µ
2
)2, if − µ

2
< a− b < µ

2

a, if a− b ≤ −µ
2
.

(5)

A smoothing function for Θω(x) is

Θ̃ω(x, µ) =
1

2
‖Φ̃ω(x, µ)‖2 =

1

2

∥∥∥∥∥∥∥∥∥∥


φ (x1, [M(ω)x]1 + q1(ω), µ)
φ(x2, [M(ω)x]2 + q2(ω), µ)

...
φ(xn, [M(ω)x]n + qn(ω), µ)


∥∥∥∥∥∥∥∥∥∥

2

,

where Φ̃ω(x, µ) is a smoothing function for Φω(x). Its components

φ (xi, [M(ω)x]i + qi(ω), µ) , i = 1, ..., n (6)

are defined with (5). The smoothing approximation for f(x) is

f̃(x, µ) = E(2Θ̃ω(x, µ)). (7)

Using SAA method, function f̃(x, µ) can be estimated with

f̂N(x, µ) =
2

N

N∑
j=1

Θ̃ωj(x, µ), (8)

3

where {ω1, ω2, ..., ωN} from Ω is a sample realization generated at the begin-
ning of optimization process.

The idea is to consider the smoothing functions

f̂N(x, µ) =
1

N

N∑
j=1

F (x, ωj, µ),

µ > 0, where F (x, ωj, µ) = 2Θ̃ωj(x, µ) = ‖Φ̃ωj(x, µ)‖2, instead of the objec-
tive function f̂N(x) from (4).

More precisely, at each iteration of algorithm, the objective function
f̂N(x) can be approximated by a smooth function f̂N(x, µk) with a fixed
smoothing parameter µk > 0. The sequence of smoothing functions f̂N(x, µk)
will tend to nonsmooth objective function f̂N(x) when µk → 0.

The disadvantage of SAA method is using large sample size N in ev-
ery iteration, which makes very expensive calculating the objective function.
Because of that variable sample size strategies are recommended. In order
to make the process significantly cheaper, in our algorithm we use the line
search strategy with variable sample size proposed in Krejić, Krklec [11], [12].

So, except the smoothing parameter µk, every iteration has its own sample
size Nk. Therefore, at k-th iteration we consider the function

f̂Nk(x, µk) =
1

Nk

N∑
j=1

F (x, ωj, µk). (9)

This function is differentiable with the gradient

∇f̂Nk(x, µk) =
1

Nk

Nk∑
j=1

∇F (x, ωj, µk),

where ∇F (x, ωj, µk) = 2Φ̃′ωj(x, µk)
T Φ̃ωj(x, µk) and Φ̃′ωj is the Jacobian of

function Φ̃ωj .
This paper is organized as follows. Some basic definitions are given in

section 2. The algorithm is proposed in section 3 and convergence results
are analyzed in section 4. Numerical experiments are presented in the last
section, comparing our method with the method from Li et al. [9].

4

2 Preliminaries

A few words about notation and definitions. Throughout the paper ‖ · ‖
represents the Euclidian norm, ‖·‖F the Frobenius norm, Rn

+ = {x ∈ Rn, x ≥
0}, Rn

++ = {x ∈ Rn, x > 0} and it is assumed that M(ω) and q(ω) are
measurable functions of ω and satisfy

E(‖M(ω)‖2 + ‖q(ω)‖2) <∞.

For continuously differentiable mapping H : Rn → Rn the Jacobian of H
at x is denoted by H ′(x), whereas for smooth mapping g : Rn → R we
denote by ∇g(x) the gradient of g at x and the i-th component of gradient
vector ∇g(x) is denoted with [∇g(x)]i. For a given matrix A ∈ Rn,n and a
nonempty set of matrices A ∈ Rn,n, the distance between A and A is denoted
by dist(A,A) = infB∈A ‖A−B‖, the i-th row of matrix A is denoted by [A]i
and ei, i = 1, ..., n is the canonical base of Rn .

For locally Lipschitzian mapping H : Rn → Rn, the generalized Jacobian
of H at x, defined by Clarke [6], is denoted by ∂H(x). Let ∂CH(x) be the
C-generalized Jacobian of H at x defined by

∂CH(x) = ∂[H (x)]1 × ∂[H (x)]2 × . . .× ∂[H (x)]n.

Let consider the problem of the form

g(x)→ min, x ≥ 0, (10)

where g : Rn → R.
In Zhang, Chen [14] authors have pointed out that if g is differentiable at

x∗, then x∗ is a local minimizer of g if and only if ‖min{x∗,∇g(x∗)}‖ = 0.
Note that ‖min{x∗,∇g(x∗)}‖ = 0 if and only if x∗ is a stationary point

of g, that is if
〈∇g(x∗), x− x∗〉 ≥ 0, (11)

holds for any x ≥ 0.

If the function g from (10) is a local Lipschitz continuous function, then
according to Theorem 2.5.1 of Clarke [6], the generalized gradient of g at x
is defined by

∂g(x) = conv{ lim
xk→x

∇g(xk), xk ∈ Dg},

5

where conv represents the convex hull and Dg be the subset of Rn where g
is differentiable.

Following definitions are related with this locally Lipschitzian function g
from (10).

Definition 1 [14] Function g̃ : Rn ×R+ → R is a smoothing function of g,
if g̃(·, µ) is continuously differentiable in Rn for any µ ∈ R++, and for any
x ∈ Rn

lim
z→x,µ→0

g̃(z, µ) = g(x)

and {limz→x,µ→0∇g̃(z, µ)} is nonempty and bounded.

Definition 2 [14] x∗ is a Clarke stationary point of g(x), if there exists
V ∈ ∂g(x∗) such that

〈V, x− x∗〉 ≥ 0,

for every x ≥ 0.

Definition 3 [14] For any fixed x∗ ≥ 0 let us denote

Gg̃(x
∗) = {V, lim

xk→x∗,µk→0
∇g̃(xk, µk) = V }.

It is shown in Zhang, Chen [14] that Gg̃(x
∗) is nonempty and bounded set

and Gg̃(x
∗) ⊆ ∂g(x∗), for any x∗ ∈ Rn.

Definition 4 [14] x∗ is a stationary point of function g(x) associated with
a smoothing function g̃(x, µ), if there exists V ∈ Gg̃(x

∗) such that

〈V, x− x∗〉 ≥ 0,

for any x ≥ 0.

3 The algorithm

As we have mentioned before, the ERM problem (1) can be approximated
with nonsmooth problem (4) and our focus is on solving this problem by
using smoothing technique. In every iteration we approximate the nonsmooth
objective function with the smoothing function f̂Nk(x, µk) defined by (9) and

6

try to solve this smoothing optimization problem by using Barzilai-Borwein
gradient method.

!!! Reci zasto BB pravac i reci da je za njih zgodno koristiti nemonotone
line-search tehnike iz tog i tog razloga. Reci zasto bas nonmonotone line
search with variable sample size. Zato je u algoritmu koricsen nonmonotone
line search technique with variable sample size, presented in Krejić, Krklec
[12].

