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Abstract

Measuring true slippage in algorithmic execution is a difficult task
since the execution is a function of market activity. In this paper, we pro-
pose a performance measure for execution algorithms. The measure takes
a posterior look at the trading window and allows us to determine what
would have been the optimal order placement if we knew in advance the
complete market information during the trading window. We define the
performance measure as the difference between the optimal trading and
the actual execution. This difference is calculated taking into account all
process and traded quantities within the considered time window. Thus,
we are capturing the impact caused by our own trading as a cost that
affects all trades. Properties of Negative Selection, which make this mea-
sure well defined and objective are discussed. Some empirical results on
real trade data is also presented.
Key words: performance measure, algorithmic trading, Arrival Price,
VWAP

MSC: 90C90, 90B90.

1 Introduction

Automated Order Execution is the dominant way of executing orders at major
stock markets. There is a variety of algorithms that are designed to serve
different purposes and trader preferences. In Automated Order Execution a
computer-based algorithm is used to buy (or sell) a position while attempting
to achieve a benchmark specified by a client. Therefore the specified benchmark
is used as a measure of execution performance. It is undoubtedly difficult to
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define one standard measure for all order executions and all objectives as they
can be very different and orders often come with many constraints. There are
many types of benchmarks, some are established before the trading process,
like Arrival Price, others are established during the trading process like VWAP,
others quantify delays, or measure the performance with respect to the closing
price etc.

The most important performance measures are VWAP (Volume Weighted
Average Price) and Implementation shortfall (IS). Both measures are widely
used in practice and represent the standard in the financial industry. Their
properties are the subject of many academic studies and a number of algorithms
are developed in order to minimize the slippage to VWAP and AP, [6, 8, 11, 13].
One of the problems with measuring slippage, whether it is VWAP or IS, is
that they either distort the slippage measure or do not reflect the true nature
of slippage. In the case of VWAP, by its own definition, this measure distorts
slippage with increasing order size due to the impact caused by one’s own orders.
Although a good algorithm, the slippage measure is fundamentally flawed for
large order size

In the case of the other equally dominant benchmark, IS, with Arrival Price
as the reference price, although it is unbiased in terms of measuring slippage
caused by price drift and market impact, it does not reflect the true slippage
due to its reference to a static price (Arrival price). In other words, it does not
capture the nature of absolute slippage. Consider the scenario where a buyer has
to complete an order. Denote by t0 the time when the buyer enters the market. If
the price drifts up during the execution, the average execution price will be much
higher than the reference price at t0. This slippage is naturally expected to the
relatively high due to the difficult market conditions. If however the price drifted
downwards by the same amount and the entire order quantity was on the best
bid at t0 and stayed there, the slippage would remain constant, representing the
difference between the best bid price and Arrival Price. Although the slippage
in the latter scenario is lower, the IS slippage measure relative to the fixed
reference price does not reflect how much better we could have done. In an easy
market condition like the case of falling price, intuitively, one may have expected
to get negative slippage. However, the IS measure does not reflect this.

Hence the need for an absolute performance measure.
The performance measure which we propose in this paper aims at providing

an alternative way of measuring the performance of execution algorithms. The
measure takes a posteriori view of market conditions and its main characteristic
is that it is completely objective. Roughly speaking, a posterior approach allows
us to determine what would have been the optimal order placement if we knew in
advance the complete market information during the trading window. Thus, we
define the performance measure as the difference between the optimal trading
position and the actual execution. This difference is calculated taking into
account all traded quantities within the considered time window. This way, we
are capturing the impact caused by our own trading as a cost that affects all
trades, including our own and avoid the main problem with VWAP in the case
of large trades.
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Let us briefly explain the term Negative Selection. In execution, more specif-
ically with regard to price movements, one does not want to get filled when the
price comes one’s way as the price may keep heading in that direction. In this
case, it may be better to become more passive and hope to get a better price.
Hence one’s order being ”selected” or ”executed” is basically a sub-optimal ex-
ecution. Negative Selection is an evolved term used to distinguish itself from
the original concept in economics, namely adverse selection, referring to skewed
and undesirable results due to asymmetry in information held by negotiating
parties. In the case of a buyer and seller, asymmetric information in market di-
rection will lead to the one with information edge benefitting from a transaction
on the expense of the other.

