
A Nonmonotone Line Search Method for

Stochastic Optimization Problems
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Abstract

A non-monotone line search method for solving unconstrained opti-
mization problems with the objective function in the form of mathematical
expectation is proposed and analyzed. The method works with approx-
imate values of the objective function obtained with increasing sample
sizes and improves accuracy gradually. Non-monotone rule significantly
enlarges the set of admissible search directions and prevents unnecessarily
small steps at the beginning of the iterative procedure. The convergence
is shown for any search direction that approaches the negative gradient
in the limit. The convergence results are obtained in the sense of zero
upper density. Initial numerical results confirm theoretical results and
show efficiency of the proposed approach.

Key words: zero upper density convergence, unconstrained stochastic
problem, sample average approximation

1 Introduction

The problem that we consider is an unconstrained problem of the form

min
x∈IRp

f(x), (1)

where the objective function f is given as

f(x) = E(g(x, ω)). (2)

The mathematical expectation E is defined with respect to ω in the probability
space (Ω,F , P ). It is assumed that the function g : IRp × Ω → IR is known
analytically or provided by a black box oracle with desired accuracy. But the
analytical form of the function f is seldom available and needs to be approxi-
mated in some way. The most common approximation is the Sample Average
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Approximation defined as

G(x,w) =
1

n

n∑
j=1

g(x, ωj), (3)

where ω = {w1, . . . , wn} is random sample of size n. The sample size n repre-
sents a tradeoff between precision and cost, as large sample size provides better
approximation but causes higher computation costs and vice versa. Problems
of this type appear in many applications, for example in mathematical models
obtained by simulations or whenever the set of model parameters is not known
or is subject to noise. Thus, there is a great need to solve them efficiently. In
general, a large sample size is needed to obtain approximations of reasonable
accuracy. This fact causes large computational effort in solving (1) as the com-
putation of the objective function, as well as its derivatives, becomes very costly.
The general approach is to consider a sequence of approximations (2) with an
increasing sample size, i.e., with a different sample size in each iteration and
lower the cost of the overall optimization procedure. The problem (1) is closely
related to the problem arising in machine learning where one has to minimize a
finite, but a very large sum of functions, see [3, 4].

There are many different approaches for a choice of the sequence {n(i)} of
sample sizes at each iteration. The dominant way of sample size scheduling is an
increasing sample size sequence that results in smaller computational costs than
working with a large sample from the beginning. One can distinguish between
two main approaches in the sample size scheduling - a predetermined sample
size schedule, for example [12] or an adaptive sample size schedule, [6, 11, 13].
An overview of different sample size scheduling is presented in [7].

The classical approach in deterministic optimization for unconstrained op-
timization is to apply a line search method, either monotone and based on
Armijo type decrease condition, or one of the well known non-monotone line
search methods. The monotone line search method for (1)-(2) with a predeter-
mined sample size sequence is defined and considered for problems of type (1) in
[12]. The method is based on a decrease determined by the Armijo rule in each
iteration, for the approximate objective function defined with the current sam-
ple in the iteration. The search direction is an approximate negative gradient.
It is shown that the method converges with upper zero density. However, the
decrease obtained with the Armijo rule at each iteration is, in fact, a decrease
of the approximate objective function at that iteration and does not necessarily
imply a decrease of the true objective function of (1). On the other hand, the
strict decrease condition might cause a rather small step size and thus trap the
algorithm in a narrow valley of the objective function. This is specially the
case when the derivatives are not available. Hence, a non-monotone line search,
which does not require a strict decrease in each iteration and allows for large step
sizes, might be a better option for the overall optimization procedure, in par-
ticular for the stochastic problems. An additional property of a non-monotone
line search procedure is the step sizes are in general larger and there is more
freedom with the search direction. In this paper we consider the non-monotone
line search rule due to Li, Fukushima [8] that is successfully applied in many
papers, for deterministic and stochastic problems, for example see [1, 6].