So, the search direction which is used in our algorithm is smooth Barzilai-
Borwein (BB) direction defined in Li et al. [9] in this way

dki =


− 1
αk

[∇f̂Nk(xk, µk)]i, if i ∈ I1(xk)

− [∇f̂Nk (xk,µk)]i

αk+
[∇f̂Nk

(xk,µk)]i

xk
i

, if i ∈ I2(xk)

−xki , if i ∈ I3(xk)

, (12)

where xk ≥ 0, τ > 0, I1, I2 and I3 are set of indexes

I1(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i ≤ 0},

I2(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i > 0 and xki > τ},

I3(xk) = {i, i ∈ {1, ..., n}, [∇f̂Nk(xk, µk)]i > 0 and 0 ≤ xki ≤ τ}

and

αk =

{
αBB1
k , if mod(k, 4) = 0, 1
αBB2
k , if mod(k, 4) = 2, 3

, (13)

αBB1
k =

{
max{αmin,

(sk−1)T yk−1

‖sk−1‖2 }, if ‖sk−1‖ > 0

αmin, else
,

αBB2
k =

{
max{αmin,

‖yk−1‖2
(sk−1)T yk−1}, if (sk−1)Tyk−1 6= 0

αmin, else
,

αmin > 0, sk−1 = xk − xk−1, yk−1 = ∇f̂Nk(xk, µk)−∇f̂Nk−1
(xk−1, µk−1).

We can now state the main algorithm as follows.

7

ALGORITHM 1

S0 Input parameters: Nmax, N
min
0 ∈ N, x0 ∈ Rn

+, κ̄, γ > 0, 0 < αmin ≤
α0 < 1, δ, η, β, τ, ν̃1, ξ̄, α, d ∈ (0, 1). Let {εk}k∈N , be a sequence such
that εk > 0,

∑
k∈N εk ≤ ε <∞.

S1 Generate the sample realization: ω1, . . . , ωNmax .

Set k = 0, Nk = Nmin
0 , β̃ = f̂Nmax(x0), µ0 = αβ̃

2κ̄
, µk = µ0 and xk = x0.

S2 Compute f̂Nk(x
k, µk), ε

Nk
δ (xk, µk) and ∇f̂Nk(xk, µk).

S3 If ‖min{xk,∇f̂Nk(xk, µk)}‖ = 0

1) if Nk = Nmax or Nk < Nmax and εNkδ (xk, µk) > 0 set Nk+1 = Nmax

and Nmin
k+1 = Nmax.

2) if Nk < Nmax and εNkδ (xk, µk) = 0 set Nk+1 = Nk + 1 and Nmin
k+1 =

Nmin
k + 1.

Set xk+1 = xk, µk+1 = µk
2

, αk+1 = αmin and go to step S12.

If ‖min{xk,∇f̂Nk(xk, µk)}‖ > 0, go to step S4.

S4 Determine the BB direction dk by (12) and (13).

S5 Find the smallest nonnegative integer j such that νk = βj satisfies

f̂Nk(x
k + νkd

k, µk) ≤ f̂Nk(x
k, µk) + ηνk(d

k)T∇f̂Nk(xk, µk) + εk.

S6 Set xk+1 = xk + νkd
k and dmk = −νk(dk)T∇f̂Nk(xk, µk).

S7 Determine the candidate sample size N+
k using Algorithm 2.

S8 Determine the sample size Nk+1.

S9 Determine µk+1 using Algorithm 3 and then the lower bound Nmin
k+1.

S10 Compute yk = ∇f̂Nk+1
(xk+1, µk+1)−∇f̂Nk(xk, µk).

S11 Determine αk+1 by (13).

S12 Set k = k + 1 and go to step S2.

8

Updating the sample size refers to the algorithms stated in [12], while the
slightly different versions of these algorithms can be found in [11]. The can-
didate sample size N+

k is determined by comparing the measure of decrease
in the objective function dmk and the so called lack of precision defined by

εNkδ (xk, µk) = σ̂Nk(xk, µk)
αδ√
Nk

,

where

σ̂2
Nk

(xk, µk) =
1

Nk − 1

Nk∑
i=1

(F (xk, ωi, µk)− f̂Nk(xk, µk))2

and αδ is a quantile of the standard normal distribution. The lack of precision
represents the approximate measure of the error bound for |f̂Nk(xk, µk) −
f(xk, µk)|. The main idea is to find the sample size N+

k such that

dmk ≈ d ε
N+
k

δ (xk, µk),

where d ∈ (0, 1] and Nmin
k ≤ N+

k ≤ Nmax. For example, if the decrease
measure is greater than some portion of the lack of precision we are probably
far away from the solution. In that case, we do not want to impose high
precision and therefore we decrease the sample size if possible. We state the
algorithm for choosing the candidate sample size N+

k .

ALGORITHM 2

S0 Input parameters: dmk, N
min
k , εNkδ (xk, µk), ν̃1, d ∈ (0, 1).

S1 Determine N+
k

1) dmk = d εNkδ (xk, µk) → N+
k = Nk.

2) dmk > d εNkδ (xk, µk)
Starting with N = Nk, while dmk > d εNδ (xk, µk) and N > Nmin

k ,
decrease N by 1 and calculate εNδ (xk, µk) → N+

k .

3) dmk < d εNkδ (xk, µk)

i) dmk ≥ ν̃1d ε
Nk
δ (xk, µk)

Starting with N = Nk, while dmk < d εNδ (xk, µk) and N <
Nmax, increase N by 1 and calculate εNδ (xk, µk) → N+

k .

9

ii) dmk < ν̃1d ε
Nk
δ (xk, µk) → N+

k = Nmax.

After finding the candidate sample size, we perform the safeguard check
in order to prohibit the decrease of the sample size which seems to be unpro-
ductive. More precisely, if N+

k < Nk we calculate

ρk =

∣∣∣∣∣∣
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk(x
k)− f̂Nk(xk+1)

− 1

∣∣∣∣∣∣ .
We do not allow the decrease if the previously stated parameter is relatively

large. Namely, if ρk ≥
Nk−N+

k

Nk
we set Nk+1 = Nk. In all the other cases, the

decrease is accepted and Nk+1 = N+
k . Notice that Nk+1 ≥ N+

k either way.
Updating the lower sample size bound Nmin

k is also very important. This
bound is increased only if Nk+1 > Nk and we have not made big enough
decrease of the function f̂Nk+1

since the last time we started to use it, i.e. if

f̂Nk+1
(xh(k), µk+1)− f̂Nk+1

(xk+1, µk+1)

k + 1− h(k)
<
Nk+1

Nmax

ε
Nk+1

δ (xk+1, µk+1),

where h(k) is the iteration at which we started to use the sample size Nk+1

for the last time. In that case, we set Nmin
k+1 = Nk+1 while in all the other

cases the lower bound remains unchanged.

The following algorithm presents the way of updating the smoothing pa-
rameter, where ¯̄µ(xk+1, γβ̃) is a threshold value for the smoothing parameter,
which will be defined later in the next section.

ALGORITHM 3

S0 Input parameters: Nk, Nk+1, µk, α, ξ̄, β̃, κ̄, γ.

S1 1) If Nk+1 = Nk = Nmax go to step S2.

2) If Nk < Nk+1 put µk+1 = µk
2

and stop.

3) Else µk+1 = µk and stop.

S2 If

f̂Nmax(xk+1) ≤ max{ξ̄β̃, |f̂Nmax(xk+1)− f̂Nmax(xk+1, µk)|
α

}

10

then β̃ = f̂Nmax(xk+1) and

µk+1 ≤ min{µk
2
,
αβ̃

2κ̄
, ¯̄µ(xk+1, γβ̃)},

else µk+1 = µk.