Given a single buy order with a specified quantity Q and a time window [0, T ]
for the execution, we define the optimal placement of the order as a solution
of LP program. The unknowns of the LP are quantities at specific price levels,
which add up to Q and would have yielded the lowest possible price during
[0, T ], if we knew all market conditions during the trading window in advance.
Thus the optimal placement is a vector calculated after the trade window [0, T ].
The Negative Selection is defined as the distance between the actual trade,
represented by the vector with a single nonzero component, and the optimal
placement.

Any performance measure has to have several important properties. First
of all, it should be able to distinguish clearly between filled and partially filled
orders as well as between orders filled at different price levels. Furthermore, the
performance measure needs to possess a continuity in the sense that a negligible
change in the order size or in the fill price should yield negligible changes in the
performance measure. Perhaps the most important property of a performance
measure is that it should reflect the toughness of market condition at a particular
time window and thus allow one to judge the quality of execution. We will show
later on that the performance measure proposed in this paper possesses all of
these qualities.

This paper is organized as follows. In Section 2 we define Negative Selection
for a single (market or limit) order. All statements are given for the buy side
to simplify the presentation and the sell side is completely symmetric. Then we
define the Negative Selection of a complex order consisting of several positions -
both passive and aggressive. Some empirical properties of Negative Selection are
discussed in Section 3. We consider a black box trading strategy to measure the
quality of different execution algorithms using Negative Selection. The results
are compared with VWAP and IS as performance measures. Some conclusions
are drawn in Section 4.

2 Negative Selection

The definition of Negative Selection is given here assuming that we have to
buy Q shares either by placing a market order or taking a passive position at
some of the bid levels. For the opposite case, selling Q shares, the definition is
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completely symmetric. We consider a market governed by the limit order book
implying that the orders are placed in queues by price and arrival time priority.
Next, let us assume that the buy order of the size Q has to be executed within
the time window [0, T ]. At t = 0 the following information is available.

The price vector,
P = [P0, P1, . . . , Pk]T ,

with P0 being the price for market orders (i.e. the ask price at t = 0), and
P1, . . . , Pk being the bid prices at the corresponding bid levels. Clearly Pk <
Pk−1 < . . . < P1 < P0.

The volume ahead,
V = [V0, V1, . . . , Vk]T

represents the sizes of the existing orders in the corresponding bid queues at t =
0. We will assume that V0 = 0, so a market order with price P0 is immediately
traded.

The gain coefficients are defined as

G = [g0, g1, . . . , gk]T with gj =
P0 − Pj

P0
, j = 0, 1, . . . , k. (1)

Clearly, 0 = g0 < g1 < . . . < gk.
We consider first a simple order of sizeQ, and it will be placed either as the

market order or it will be placed passively, at some bid level at the end of the
existing queue. We are assuming that Q is small enough so it can be traded as a
simple order. Later on, we will discuss the case of larger Q, when one splits the
quantity into several smaller orders to be executed within the trading window
[0,T] For technical reasons it is more convenient here to define the order vector

Q = [Q0, Q1, . . . , Qk]T . (2)

The order vector will have the following property

Qm = Q for some m ∈ {0, 1, . . . , k} and Qj = 0, j 6= m, j = 0, 1, . . . , k.

At the end of the trading window, t = T some additional information are
available.

The traded quantity during (0, T ] at every price level is represented by

T = [T0, T1, . . . , Tk]T

and we assume that T0 ≥ Q. i.e. there has been enough liquidity so the market
order could have been filled at P0.

The available quantity now is defined as

A = [A0, A1, . . . , Ak]T , Aj = max{Tj − Vj , 0}.

The assumption T0 > Q implies that the set of indices IL = {j : Aj > 0, j =
1, . . . , k} is nonempty. So, the buy order Q could have been completely filled
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during [0, T ]. In other words, we are assuming that the order size Q is up to
some percentage of the average traded volume within [0, T ]. Denote further by
l = max IL. We also define the set of indices

IH = {j :

l∑
i=j

Aj ≥ Q, j = 0, 1, . . . , l}.