The main contribution of this paper is a generalization of the results pre-
sented in [12] in the following sense. First, we define a non-monotone line search
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strategy that allows us to take an arbitrary search direction, not necessarily
strictly decreasing for the current approximate objective function. The search
directions need to approach the negative gradient only in the limit. Further-
more, the step size rule allows us more freedom and hence generates a sequence
that might approach the solution faster. We prove the convergence of the pro-
posed algorithm in the sense of upper zero density, as in [12]. Finally, we present
a set of initial testing results that confirm the theoretical results and provide
empirical evidence for the proposed algorithm.

2 Preliminaries

In this section we briefly repeat the results of Wardy [12] that will allow us to
propose a non-monotone line search method and prove its convergence. Let us
first state the definition of upper density convergence.

Definition 1. Let K be a set of integers. The upper density of K, denoted by
ud(K) is the quantity

ud(K) = lim sup
i→∞

|K ∩ [1, i]|
i

, (4)

where |S| denotes cardinality of set S, and for integers i and j, j ≥ i

[i, j] := {i, i+ 1, . . . , j}.

The convergence in upper density is defined and proved by means of opti-
mality function. The function θ : IRp → IR+ is an optimality function if and
only if θ(x) = 0 for x which satisfies the optimality conditions.

Definition 2. An algorithm which generates sequences x1, x2, . . . in Rp is said
to converge with upper zero density (ud) on compact sets if with probability 1,
if {xi} is a bounded sequence, then there exists a set of integers J, such that
ud(J) = 0 and θ(xi) →

xi 6∈J
0.

We will prove that the non-monotone line search method we propose here
converges in upper density as in [12]. To do so, we need to assume the following.

Assumption A1. [12]

If xi → x, xi ∈ IRp, i = 1, 2, 3, .. then θ(x) = 0 if and only if θ(xi)→ 0. (5)

The optimality function we consider is the gradient of the objective function
and thus the assumption above is satisfied.

An algorithm which generates sequence {xi}i∈IN , converges with zero upper
density on a compact set if the sequence is bounded and there exists w.p.1 a
set J with ud(J) = 0, such that the any accumulation point of subsequence
{xi}i∈IN\J satisfies the optimality conditions.

Let us now recall the notation needed for formulation of conditions for con-
vergence with zero upper density on compact sets, [12]. For every compact set
Γ ⊂ IRp, r ≥ 0, s ≥ 0 and integer i, let us define the following events:

• Ei(Γ, r) is the event that xi ∈ Γ and θ(xi) ≥ r.
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• Gi(Γ, s) is the event that xi ∈ Γ and f(xi+1)− f(xi) ≥ −s.

• Hi(Γ, s) is the event that xi ∈ Γ and f(xi+1)− f(xi) ≥ s.

Here, Fi is the σ-algebra generated by all the information leading to the con-
struction of xi.

The following two conditions are sufficient for the convergence in upper den-
sity if f is continuous function and the iterations are generated by a line search
with a random sample of predetermined size at each iteration. Let Ci be an
arbitrary event from Fi.

Condition 1. [12] For every compact set Γ ⊂ IRp and r > 0, there exists s > 0
such that, for every ε > 0, there exists an integer I such that for every i ≥ I
and event Ci ∈ Fi

P (Gi(Γ, s)|Ei(Γ, r), Ci) < ε (6)

Condition 2. [12] For every compact set Γ ⊂ IRp, s > 0 such that, for every
ε > 0, and ε > 0, there exists an integer I such that for every i ≥ I and event
Ci ∈ Fi

P (Hi(Γ, s)|Ci) < ε (7)

The following two assumptions characterise the problem we consider more
closely.

Assumption A2. The objective function f has the form (2), and g(·, ω) ∈
C2 (IRp).

Assumption A3. For every compact set Γ ⊂ IRp, there exists K > 0 such
that, for every x ∈ Γ and ω ∈ Ω,

|g(x, ω)|+ ||∂g
∂x

(x, ω)T ||+ ||∂
2g

∂x2
(x, ω)|| ≤ K, (8)

where || · || denotes vector norm, or induced matrix norm, depending on context.