It is easy to see that BB direction dk defined by (12) is feasible and descent
search direction for f̂Nk(x

k, µk), because xk+dk ≥ 0 and∇f̂Nk(xk, µk)Tdk < 0

if ‖min{xk,∇f̂Nk(xk, µk)}‖ 6= 0.

4 Convergence analysis

Our algorithm is based on the idea of using line search with variable sam-
ple size presented in Krejić, Krklec [12], so the following assumptions are
necessary for applying that idea:

A1 : For every ω and µ ∈ R++, F (·, ω, µ) ∈ C1(Rn),

A2 : There exist finite constants M0 such that M0 ≤ F (x, ω, µ), for every
ω, x, µ.

Let Φω(x), f(x), f̂N(x), Φ̃ω(x, µ), f̃(x, µ) and f̂N(x, µ) be the functions
defined by (2)- (8) respectively and Ω = {ω1, . . . , ωN}. First we will give some
properties of these functions which are necessary for convergence analysis.

Since F (x, ωj, µ) = ‖Φ̃ωj(x, µ)‖2, it is easy to see that F (·, ωj, µ) ∈ C1(Rn)
and F (x, ωj, µ) ≥ 0, for every ωj ∈ Ω, µ ∈ R++, x ∈ Rn, which means that
the assumptions A1 and A2 are satisfied and also imply that f̂N(·, µ) ∈
C1(Rn) and

f̂N(x, µ) ≥ 0, (14)

for every x ∈ Rn and every n ∈ N .

Lemma 1 [14] Let ∂Φω(x) be the generalized Jacobian of Φω(x) and ∂f(x)
be the generalized gradient of f(x). Denote κ̃ = 1

4

√
n. For any ω ∈ Ω and

µ ∈ R++ there hold

a) ‖Φ̃ω(x, µ)− Φω(x)‖ ≤ κ̃µ, x ∈ Rn,

11

b) limµ→0 Φ̃′ω(x, µ) ∈ ∂Φω(x), x ∈ Rn,

c) limµ→0∇f̃(x, µ) ∈ ∂f(x), x ∈ Rn
+,

d) ‖Φ̃′ω(x, µ)‖ ≤ 2 + ‖M(ω)‖, x ∈ Rn.

Since ∂Φω(x) ⊆ ∂CΦω(x), Lemma 1 b) implies that function Φ̃ω(x, µ) has the
Jacobian consistency property defined in Chen et al. [4] which means

lim
µ→0

Φ̃′ω(x, µ) ∈ ∂CΦω(x). (15)

It is proved in Zhang, Chen [14] that f̃(x, µ) given in (7) is a smoothing
function for f(x) given in (3), because it satisfies Definition 1.

The sample realization generated before the optimization process in our
algorithm is Ω = {ω1, . . . , ωNmax} and from now on we consider this Ω.

In order to determine the threshold value we need following lemmas.

Lemma 2 Let x ∈ Rn. Then

lim
µ→0
∇f̂Nmax(x, µ) ∈ ∂f̂Nmax(x).

Proof. Since, by Lemma 1, smoothing function Φ̃ω(x, µ) has the Jacobian
consistency property (15), it means that

lim
µ→0

Φ̃′ωj(x, µ) ∈ ∂CΦωj(x), (16)

for every ωj, j = 1, ..., Nmax. From (16) and the fact that Φ̃ωj(x, µ) is the
smoothing function for Φωj(x) there follows

lim
µ→0

Φ̃′ωj(x, µ)T Φ̃ωj(x, µ) ∈ ∂CΦT
ωj(x)Φωj(x), (17)

for every ωj, j = 1, ..., Nmax. Since∇f̂Nmax(x, µ) = 2
Nmax

∑Nmax
j=1 Φ̃′ωj(x, µ)T Φ̃ωj(x, µ),

by (17) and the definition of ∂f̂Nmax(x) we have limµ→0∇f̂Nmax(x, µ) ∈ ∂f̂Nmax(x),
which completes the proof. 2

12

An immediate consequence of Lemma 2 is that for every fixed δ1 > 0,
there exists a threshold value ¯̄µ(x, δ1) > 0 such that

dist(∇f̂Nmax(x, µ), ∂f̂Nmax(x)) ≤ δ1,

for all 0 < µ ≤ ¯̄µ(x, δ1).
It is important for the algorithm design to have an explicit expression of

the threshold value ¯̄µ(x, δ1) > 0, because updating the smoothing parameter
depends on it.

Since (15) holds by Lemma 1, there follows that for every fixed δ > 0
there exists a threshold value µ̄(x, δ) > 0 such that

dist(Φ̃′ω(x, µ), ∂CΦω(x)) ≤ δ,

for every 0 < µ ≤ µ̄(x, δ).
The following lemma gives a precise definition of the threshold value

µ̄(x, δ) for the smoothing parameter.

Lemma 3 Let x ∈ Rn be arbitrary but fixed and ω ∈ Ω be fixed. Assume
that x is not a solution of SLCP. Let us define

γ(x) := max
i
{‖[M(ω)]i − ei‖, i = 1, ..., n} ≥ 0

and
ξ(x) := min

i/∈β(x)
{|xi − [M(ω)x]i − qi(ω)|} > 0,

where β(x) := {i, xi = [M(ω)x]i + qi(ω)}. Let δ > 0 be given and define the
threshold value

µ̄(x, δ) :=


1, if γ(x) = 0
1, if γ(x) 6= 0 and (1

2
− δ√

nγ(x)
) ≤ 0

2
√
nγ(x)ξ(x)√
nγ(x)−2δ

, if γ(x) 6= 0 and (1
2
− δ√

nγ(x)
) > 0.

Then
distF

(
Φ̃′ω(x, µ), ∂CΦω(x)

)
≤ δ (18)

for all µ such that 0 < µ ≤ µ̄(x, δ).

13

Proof. It is shown in Lemma 3.2 Kanzow, Pieper [10] that

distF
(
Φ̃′ω(x, µ), ∂CΦω(x)

)
=

√√√√ n∑
i=1

dist2([Φ̃′ω(x, µ)]i, ∂[Φω(x)]i)2, (19)

so for proving (18), it is sufficient to show

dist2([Φ̃′ω(x, µ)]i, ∂[Φω(x)]i) ≤
δ√
n

(20)

for every i = 1, ..., n, where

dist2([Φ̃′ω(x, µ)]i, ∂[Φω(x)]i) = ‖̃[Φ′ω(x, µ)]i − [V]i‖. (21)

[V]i is the i-th row of matrix V ∈ ∂CΦω(x), i.e. [V]i ∈ ∂[Φω(x)]i and has the
form

[V]i =


[M(ω)]i, if xi > [M(ω)x]i + qi(ω)
λ[M(ω)]i + (1− λ)ei, if xi = [M(ω)x]i + qi(ω), λ ∈ [0, 1],
ei if xi < [M(ω)x]i + qi(ω)

while the i-th row of matrix Φ̃′ω(x, µ) has the form

[Φ̃′ω(x, µ)]i =


[M(ω)]i, if xi − [M(ω)x]i − qi(ω) ≥ µ/2
yi[M(ω)]i + (1− yi)ei, if −µ/2 < xi − [M(ω)x]i − qi(ω) < µ/2
ei if xi − [M(ω)x]i − qi(ω) ≤ −µ/2,

where yi = 1
µ
(xi − [M(ω)x]i − qi(ω) + µ/2). Therefore, we distinguish three

different cases:
Case 1. If xi − [M(ω)x]i − qi(ω) ≥ µ/2 then xi > [M(ω)x]i + qi(ω), so

‖[Φ̃′ω(x, µ)]i − [V]i‖ = ‖[M(ω)]i − [M(ω)]i‖ = 0 ≤ δ√
n
. (22)

Case 2. If xi − [M(ω)x]i − qi(ω) ≤ −µ/2 then xi < [M(ω)x]i + qi(ω), so

‖[Φ̃′ω(x, µ)]i − [V]i‖ = ‖ei − ei‖ = 0 ≤ δ√
n
. (23)

14

Case 3. If −µ/2 < xi − [M(ω)x]i − qi(ω) < µ/2 then
[M(ω)x]i + qi(ω)−µ/2 < xi < [M(ω)x]i + qi(ω) +µ/2, so there are three

different possibilities in this case:
L1. If xi < [M(ω)x]i + qi(ω) then

‖[Φ̃′ω(x, µ)]i − [V]i‖ = ‖yi[M(ω)]i + (1− yi)ei − ei‖
= ‖yi[M(ω)]i − yiei‖
= |yi|‖[M(ω)]i − ei‖

≤ 1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2)γ(x).