This set is nonempty and let h = max IH be its maximal element.
We are now in position to define the optimal placement. It is defined after-

wards, i.e., at t = T when all of the above vectors are available. The optimal
placement represents the best we could have done at t = 0 to execute the order
during [0, T ], if we knew in advance, at t = 0 all information for the trading time
interval. In other words, the optimal placement represents the perfect scenario
that would have allow us to execute the order with the lowest possible price.
So, let us denote the optimal placement as

O = [O0, O1, . . . Ok]T .

With this notation we are assuming that the quantity O0 has been traded as
a market order, O1 has been placed at the first bid level and so on. Since the
objective is to buy Q shares at the lowest possible price, the optimal placement
is a solution of the following Linear Programming Problem.

minimize

k∑
i=0

PiOi (3)

subject to

k∑
i=0

Oi = Q (4)

j∑
i=0

Ok−i ≤
j∑

i=0

Ak−i, j = 0, . . . , k − 1 (5)

Oj ≥ 0, j = 0, . . . , k (6)

Let us briefly explain the objective function and the constraints above. The
objective function states that we want to minimize the total cost of buying∑k

i=1Oi shares at prices levels P0, . . . , Pl. The first constraint states that the
quantity we want to buy is equal to Q. The second constraint specifies that
we can buy only the available quantities at each price levels. But it is slightly
more sophisticated that simply stating Oi ≤ Ai due to the price-queue priority
execution of the market order book. The following toy example shows that
filling the available quantities from below does not yield the smallest price for
the total order of Q shares. Assume that order with Q = 10 is submitted at
price 99.0 and we have ask1 and three available bid levels with the price vector

P = [100, 99.5, 99.0, 98.5]T .
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Furthermore, let the queue in the order book at t = 0 (the volume ahead)
be

V = [0, 50, 10, 4]T .

At t = T the traded volume is

T = [80, 50, 10, 9]T ,

so the available quantity is defined as

A = [80, 0, 0, 5]T .

If one considers the positions obtained by filling from below i.e. by taking
the available quantities from the lowest price up until Q is reached, such order
would be [5, 0, 0, 5]T and the price of buying 10 shares with such order would be
(5 ·98.5 + 5 ·100)/10 = 99.25. On the other hand, solving the LP above one gets
the optimal order as O = [1, 0, 9, 0]T and its price is (9 · 99 + 1 · 100)/10 = 99.1.
Hence the optimal placement i.e. the lowest price is not achieved by filling
from below. This fact motivated the definition above and is a consequence of
price-order trading mechanism.

The statement below claims that the LP (3)-(6) has a solution and its proof
is given in Appendix.

Theorem 1. The vector given by

Oj =0, j = 0, 1, . . . , h− 1 (7)

Oh =Q−
l∑

j=h+1

Aj (8)

Oj =Aj , j = h+ 1, . . . , l (9)

Oj =0, j = l + 1, . . . , k, (10)

is the unique solution of (3)-(6).

Proof is given in Appendix.
From now on we will refer to the vector (7)-(10) as the optimal placement.

We are now ready to define the performance measure.

Definition 1. For an order with the size Q at the price level Pm and execution
time window [0, T ], Negative Selection is defined as

N = (O −Q)TG, (11)

where O is the optimal placement vector, Q is the order vector and G is the
vector of gain coefficients defined by (1).

The following properties of Negative Selection make it a well defined perfor-
mance measure with desired qualities, objectivity and continuity.

Theorem 2. The following properties hold:
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a) Negative Selection of an optimally placed order is zero.

b) Negative Selection of a completely filled order is nonnegative.

c) Negative Selection of a (partially) unfilled order is negative.

d) Consider two orders with the same size Q placed at two price levels Pm and
Pm+1 with Pm > Pm+1. If Nm and Nm+1 are their Negative Selections
respectively, then Nm > Nm+1.

e) Consider two different order of the sizes Q1 > Q2 placed at the same price
level and denote their Negative Selections as N1 and N2. Then

1) If the larger order is filled then N1 ≥ N2.

2) If the larger order is unfilled then N1 < N2.