The above assumption is stated in Wardi [12] as well, and roughly speaking
it states that any random sample we draw is in fact bounded. The consequence
of A3 is that f is continuously differentiable and ∇f is Lipschitz continuous on
compact sets, so

∇f(x) = E

(
∂g

∂x
(x, ω)T

)
. (9)

This fact justifies the choice of ||∇f(x)|| as the optimality function i.e. θ(x) =
||∇f(x)||. Clearly, the condition (5) holds.

3 The Non-Monotone Line Search Method

Line Search algorithm presented here is a modification of the algorithm pre-
sented in [12]. Instead of monotone Armijo-type line search with negative gra-
dient as the search direction, we use a general search direction satisfying (12),
and non-monotone Armijo rule. The nonmonotonicity is defined by a sequence
{εi}i∈IN such that

εi > 0,

∞∑
i=0

εi <∞. (10)
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Algorithm. Input: x0 ∈ IR, {n(i)}i∈IN , {εi}i∈IN , α ∈ (0, 1), β ∈ (0, 1)

Step 0. Set i = 0.

Step 1. Randomly draw n(i) sample points ωi := {ωi,1, ωi,2, . . . , ωi,n(i)} ∈ Ω.

Step 2. Choose a search direction hi.

Step 3. Set k(i) to be the smallest integer k satisfying

G(xi − βkhi, ωi)−G(xi, ω
i) ≤ −αβk||hi||2 + εi. (11)

Set xi+1 = xi − βk(i)hi, i = i+ 1 and go to Step 1.

In Step 3 our goal is to find the step size that satisfies the non-monotone
Armijo condition, i.e. find the appropriate k(i) that satisfies (11). Notice that
Algorithm is well defined for an arbitrary search direction as εi > 0 so for any
hi there exists k(i) large enough such that (11) holds and Step 3 finishes with
a finite k(i).

Theorem 1. Assume that A2-A3 hold. If the search directions hi in Step 2 of
Algorithm are chosen such that

lim
i→∞

||∇G(xi, ω
i)− hi|| = 0, (12)

where G(xi, ω
i) :=

1

n(i)

n(i)∑
j=1

g(xi, ωi,j) and ∇G(xi, ω
i) :=

∂G

∂x
(xi, ω

i)T , then

Algorithm converges with zero upper density on compact sets.

Proof. To prove the statement we need to show that Conditions 1 and 2 hold.
Then the statement follows by Theorem 2.1 in [12]. Let Γ ⊂ IR be a compact
set. First, we show that the sequence ||hi|| is bounded from above. Due to
(12), there exists an constant K0 such that ||hi − ∇G(xi, ω

i)|| ≤ K0. Also,
(8) guaranties that there exists K > 0 such that ||∇G(xi, ω

i)|| ≤ K. So, for
M = 2 max{K0,K}, we have

||hi|| ≤ ||hi −∇G(xi, ω
i)||+ ||∇G(xi, ω

i)|| ≤M. (13)

Therefore, ||hi|| is bounded from above. Let us prove now that

lim
i→∞

|hTi hi −∇G(xi, ω
i)Thi| = 0. (14)

Given that

0 < |hTi hi −∇G(xi, ω
i)Thi| ≤ ||hi −∇G(xi, ω

i)|| · ||hi|| (15)

and that ‖hi‖ is bounded, the limit (12) implies that (14) holds.
Let us now prove that for an arbitrary compact set Γ ⊂ IR there exists an

integer k such that for every xi ∈ Γ we have k(i) ≤ k. Let xi ∈ Γ and λ ≥ 0.
By the Mean value theorem we have

G(xi − λhi, ωi)−G(xi, ω
i) = −λ∂G

∂x
(xi, ω

i)hi

+ λ2
∫ 1

0

(1− s)〈∂
2G

∂x2
(xi − sλhi, ωi)hi, hi〉ds

(16)
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So, (14) implies that there exists an integer i0 such that for every i ≥ i0