Now, we want to show

1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2)γ(x) ≤ δ√

n
(24)

for all 0 < µ ≤ µ̄(x, δ). If γ(x) = 0 then (24) holds trivially for every µ > 0
and also for µ ≤ µ̄(x, δ) = 1. Hence, suppose that γ(x) 6= 0. If 1

2
− δ√

nγ(x)
≤ 0

then (24) holds also for µ ≤ µ̄(x, δ) = 1. Otherwise, if 1
2
− δ√

nγ(x)
> 0 then

(24) holds for every 0 < µ ≤ ξ(x)2
√
nγ(x)√

nγ(x)−2δ
:= µ̄(x, δ), and we obtain the upper

bound for µ. We proved (24) which implies

‖[Φ̃′ω(x, µ)]i − [V]i‖ ≤
δ√
n
. (25)

L2. If xi > [M(ω)x]i + qi(ω) then

‖[Φ̃′ω(x, µ)]i − [V]i‖ = ‖yi[M(ω)]i + (1− yi)ei − [M(ω)]i‖
= ‖(yi − 1)[M(ω)]i + (1− yi)ei‖
= ‖(yi − 1)([M(ω)]i − ei)‖
= |yi − 1|‖[M(ω)]i − ei‖

≤ (1− 1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2))γ(x).

Now, we want to show

(1− 1

µ
(xi − [M(ω)x]i − qi(ω) + µ/2))γ(x) ≤ δ√

n
(26)

15

for all 0 < µ ≤ µ̄(x, δ). If γ(x) = 0 then (26) holds for every µ ≤ µ̄(x, δ) = 1.
Suppose that γ(x) 6= 0. If 1

2
− δ√

nγ(x)
≤ 0 then (26) holds also for µ ≤

µ̄(x, δ) = 1. Otherwise, if 1
2
− δ√

nγ(x)
> 0 then (26) holds for every 0 < µ ≤

ξ(x)2
√
nγ(x)√

nγ(x)−2δ
:= µ̄(x, δ). We proved (26) which implies (25).

L3. If xi = [M(ω)x]i + qi(ω), i.e. i ∈ β(x) then

‖[Φ̃′ω(x, µ)]i − [V]i‖ = ‖yi[M(ω)]i + (1− yi)ei − λ[M(ω)]i − (1− λ)ei‖

= ‖1

2
[M(ω)]i +

1

2
ei − λ[M(ω)]i − ei + λei‖

= ‖(1

2
− λ)([M(ω)]i − ei)‖

= |1
2
− λ|‖[M(ω)]i − ei‖

= 0 ≤ δ√
n
,

for λ = 1/2, which implies (25).
Putting together (19)-(23) and (25) we therefore obtain

distF
(
Φ̃′ω(x, µ), ∂CΦω(x)

)
≤

√√√√ n∑
i=1

δ2

n
= δ

for all 0 < µ ≤ µ̄(x, δ). 2

We also note that since ‖A‖ ≤ ‖A‖F for an arbitrary matrix A ∈ Rn,n,
there follows from the previous lemma that

dist
(
Φ̃′ω(x, µ), ∂CΦω(x)

)
≤ δ,

for all µ such that 0 < µ ≤ µ̄(x, δ).

Let δ1 > 0. For δ(ωj) < δ1
2‖Φ

ωj
(x)‖ , j = 1, ..., Nmax, by Lemma 3 we can

obtain values µ̄(x, δ(ωj)), j = 1, ..., Nmax and using that we can determine
the threshold value ¯̄µ(x, δ1) = minNmax

j=1
¯̄µj(x, δ1), where

¯̄µj(x, δ1) = min{µ̄(x, δ(ωj)),
4(δ1

2
− ‖Φωj(x)‖δ(ωj))√
n(2 + ‖M(ωj)‖)

}.

16

It is easy to prove that for given δ1 > 0 and this threshold value ¯̄µ(x, δ1) we
have

dist(∇f̂Nmax(x, µ), ∂f̂Nmax(x)) ≤ δ1

for all 0 < µ ≤ ¯̄µ(x, δ1).

The existence of threshold value and its explicit form imply that step S2 in
Algorithm 3 is well-defined. As we have mentioned before, the BB direction
dk which is used in our algorithm is feasible descent direction for the function
f̂Nk(x

k, µk), so the line search in Step S5 of Algorithm 1 is also well-defined.
These facts pointed out that our algorithm is well-defined. Nonmonotone line
search with εk > 0 gives additional possibilities for the choice of step-length
νk.

Lemma 4 Let C ⊂ Rn be a compact set. Then for every x ∈ C, N ∈
{1, 2, ..., Nmax} and µ, µ1, µ2 ∈ R++, µ1 ≥ µ2 there exists κ̄ > 0 such that
following inequalities hold

a) |f̂N(x, µ)− f̂N(x)| ≤ κ̄µ,

b) |f̂N(x, µ2)− f̂N(x, µ1)| ≤ κ̄(µ1 − µ2).

Proof. a) Since ‖Φωj(x)‖ is continuous and C is assumed to be compact
there follows that ‖Φωj(x)‖ is bounded on C. More precisely, there exists
constant M3(ωj) <∞ such that

‖Φωj(x)‖ ≤M3(ωj), (27)

for every x ∈ C, ωj ∈ Ω. Since N ∈ {1, 2, ..., Nmax} is fixed, let M =
maxNj=1 M3(ωj) and choose κ̄ = κ̃(κ̃µ+ 2M). Then by Lemma 1 a) follows

‖Φ̃ωj(x, µ)‖ ≤ ‖Φ̃ωj(x, µ)− Φωj(x)‖+ ‖Φωj(x)‖ ≤ κ̃µ+M3(ωj) (28)

and (27) and (28) imply

|Θ̃ωj(x, µ)−Θωj(x)| =
1

2
|‖Φ̃ωj(x, µ)‖2 − ‖Φωj(x)‖2|

≤ 1

2
‖Φ̃ωj(x, µ)− Φωj(x)‖(‖Φ̃ωj(x, µ)‖+ ‖Φωj(x)‖)

≤ 1

2
κ̃µ(κ̃µ+ 2M3(ωj)),

17

for every ωj ∈ Ω. Therefore

|f̂N(x, µ)− f̂N(x)| =
2

N

N∑
j=1

|Θ̃ωj(x, µ)−Θωj(x)|

≤ 2
N

max
j=1
|Θ̃ωj(x, µ)−Θωj(x)|

≤ κ̃(κ̃µ+ 2M)µ = κ̄µ,

which completes the proof.
b) It can be proved in a similar way as a). 2

The next theorem states that after a finite number of iterations, the
sample size Nmax is reached and kept until the end of algorithm. It is proved
in a similar way as in Krejić, Krklec [11], [12].