Proof. See Appendix.
When placing a buy order, one is faced with the dilemma of being aggressive

and cross the spread to buy at the prevailing asking price or take the chance of
a better price by bidding at some bid price. In a rising market, a passive order
at bid1 will remain unfilled which would lead to chasing the market to get filled,
and yield a larger slippage than with crossing the spread. While in a sideways
market, one is likely to save the spread cost by being passive. In the case of a
falling market, a buyer is considered too aggressive if the entire order is placed
at bid1 since one would achieve a better average price by having placed it at an
even more passive price level. However, in the latter case, the probability of fill
decreases significantly with more passive orders. Therefore, there is a need to
split the orders into multiple price levels.

Let us now define Negative Selection for an order distributed across multiple
price levels. Assume that the buy order for Q shares is allocated as the market
order for Q0 and a sequence of passive orders Q1, . . . , Qk at the corresponding
bid levels i = 1, . . . , k. Clearly Qi ≥ 0, i = 0, 1, . . . , k and

∑k
i=1Qi = Q. We can

represent this multilevel order for buying Q shares as

S = [Q0, Q1, . . . , Qk]T . (12)

Each component of this vector S has its own (simple) order vector as defined
by (2) i.e.

Qi = [0, . . . , Qi, . . . , 0]T , i = 0, 1, . . . , k. (13)

For each component of the vector in (13) we can calculate Negative Selection,
Ni as stated above. Then, Negative Selection for the complex orders is defined
as

N (S) = [N0, ...,Nk]T .

Unlike the case of simple order, here exists a certain interaction between the
optimal placements for simple orders at different price levels i.e. one must take
into account one’s own trading.
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3 Empirical Results

In this Section, we demonstrate some basic properties of Negative Selection
(NS) using real trade data. The test data consists of tick data for Vodafone
Group (VOD.L), AstraZeneca (AZN.L), Barclays PLC (BARC.L), and Sanofi
SA (SASY.PA), during the period January - August 2006, all trading days, from
8:15 to 16:25.

One of the principal advantages of the NS as a performance measure is that
it reflects the toughness of market at any given time. To demonstrate this
property we compare the behaviour of NS, VWAP and IS benchmarks in both
falling and rising markets. A simple example is considered. We place an order at
bid1 until filled or the time of 10 minutes expires. If the order is not completely
filled within 10 minutes, the residual is filled by crossing the spread at the end
of given time window. We tested a sequence of orders with increasing sizes,
from 0 to 35% of average traded quantity in the selected time window. The 10
minutes windows are chosen randomly. and the relevant trajectories for AZN
are shown at Figure 1 and Figure 2. The price trajectories are shown at the left-
hand side while the right-hand side shows the slippages with respect to all three
benchmarks at both Figures. The horizontal axis shows the traded amount in
thousands. The average traded quantity for AZN is 50000 shares in 10 minutes
so the simulations are performed for orders of size 1 to 17500 shares with the
step size of 500 shares.
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Figure 1: VWAP, Arrival Price and Negative Selection for falling market

Figure 1 shows the case of falling market. The slippage to VWAP is positive
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and decreasing with the increase of order quantity. Being positive gives the true
information of our execution, but the decrease with respect to traded quantity is
actually a false information. The decreasing slippage implies that the execution
strategy is good, although it is quite clear that in the failing market one should
have placed orders at lower price levels. This decrease in the slippage is a
consequence of the already mentioned VWAP flaw - the slippage is decreasing
due to the impact of large traded quantity. With IS, the situation is different:
the slippage is negative and constant. Its value is the difference of Arrival
Price and bid1 price at the beginning of the time window. The negative sign of
slippage here gives again a false information on the execution performance as
a consequence of insensitivity of Arrival Price to the market conditions in the
trading time window.

In the rising market shown in Figure 2, an order placed at bid1 can be
regarded as passive. If the order is not filled, it will result in crossing the spread
at the end of the time window and paying a higher price. The slippage to VWAP
is positive because the order is filled at a price higher than the benchmark. But
again, we see the decrease in the slippage with the increase of the order size,
giving the false impression that the execution strategy is actually improving with
the order size. The slippage to Arrival Price is high and positive. It is constant
while there is enough liquidity at t = T , but when the order size increases
enough - above the quantity available at ask1, the order starts to ”walk the
book” and the slippage to Arrival Price starts to rise. Whereas, NS is negative
and increasing with the order size. Thus the information we get is correct - the
execution strategy should have been more aggressive.