−λ∂G
∂x

(xi, ω
i)hi ≤ −λ||hi||2 + εi. (17)

By Schwarz’s Inequality and (8) we obtain

|λ2
∫ 1

0

(1− s)〈∂
2G

∂x2
(xi − sλhi, ωi)hi, hi〉ds| ≤ λ2K||hi|| (18)

Now, (16)-(18) implies

G(xi − λhi, ωi)−G(xi, ω
i) ≤ λ(1− λK)||hi||2 + εi (19)

Substituing λ = βk in the above inequality, we get that (11) is satisfied if
βk ≤ (1− α)/K holds.

Let us consider Condition 1. Take r > 0 and s = 1
2αβ

kr2 and ε > 0. We
can choose δ > 0 such that

αβk(r − δ)2 ≥ s.

As
∑∞
i=0 εi <∞, there exists an integer i1 such that for every i ≥ i1 we have

εi ≤ δ.
Let A(i) be the event: xi ∈ Γ, and

||∇f(xi)−∇G(xi, ω
i)|| < δ

2
, |f(xi)−G(xi, ω

i)| < δ

2
, |f(xi+1)−G(xi+1, ω

i)| < δ

2
.

By the Weak Law of Large Numbers there exists an integer i2 such that for
every i ≥ i2

P (A(i)|Ci, xi ∈ Γ) ≥ 1− ε.

With I = max{i0, i1, i2}, for all i ≥ I, if A(i) is satisfied and ||∇f(xi)|| ≤ r
then ||hi|| > |r − δ|, and

f(xi+1)− f(xi) = f(xi+1)−G(xi+1, ω
i)

−
(
f(xi)−G(xi, ω

i)
)

+G(xi+1, ω
i)−G(xi, ω

i)

≤ δ − αβk||hi||2 + εi ≤ 2δ − αβk(r − δ)2 ≤ −s.

The above inequalities imply P (A(i)|Ci, xi ∈ Γ) ≤ ε and (6) hold, i.e., Condi-
tion 1 is fulfilled.

To prove Condition 2 we consider again a compact set Γ ⊂ IR, s > 0 and
ε > 0. As

∑∞
i=0 εi < ∞, we can take an integer i0 such that for every i ≥ i0

there holds
εi ≤

s

3
.

As f is Lipschic continuous on Γ and (13) holds, for xi+1 = xi − βk(i)hi there
exist constants L > 0, and M > 0 such that

|f(xi+1)− f(xi)| ≤ LMβk(i).

Thus, there exists an integer k, such that if k(i) ≥ k, then

f(xi+1)− f(xi) ≤ s. (20)
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Now, we consider the case k(i) ≤ k. Let B(i) be the event

xi ∈ Γ, k(i) ≤ k, |f(xi)−G(xi, ω
i)| < s

3
, |f(xi+1)−G(xi+1, ω

i)| < s

3
.

If the event B(i) is realized, then

f(xi+1)− f(xi) = f(xi+1)−G(xi+1, ω
i)

−
(
f(xi)−G(xi, ω

i)
)

+G(xi+1, ω
i)−G(xi, ω

i)

≤ 2s

3
− αβk(i)||hi||2 + εi ≤ s.

Again, by the Weak law of large number, there exists an integer i1, such that
for all i ≥ i1

P (B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≥ 1− ε.

Taking I = max{i0, i1}, we have that for all i ≥ I and Ci ∈ Fi

P (B(i), k(i) ≤ k|Ci, xi ∈ Γ) ≤ ε. (21)

Now, (21), (20) and (7) imply that Condition 2 is fulfilled. As Conditions 1 - 2
are satisfied, the statement follows by Theorem 2.1 in [12].