Theorem 1 Suppose that assumptions A1 and A2 are true and the sequence
{xk} generated by Algorithm 1 is bounded. Furthermore, suppose that there
exist a positive constant κ and a number n0 ∈ N such that εNkδ (xk, µk) ≥ κ
for every k ≥ n0. Then, there exists q ∈ N such that for every k ≥ q the
sample size is maximal, i.e. Nk = Nmax.

Proof. First of all, suppose that ‖min{xk,∇f̂Nk(xk, µk)}‖ = 0 happens in-
finitely many times. Then, step S3 of Algorithm 1 would eventually provide
Nmin
k = Nmax which furthermore implies the existence of iteration q ∈ N

such that Nk = Nmax for every k ≥ q. Therefore, we will observe the case
where ‖min{xk,∇f̂Nk(xk, µk)}‖ > 0 for every k ≥ n1 where n1 is some finite
integer. Without loss of generality, we can assume that n1 > n0. This means
that ‖∇f̂Nk(xk, µk)‖ > 0 after finite number of iterations. Therefore, dk is
the descent search direction for every k ≥ n1. Now, let us prove that the
sample size can not be stacked at a size lower than the maximal one.

Suppose that there exists ñ > n1 such that Nk = N1 < Nmax for every
k ≥ ñ. In that case, Algorithm 3 implies that µk+1 = µk = µ for every k ≥ ñ.
Denoting gk = ∇f̂N1(xk, µ), we obtain that for every k ≥ ñ

f̂N1(xk+1, µ) ≤ f̂N1(xk, µ) + εk + ηνk(d
k)Tgk.

Furthermore, by using the induction argument, the summability of the se-
quence {εk} and the inequality (14), we obtain that

lim
k→∞

dmk = lim
j→∞
−νñ+j(∇f̂N1(xñ+j, µ))Tdñ+j = 0.

18

On the other hand, we have that εN
1

δ (xk, µ) ≥ κ > 0 for every k ≥ n0

which implies that ν̃1d ε
N1

δ (xk, µ) is bounded from below for all k sufficiently
large. Therefore, there exists at least one p such that dmp < ν̃1d ε

N1

δ (xp, µ).
However, this furthermore implies that Np+1 ≥ N+

p = Nmax which is in
contradiction with the current assumption that the sample size stays at N1.
Therefore, the remaining two possible scenarios are as follows:

L1 There exists ñ such that Nk = Nmax for every k ≥ ñ.

L2 The sequence of sample sizes oscillates.

Let us suppose that scenario L2 is the one that happens. Notice that
the existence of j̄ ∈ N such that Nmin

j̄ = Nmax would imply scenario L1.

Therefore, we have that Nmin
k < Nmax for every k ∈ N . Furthermore, this

implies that the signal for increasing Nmin
k could come only finitely many

times and we conclude that there exists an iteration r ≥ n1 such that for
every k ≥ r we have one of the following scenarios:

M1 Nk+1 ≤ Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1

M3 Nk+1 > Nk and we did not use the sample size Nk+1 before

Now, let N̄ be the maximal sample size that is used at infinitely many
iterations. Furthermore, define the set of iterations K̄0 at which sample size
increases on N̄ and set K̄ = K̄0

⋂{r, r+ 1, . . .}. Notice that Nk < Nk+1 = N̄
for every k ∈ K̄. This implies that every iteration in K̄ excludes the scenario
M1. Moreover, without loss of generality, we can say that scenario M3 is the
one that can also be excluded. This leads us to the conclusion that M2 is
the only possible scenario for iterations in K̄. Therefore, for every k ∈ K̄ the
following is true

f̂N̄(xh(k), µk+1)− f̂N̄(xk+1, µk+1) ≥ N̄

Nmax

(k+1−h(k))εN̄δ (xk+1, µk+1) ≥ κ

Nmax

Define S := κ/Nmax. We know that S is a positive constant. Define also
a subsequence of iterations {xsj}j∈N := {xk}k∈K̄ . Recall that h(k) defines

19

the iteration at which we started to use the sample size N̄ for the last time
before the iteration k + 1. Having all this in mind, we know that for every j

f̂N̄(xsj+1 , µsj+1
) ≤ f̂N̄(xsj , µsj+1

)− S.

Furthermore, we know that sequence of smoothing parameters {µk}k∈N is
nonincreasing which together with Lemma 4 implies that for every i, j and
x

f̂N̄(x, µi+j) ≤ f̂N̄(x, µi) + κ̄(µi − µi+j).

Again, using the induction argument and the previous two inequalities we
obtain that for every j ∈ N

f̂N̄(xsj , µsj) ≤ f̂N̄(xs0 , µs0) + κ̄(µs0 − µsj)− jS.

Now, we can use (14) once more and apply it to the previous inequality to
obtain that for every j

M0 ≤ f̂N̄(xs0 , µs0) + κ̄µs0 − jS.

Letting j →∞, we obtain the contradiction and therefore we conclude that
the only possible scenario is in fact L1, i.e. there exists iteration ñ such that
Nk = Nmax for every k ≥ ñ. 2

Our Algorithm 1 is constructed in a such way that it never stops. The
cases 2) and 3) in Step S3 of algorithm can happen only a finite number of
times, so the construction of algorithm and Theorem 1 imply that there exists
q ∈ N such that for every k ≥ q there follows Nk = Nmax. This implies that
eventually in k-th iteration, k ≥ q, we are solving the optimization problem
with the objective function f̂Nmax(x, µk). So, Algorithm 1 becomes simpler
and from now on we consider the Algorithm 1 with Nk = Nmax, which will
be named Algorithm.

Let

f̂Nmax(x) =
1

Nmax

Nmax∑
j=1

‖Φωj(x)‖2, (29)

f̂Nmax(x, µ) =
1

Nmax

Nmax∑
j=1

‖Φωj(x, µ)‖2

20

for x ∈ Rn, µ ∈ R++ and xq be the iteration for which the sample size Nmax

is reached and kept until the end, i.e. xq is the iteration such that for every
k ≥ q holds Nk = Nmax.

Algorithm

S1: If ‖min{xk,∇f̂Nmax(xk, µk)}‖ = 0 then xk+1 = xk, µk+1 = µk
2

,
αk+1 = α

min
, and go to step S7.

S2: Compute BB direction dk by (12) and (13) using ∇f̂Nmax(xk, µk).

S3: Find the smallest nonnegative integer j such that νk = βj satisfies

f̂Nmax(xk + νkd
k, µk) ≤ f̂Nmax(xk, µk) + ηνk(d

k)>∇f̂Nmax(xk, µk) + εk.

S4: Set xk+1 = xk + νkd
k.

S5: If

f̂Nmax(xk+1) ≤ max{ξ̄β̃, 1

α
|f̂Nmax(xk+1)− f̂Nmax(xk+1, µk)|}

then
β̃ = f̂Nmax(xk+1)

and choose µk+1 such that

0 < µk+1 ≤ min{µk
2
,
αβ̃

2κ̄
, ¯̄µ(xk+1, γβ̃)}

else
µk+1 = µk.