To demonstrate some properties of NS empirically, we consider a sequence
of orders generated by a Black Box (BB) trading strategy with inventory. It is
a momentum trading strategy generating signals using a mathematical model.
The common parameters of a BB are time execution window, cancel thresh-
old and order size. A combination of the time window width and the cancel
threshold are used as the cancellation criterion: an order is canceled if either
time expires or the cancellation threshold is reached. Therefore, there are only
two possibilities: an order is (partially or completely) filled or canceled within
the time window. The algorithm keeps track of open position i.e. all positions
are closed with the opposite operation (buy/sell). For example, let us fix the
order size to 100 shares. The first signal is to buy, and assume that 85 shares
are bought until the cancel threshold is reached (or the execution time expires).
The open position is now 85 shares. The second signal is sell and thus we want
to sell 100 + 85 = 185 shares, and so on. The BB parameters are selected as
follows: the time window is T = 10 minutes and the cancel threshold is 45bps.
The tested order sizes vary from 1% and 5% of average traded volume in the
time window, which is approximately 40, 000 to 200, 000 shares for Vodafone,
500 to 2, 500 shares for AstraZeneca, 3, 000 to 15, 000 for Barclays PLC, 420 to
2, 100 shares for Sanofi SA, respectively.

In addition to the Black Box trading strategy, we also consider the so-called
Default strategy which is formulated as the alternation of buy and sell signal
every 10 minute. When producing signals, it does not take into account the
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Figure 2: VWAP, Arrival Price and Negative Selection for rising market

actual market conditions. But like BB, it obeys rules regarding the possible
cancellation of an order. As the quality of signals, in terms of profitability,
is quite random, the purpose of Default strategy is to give us the baseline for
market conditions during the observed period. The Default Strategy, in fact,
reflects the toughness of the market as it landscapes the data.

The properties of Default and Black Box are presented in Table 1. The dollar
sign represents monetary units i.e British Pound for Vodafone, AstraZeneca and
Barclays PLC, and Euro for Sanofi SA and bid/ask1 denotes that buy order
was placed at bid1, and sell order at ask1 price level. Analogously, we introduce
notation bid/ask2 and bid/ask3. Clearly, the BB strategy has short-term alpha
and can generate profit. The Default strategy is obviously losing money.
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Ticker: VOD AZN BARC SASY

D BB D BB D BB D BB

100%
at
bid/ask1

Total number
of Triggers

8329 637 8219 1081 8337 1019 7505 438

Total number
of Trades

2969 536 4917 952 4395 657 4662 418

Profitable days
[%]

5.36 64.49 3.61 59.35 2.38 57.67 8.19 51.24

Profit [in 000] -68,230 12,942 -18,628 2,483 -29,055 1,996 -384 33
Slippage to
VWAP [bps]

1.84 -7.36 1.84 -2.33 2.27 -0.75 2.14 -3.58

Win[$]/Loss[$] -0.35 1.55 -0.39 1.31 -0.35 1.23 -0.46 1.31
Average Profit
per Trade[$]

-22,981 24,145 -3,788 2,608 -6,611 3,038 -82 80

Profitable
trades [%]

25.73 54.10 35.69 52.84 32.63 52.97 34.92 53.59

100%
at
bid/ask2

Total number
of Triggers

8329 637 8219 1081 8337 1019 7505 438

Total number
of Trades

475 91 3100 714 2066 326 2629 357

Profitable days
[%]

31.21 51.11 12.65 59.15 16.67 64.44 19.88 59.13

Profit [in 000] -15,183 536 -11,856 2,589 -12,404 1,903 -191 70
Slippage to
VWAP [bps]

0.78 -0.48 1.25 -2.8 1.12 -0.92 1.3 -7.23

Win[$]/Loss[$] -0.39 1.08 -0.43 1.45 -0.46 1.48 -0.55 1.95
Average Profit
per Trade [$]

-31,965 5,896 -3,824 3,626 -6,004 5,838 -73 196

Profitable
trades [%]