4 Numerical Results

In this section we report some preliminary numerical results that confirm theo-
retical results and demonstrate efficiency of the proposed approach. We consider
the following test four examples, defined as

g(x, ω) = φ(ωx), ω : N (1, σ2),

where φ : IRp → IR. The testing is done for two variance levels σ2 = 0.1 and
σ2 = 1, using test functions φ taken from [2] and [9]:

AP Aluffi-Pentini’s Problem, p = 2

g(x, ω) = 0.25(ωx1)4 − 0.5(ωx1)2 + 0.1(ωx1) + 0.5(ωx2)2.

EXP Exponential Problem p = 10

g(x, ω) = exp(−0.5

p∑
i=1

(ωxi)
2).

SAL Salomon Problem p = 10

g(x, ω) = 1− cos(2π||ωx||) + 0.1||ωx||, where ||ωx|| =

√√√√ p∑
i=1

(ωxi)2.

SPH Sphere function or first function of De Jongs p = 10

g(x, ω) =

p∑
i=1

(ωxi)
2.
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Theoretical results are obtained for the case n → ∞. But clearly, in actual
implementation one can work only with finite sample size. Let nmax denote the
maximal sample size allowed and we fixed nmax = 100 for the first two problems,
nmax = 1300 for the third problem and nmax = 200 for the last problem. The
choice of nmax is highly non-trivial but we will not discuss it here as our aim is
only to illustrate the potential advantages of non-monotone line search rule.

The algorithm is implemented and tested against classical Armijo monotone
line search rule (εi = 0 in Algorithm) for two search directions, the first one
being the negative gradient while the second direction is the finite difference
approximation of the negative gradient ∇ξG(xi, ω

i), calculated defined in [10].
The ith component is defined as

G(xi + ξei, ω
i)−G(xi − ξei, ωi)

2ξ
,

where ei denotes the ith coordinate vector in Rp and ξ = 10−4. The sequence
{εi} is defined as εi = 2−i, i = 1, 2, . . . . Therefore, we have implemented four
different methods.

• NM1 Non-monotone line search with the negative gradient search direc-
tion, hi = ∇G(xi, ω

i)

• NM2 Non-monotone line search with the finite difference approximation
of the negative gradient. hi = ∇ξG(xi, ω

i)

• M1 Monotone (Armijo) line search with the the negative gradient search
direction, hi = ∇G(xi, ω

i)

• M2 Monotone (Armijo) line search with the finite difference approximation
of the negative gradient. hi = ∇ξG(xi, ω

i)

The sample size in each iteration is defined as n(i+1) = min{d1.1n(i)e, nmax},
with the initial value n(0) = 3 and a new sample of the size n(i) is generated
in ith iteration. The algorithmic parameters are the same for all problems, the
starting point is x0 = 10 · [1, 1, . . . , 1]T , α = 10−4 and backtracking is performed
with β = 0.5. We also limited the number of backtracking steps to 5. The
stopping criteria is satisfied in xi if the norm of the gradient or its approxima-
tion is smaller than 10−2 and n(i) = nmax. The number of function evaluations
is used as the algorithm performance measure. Thus, for NM1 and M1, each
gradient calculation is counted as p function evaluation, while for NM2 and M2
we used the two-sided approximation of gradient, so each gradient calculation
is counted as 2p function evaluation. The method is stopped if the maximal
allowed number of function evaluation is exhausted, with the maximal number
set to 107.

In the testing process, we generated 5 independent samples for each variance
levels and all problems are tested using the same collection of samples.

The results are shown at Figure 1, using the performance profile graph [5],
where the cost function is defined as the number of function evaluations. The
graph clearly indicates that the non-monotone line search outperforms the clas-
sical Armijo line search at the considered test collection for both search direc-
tions. As expected, negative gradient performs better than the finite difference
approximation of the negative gradient but nevertheless works reasonable well,
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which is an important property for problems where the function is calculated
using a black box and the exact gradient of g is not available.
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Figure 1: Performance profile for methods M1, NM1, M2, NM2 and two variance
levels 0.1 and 1.
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