S6: Set
yk = ∇f̂Nmax(xk+1, µk+1)−∇f̂Nmax(xk, µk).

S7: Compute αk+1 by (13).

S8: Set k := k + 1 and return to step S1.

21

Let us define sets

K = {0}∪
{
k, k ∈ N ; k ≥ q + 1, f̂Nmax(xk) ≤ max{ξ̄β̃, 1

α
|f̂Nmax(xk, µk−1)− f̂Nmax(xk)|}

}
,

K1 = {k, k ∈ K; ξ̄β̃ ≥ 1

α
|f̂Nmax(xk, µk−1)− f̂Nmax(xk)|},

K2 = {k, k ∈ K; ξ̄β̃ <
1

α
|f̂Nmax(xk, µk−1)− f̂Nmax(xk)|}.

It is clear that K = {0}⋃K1
⋃
K2.

Lemma 5 Let {xk} be a sequence generated by Algorithm 1. Then the fol-
lowing statements hold

a) |f̂Nmax(xk)− f̂Nmax(xk, µk)| ≤ αf̂Nmax(xk), for k ≥ q + 1,

b) dist
(
∇f̂Nmax(xk, µk), ∂f̂Nmax(xk)

)
≤ γf̂Nmax(xk), for k ≥ q + 1, k ∈ K.

Proof. a) We can distinguish 2 cases.
Case 1. If k ∈ K then we obtain from Lemma 4

|f̂Nmax(xk)− f̂Nmax(xk, µk)| ≤ κ̄µk ≤
α

2
β̃ ≤ αf̂Nmax(xk).

Case 2. If k /∈ K then µk = µk−1, so

|f̂Nmax(xk)− f̂Nmax(xk, µk)| = |f̂Nmax(xk)− f̂Nmax(xk, µk−1)| < αf̂Nmax(xk).

b) This statement follows immediately from the updating rule of smoothing
parameter. 2

The next theorem can be proved in the same way as Theorem 1 in Krejić,
Rapajić [13].

Theorem 2 Suppose that the assumptions of Theorem 1 are satisfied. Then
there exists q ∈ N such that the sequence {xk}k≥q belongs to the level set

L0 = {x ∈ Rn
+ : f̂Nmax(x) ≤ f̂Nmax(xq, µq) + κ̄µq + ε}. (30)

22

Proof. Theorem 1 implies the existence of q such that Nk = Nmax for
every k ≥ q. Since dk is a descent search direction, the line search implies
that

f̂Nmax(x
k+1, µk) ≤ f̂Nmax(x

k, µk) + εk

for every k ≥ q. Furthermore, the sequence of smoothing parameters is
nonincreasing and therefore Lemma 4 implies that for every j

f̂Nmax(x, µq+j) ≤ f̂Nmax(x, µq) + κ̄(µq − µq+j).

Using the previous two inequalities and the induction argument we obtain
that for every j

f̂Nmax(x
q+j, µq+j) ≤ f̂Nmax(x

q, µq) + κ̄(µq − µq+j) +
j−1∑
i=0

εq+i.

Again, by using Lemma 4 and summability of the sequence {εK}k∈N we
obtain that for any nonnegative integer j

f̂Nmax(x
q+j) ≤ f̂Nmax(x

q+j, µq+j) + κ̄µq+j

≤ f̂Nmax(x
q, µq) + κ̄(µq − µq+j) + ε+ κ̄µq+j

= f̂Nmax(x
q, µq) + κ̄µq + ε.

This completes the proof. 2

Theorem 1 states that after a finite number of iterations, the sample size
Nmax is reached and kept until the end. So, our problem becomes of the form

f̂Nmax(x)→ min, x ≥ 0, (31)

where f̂Nmax(x) is a nonsmooth function defined by (29). We want to show
that every accumulation point of the sequence generated by our algorithm is
a Clarke stationary point of f̂Nmax(x).

As we have mentioned before, instead of solving this nonsmooth problem
(31) we are solving the sequence of smooth problems

f̂Nmax(x, µk)→ min, x ≥ 0, µk → 0.

Using a similar idea as in Krejić, Rapajić [13] the following theorem can
be proved.

23

Theorem 3 Let {xk} be a sequence generated by Algorithm 1. Suppose that
assumptions A1-A2 are satisfied and the level set (30) is bounded. Then
every accumulation point of the sequence {xk} is a Clarke stationary point
of f̂Nmax(x).

Proof. Let x∗ be an accumulation point of {xk} and {xk}L, L ⊆ N1 =
{k, k ∈ N, k ≥ q + 1} be a subsequence which converges to x∗, i.e.

lim
k→∞,k∈L

xk = x∗. (32)

For x∗ let us denote

Gf̂Nmax
(x∗) = {V, lim

xk→x∗,µk→0
∇f̂Nmax(xk, µk) = V }.

From Definitions 2-4 and the fact thatGf̂Nmax
(x∗) ⊆ ∂f̂Nmax(x∗) it is clear that

if x∗ is a stationary point of function f̂Nmax(x) associated with a smoothing
function f̂Nmax(x, µ), then x∗ is a Clarke stationary point of function f̂Nmax(x).
Therefore, it is sufficient to prove that x∗ is a stationary point of function
f̂Nmax(x) associated with a smoothing function f̂Nmax(x, µk), µk → 0.

If ‖min{xk,∇f̂Nmax(xk, µk)}‖ = 0, for all k ∈ L then by (11)

〈∇f̂Nmax(xk, µk), x− xk〉 ≥ 0, (33)

for any x ≥ 0. By Definition 1, there exists an infinite subset L1 ⊆ L such
that limk→∞,k∈L1 ∇f̂Nmax(xk, µk) = V ∈ Gf̂Nmax

(x∗), because µk → 0. From

(32) and (33) there follows

lim
k→∞,k∈L1

〈∇f̂Nmax(xk, µk), x− xk〉 = 〈V, x− x∗〉 ≥ 0,

for any x ≥ 0 which by Definition 4 means that x∗ is a stationary point
of function f̂Nmax(x) associated with a smoothing function f̂Nmax(x, µk), thus
implies that x∗ is a Clarke stationary point of f̂Nmax(x).

Otherwise, let us assume that there exists L1 ⊆ L such that for some
ε̃ > 0 we have

‖min{xk,∇f̂Nmax(xk, µk)}‖ ≥ ε̃ > 0, k ∈ L1. (34)

The following two cases are considered separately:

24

Case 1: K is finite set.
Case 2: K is infinite set.

Case 1. Let k̂ be the largest index in K. Then µk = µk̂, for every k ≥ k̂.
Without loss of generality, it can be assumed that k /∈ K, for all k ∈ L1,
because K is finite set. The level set is bounded, so ∇f̂Nmax(xk, µk) is also
bounded and thus the direction dk is bounded. As limk→∞,k∈L1 x

k = x∗

and αk ≥ αmin, we have limk∈L1,k→∞ νkd
k = 0. Therefore, we consider two

different possibilities:

a) νk → 0, k ∈ L2, for some L2 ⊆ L1,

b) νk ≥ ν∗ > 0, k ∈ L2.

a) If νk → 0, k ∈ L2, the choice of step-length in the line-search implies
that for each k ∈ L2 there exists ν ′k > νk, such that

lim
k∈L2

ν ′k = 0

and

f̂Nmax(xk + ν ′kd
k, µk) > f̂Nmax(xk, µk) + ην ′k(d

k)T∇f̂Nmax(xk, µk) + εk,

so
f̂Nmax(xk + ν ′kd

k, µk)− f̂Nmax(xk, µk)

ν ′k
> η(dk)T∇f̂Nmax(xk, µk).

Therefore, taking the limits we obtain

lim
ν′
k
→0

f̂Nmax(xk + ν ′kd
k, µk)− f̂Nmax(xk, µk)

ν ′k
≥ η(dk)T∇f̂Nmax(xk, µk)

i.e.
(dk)T∇f̂Nmax(xk, µk) ≥ η(dk)T∇f̂Nmax(xk, µk).

Given that dk is a descent direction , the last inequality implies η ≥ 1, which
is not possible and thus K can not be a finite set.

b) If νk ≥ ν∗ > 0 for k ∈ L2, then as k ∈ L2 we may assume that k /∈ K
and µk = µk̂ = µ. Then

f̂Nmax(xk+1, µ) ≤ f̂Nmax(xk, µ) + ηνk(d
k)T∇f̂Nmax(xk, µ) + εk

25

≤ f̂Nmax(xk−1, µ) + ηνk−1(dk−1)T∇f̂Nmax(xk−1, µ) + εk−1

+ηνk(d
k)T∇f̂Nmax(xk, µ) + εk

≤ · · ·

≤ f̂Nmax(xk̂+1, µ) + η
k∑

j=k̂+1

νj(d
j)T∇f̂Nmax(xj, µ) +

k∑
j=k̂+1

εj.

So, using νk ≥ ν∗ > 0 for k ∈ L2 we get

−ην∗
k∑

j=k̂+1

(dj)T∇f̂Nmax(xj, µ) ≤ f̂Nmax(xk̂+1, µ)− f̂Nmax(xk+1, µ) +
k∑

j=k̂+1

εj.

Given that f̂Nmax(x, µ) is bounded for x ∈ L0 and µ > 0 and
∑
k∈N εk ≤ ε,

there follows that

lim
k→∞,k∈L2

(dk)T∇f̂Nmax(xk, µ) = 0. (35)

On the other hand, the definition of dk implies

dki [∇f̂Nmax(xk, µ)]i =


− 1
αk

[∇f̂Nmax(xk, µ)]2i , if i ∈ I1(xk)

− [∇f̂Nmax (xk,µ)]2i

αk+
[∇f̂Nmax

(xk,µ)]i

xk
i

, if i ∈ I2(xk)

−xki [∇f̂Nmax(xk, µ)]i, if i ∈ I3(xk)

,

so

(dk)T∇f̂Nmax(xk, µ) = −
∑

j∈I1(xk)

1

αk
[∇f̂Nmax(xk, µ)]2i −

∑
j∈I2(xk)

[∇f̂Nmax(xk, µ)]2i

αk + [∇f̂Nmax (xk,µ)]i
xki

−
∑

j∈I3(xk)

xki [∇f̂Nmax(xk, µ)]i.

Given that αk is bounded and that each of the three sums above is non-
positive, (35) implies

lim
k→∞,k∈L2

[∇f̂Nmax(xk, µ)]i = 0, i ∈ I1(xk) ∪ I2(xk)

and
lim

k→∞,k∈L2

xki [∇f̂Nmax(xk, µ)]i = 0, i ∈ I3(xk).

26

Thus
lim

k→∞,k∈L2

min{xki , [∇f̂Nmax(xk, µ)]i} = 0

and
lim

k→∞,k∈L2

‖min{xk,∇f̂Nmax(xk, µ)}‖ = 0,

which is a contradiction with (34) and means that K can not be a finite set.
Case 2. The set K is infinite, so from the updating rule of smoothing

parameter, there follows that

lim
k→∞,k∈L1

µk = 0. (36)

As limk→∞,k∈L1 x
k = x∗ and K is infinite set, without loss of generality it

can be assumed that k ∈ K, for every k ∈ L1 large enough. The set K is
infinite, so kj →∞ and j →∞. Then from (??) there follows

0 ≤ f̂Nmax(xk) ≤ rj(1 + α)f̂Nmax(x0) + εkj ,

for j ≥ 1. Therefore, taking limits we have

0 ≤ f̂Nmax(x∗) = lim
k→∞,k∈L1

f̂Nmax(xk) ≤ lim
j→∞

(rj(1 + α)f̂Nmax(x0) + εkj) = 0,

which completes the proof. 2

5 Numerical results

In this section we present some numerical results obtained by applying two
algorithms on the set of test problems which can be found in Chen et al. [5]
and Li et al. [9]. Our aim is to compare the performance of Algorithm 1,
which we refer to as VSS, with the results obtained by algorithm proposed
in Li et al. [9] which we will call LLS. The key differences between these
two methods lays in the fact that VSS uses the variable sample size scheme.
Also, the line search in VSS is nonmonotone and the way of updating the
smoothing parameter is more complex than in LLS.

In order to provide a better insight into the results, we will state the
relevant notation considering the test problems. The point x̂ is defined in a
way to poses exactly nx positive components which we choose randomly from

27

(0, τ) where τ = 10−6. Interval (−σ, σ) represents the range of elements of
E(M(ω)) −M(ωj) for j = 1, 2, . . . , Nmax. On the other hand, [0, βe) is the
range of elements of (M(ωj)x̂+ q(ωj))i for all i such that x̂i > 0. Parameter
βe is especially important since βe = 0 implies that the point x̂ is the unique
solution of the considered problem and the optimal value of the objective
function is 0.

The initial points are set to x0 = bv + 10uc where v is the vector with
all components equal to 1 and u represents uniformly distributed random
vector. The stopping criterion for the both algorithms is

‖min{xk,∇f̂Nmax(xk, µk)}‖ ≤ γε and µk ≤ ε,

with γ = 100 and ε = 10−6. The search direction dk is determined by using
αmin = α0 = 0.1. Line search is performed with both β and η equal to
0.5. The starting smoothing parameter is µ0 = 1. In LLS, this parameter is
updated by multiplying with 0.5, while the parameters of the Algorithm 3
are α = ξ̄ = 0.5 and κ̂ = 1 and in step S2 we set

µk+1 = min{ε, µk
2
,
αβ̃

2κ̄
, ¯̄µ(xk+1, γβ̃)}.

The sequence that makes the line search in VSS nonmonotone is initialized
by ε0 = max{1, f̂N0(x

0, µ0)} and it is updated only if the sample size does
not change. More precisely, if Nk−1 = Nk we set εk = ε0k

−1.1. Otherwise,
εk = εk−1. In VSS we set N0 = Nmin

0 = 3, while the rest of the parameters
for updating the sample size are d = 0.5, δ = 0.95 and ν̃1 = 1/

√
Nmax.

For each test problem we conducted 10 different runs of the relevant al-
gorithms. The results presented in the following two tables represent average
values of successful runs reported in column s. The run is considered success-
ful if the number of function evaluations (fev) needed to satisfy the stopping
criterion does not exceed 107. The number of function evaluations counts the
evaluations of the function F and the gradient ∇xF . More precisely, each
component of the gradient is counted as one function evaluation. The column
stac refers to the measure of stationarity ‖min{xk,∇f̂Nmax(xk, µk)}‖.

28

βe = 0 VSS LLS
(Nmax, n, nx, σ) stac fev s stac fev s
(100,20,10,20) 4.5672E-05 6.2264E+04 10 5.0399E-05 1.4733E+05 10
(100,20,10,10) 7.6566E-05 6.7011E+04 10 6.7901E-05 1.3712E+05 10
(100,20,10,0) 9.4806E-05 2.2688E+06 2 9.0334E-05 8.6548E+05 10
(100,40,20,20) 6.4237E-05 1.2939E+05 10 5.3148E-05 2.7244E+05 10
(100,40,20,10) 5.4754E-05 1.2830E+05 10 4.4507E-05 2.6979E+05 10
(100,40,20,0) - - 0 8.9627E-05 2.5557E+06 10
(200,60,30,20) 4.6531E-05 3.7331E+05 10 4.3733E-05 7.9708E+05 10
(200,60,30,10) 6.1972E-05 3.4602E+05 8 5.0888E-05 8.1134E+05 10
(200,60,30,0) - - 0 9.1281E-05 7.2546E+06 9
(200,80,40,20) 6.0005E-05 5.0364E+05 9 6.0231E-05 1.0715E+06 10
(200,80,40,10) 4.8242E-05 4.8897E+05 8 5.7896E-05 1.0585E+06 10
(200,80,40,0) - - 0 9.0104E-05 8.4345E+06 6
(200,100,50,20) 5.2790E-05 6.3805E+05 10 3.7452E-05 1.2967E+06 10
(200,100,50,10) 4.3754E-05 6.2113E+05 8 5.3203E-05 1.2577E+06 10
(200,100,50,0) - - 0 9.2829E-05 9.9740E+06 2
(300,120,60,20) 6.5184E-05 1.2418E+06 8 5.9607E-05 2.4488E+06 10
(300,120,60,10) 4.4089E-05 1.4401E+06 8 5.1507E-05 2.3362E+06 10
(300,120,60,0) - - 0 - - 0
(1000,50,25,10) 7.0037E-05 1.3376E+06 4 4.4642E-05 3.0532E+06 10
(1000,50,25,0) - - 0 - - 0

Table 1: VSS versus LLS, βe = 0

29

βe > 0 VSS LLS
(Nmax, n, nx, σ, βe) stac fev s stac fev s
(100,20,10,20,10) 3.5346E-05 5.7558E+04 10 6.3513E-05 1.3971E+05 10
(100,20,10,20,5) 3.2922E-05 5.6040E+04 10 5.0903E-05 1.3866E+05 10
(100,40,20,20,10) 6.5369E-05 1.1719E+05 10 5.8538E-05 2.6977E+05 10
(100,40,20,20,5) 5.6539E-05 1.4118E+05 10 5.4201E-05 2.6914E+05 10
(100,40,20,10,20) 6.1957E-05 1.5586E+05 10 5.3656E-05 2.9287E+05 10
(200,60,30,20,10) 4.0542E-05 3.3951E+05 10 4.8921E-05 8.0256E+05 10
(200,60,30,20,5) 4.9567E-05 2.7194E+05 10 6.2701E-05 7.5920E+05 10
(200,80,40,20,10) 3.8306E-05 4.8032E+05 10 7.2183E-05 1.0549E+06 10
(200,80,40,20,5) 5.0707E-05 4.0370E+05 10 6.9662E-05 1.0168E+06 10
(200,100,50,20,10) 4.6138E-05 5.8055E+05 10 7.1681E-05 3.3134E+06 10
(200,100,50,20,5) 4.6833E-05 5.5841E+05 10 6.1738E-05 1.2628E+06 10
(200,100,50,10,20) 4.9498E-05 8.0825E+05 10 5.4844E-05 1.5759E+06 10
(300,120,60,20,10) 6.2990E-05 1.0970E+06 10 5.8830E-05 2.3564E+06 10
(300,120,60,20,5) 5.2634E-05 8.6039E+05 10 7.5739E-05 2.2575E+06 10
(300,120,60,10,20) 5.4974E-05 1.4747E+06 10 6.5885E-05 4.2844E+06 10
(1000,50,25,20,10) 3.6456E-05 1.3141E+06 10 4.2850E-05 3.2556E+06 10
(1000,50,25,10,5) 3.3576E-05 8.4020E+05 10 4.9866E-05 2.9910E+06 10
(1000,100,50,5,10) 4.1478E-05 2.0831E+06 10 5.3271E-05 5.8908E+06 10
(1000,100,50,10,5) 4.1682E-05 1.7271E+06 10 5.8140E-05 6.1028E+06 10

Table 2: VSS versus LLS, βe > 0

Table 1 represents the results obtained by considering the test problems
with βe = 0, while Table 2 states the results for βe > 0. Notice that in the
latter case all of the runs were successful, while βe = 0 caused failure in many
tested problems, especially regarding VSS algorithm. Instances with σ = 0
turn out to be the most challenging for VSS, but these particular problem
settings also affected LLS performance. Although the algorithm LLS seems
to be more stable, VSS gains the advantage in the fev column and we can
not say which one of the tested algorithms performs better. However, the
results in Table 2 reveal the clear advantage of VSS method. In all the tested
problems presented in the last table, average number of function evaluations
for the VSS is lower than fev for LLS. Therefore, our conclusion is that the
overall results suggest that using the algorithm VSS can be beneficial.

References

[1] J. Barzilai and J.M. Borwein, Two-point step size gradient methods,
IMA J. Nurer. Anal. 8, pp. 141-148, 1988.

30

[2] C. Chen, O.L. Mangasarian, A class of smoothing functions for linear
and mixed complementarity problems, Comput. Optim. Appl. 5, pp.
97-138, 1996.

[3] X. Chen, M. Fukushima, Expected residual minimization method for
stochastic linear complementarity problems, Math. Oper. Res. 30, pp.
1022-1038, 2005.

[4] X. Chen, L. Qi, D. Sun, Global and superlinear convergence of the
smoothing Newton method and its application to general boxed con-
strained variational inequalities, Math. Comp. 67, pp. 519-540, 1998.

[5] X. Chen, C. Zhang, M. Fukushima, Robust solution of monotone
stochastic linear complementarity problems, Springer, Math. Program.
117, pp. 51-80, 2009.

[6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York,
1983.

[7] W. Cottle, J.S. Pang and R.E. Stone, The linear complementarity prob-
lem, Academic Press, Boston, 1992.

[8] W. Hager, B.A. Mair and H. Zhang, An Affine scaling interior-point
CBB method for box-constrained optimization, Math. program. 119.
pp. 1-32, 2009.

[9] X. Li, H. Liu and X. Sun, Feasible smooth method based on Barzilai-
Borwein method for stochastic linear complementarity problem, Numer.
Algor. 57, pp. 207-215, 2011.

[10] C. Kanzow and H. Pieper, Jacobian smoothing methods for general
nonlinear complementarity problems, SIAM Journal on Optimization
9, pp. 342-373, 1999.

[11] N. Krejić and N. Krklec, Line search methods with variable sample size
for unconstrained optimization, Journal of Computational and Applied
Mathematics 245, pp. 213-231, 2013.

[12] N. Krejić and N. Krklec, Nonmonotone line search methods with variable
sample size, technical report, 2013.

31

[13] N. Krejić and S. Rapajić, Globally convergent Jacobian smoothing in-
exact Newton methods for NCP, Computational Optimization and Ap-
plications 41, pp. 243-261, 2008.

[14] C. Zhang and X. Chen, Smoothing projected gradient method and its
application to stochastic linear complementarity problems, Siam. J. Op-
tim. Vol. 20, No. 2, pp. 627-649, 2009.

32