33.89 46.15 40.52 56.72 38.67 59.2 42.91 60.22

100%
at
bid/ask3

Total number
of Triggers

8329 637 8219 1081 8337 1019 7505 438

Total number
of Trades

137 31 1935 454 1002 153 1506 221

Profitable days
[%]

36.99 50 25.3 59.68 30.12 68.48 36.84 67.44

Profit [in 000] -3,159 -286 -7,447 1,361 -5,857 1,087 -81 43
Slippage to
VWAP [bps]

0.49 -0.12 0.85 -2.07 0.54 -0.62 0.71 -4.31

Win[$]/Loss[$] -0.58 -0.9 -0.46 1.34 -0.5 1.52 -0.69 1.9
Average Profit
per Trade [$]

-23,056 -9,215 -3,848 2,998 -5,845 7,103 -54 196

Profitable
trades [%]

44.53 48.39 43.36 57.49 40.92 67.32 46.88 60.18

Table 1: Properties of Default (D) and Black Box (BB) trading strategy for
order size of 5% of average traded volume in the time window
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Ticker: VOD AZN BARC SASY

Mean Negative
Selection for
orders of 1%
and 5% of
AVQ

bid/ask1
1% 5.73 0.36 0.52 0.55

5% 17.00 1.53 1.02 2.47

bid/ask2
1% -79.98 0.13 -1.90 0.26

5% -409.92 0.40 -11.12 1.03

bid/ask3
1% -164.15 -0.13 -4.49 -0.05

5% -831.74 -0.88 -24.11 -0.51

bid/ask4
1% -248.26 -0.43 -7.20 -0.36

5% -1251.97 -2.36 -37.61 -2.01

bid/ask5
1% -332.61 -0.78 -10.02 -0.69

5% -1673.73 -4.13 -51.76 -3.66

Table 2: Negative Selection for price levels bid/ask1-bid/ask5

Table 2 contains the simulation results for the BB strategy. We tested two
order sizes and five order placement positions, for all four stocks, across the
whole data set. The order sizes were 1% and 5% of average traded quantity
in 10 minutes intervals. The placement positions include all five bid/ask posi-
tions. In other words, for a buy signal we considered placing the order at bid1,
bid2,...,bid5 and analogously for a sell signal. The mean values across the whole
data set are given in Table 2. One can easily see that the theoretical proper-
ties stated in Theorem 2 are empirically confirmed. For all stocks, Negative
Selection of the smaller order (1%) is smaller than the Negative Selection of the
larger order (5%). Furthermore, as the trading becomes more passive the Neg-
ative Selection is becoming more negative. The actual mean values of negative
selection vary quite significantly between four considered stocks.In other words,
Negative Selection indeed captures the true properties of the market. VOD is
the most liquid stock with the widest spread (21.65bps) in this data sample -
trading takes place at bid1 and ask1 for an extended period followed by a shift
in price to the next price level or a few price levels above / below and repeat the
bid/ask bouncing. Unlike VOD, AZN is the least liquid stock with the small-
est spread (6.42bps). AZN price tends to trade in a narrow price channel e.g.
going from bid1 to bid3 and then bounce back and repeated the process, with
a different price trajectory. Such behaviour justifies the fact that VOD has the
best performance, in terms of profits and NS, at bid/ask1 and for AZN we see
the same at level bid/ask2.

More detailed results for the first three bid/ask levels are given in Table 3.
Again, the results are in line with theoretical properties. We also included mean
values of Tfill and Tcancel. Tfill is the exact time it took to fill, while Tcancel
denotes the time after which a (partially) unfilled order has been canceled.
Remember that cancellation is due either to the expiration of the execution
time (in that case Tcancel = 10 minutes)or to the price movement i.e. reaching
the price threshold (so Tcancel < 10 minutes).

12



Ticker: VOD AZN BARC SASY

bid/ask1

Mean (NS) 25.23 2.38 0.48 3.82
St.Dev. (NS) 605.60 4.76 25.00 5.13
Coeff. Of Vari-
ation (NS)

24.00 2.00 52.48 1.34

Mean/St.Dev
(NS)

0.04 0.5 0.02 0.74

Median (NS) 0.00 1.12 0.00 2.61
Mean(Tfill) 4.37 3.86 4.33 3.36
Mean(Tcancel) 9.03 9.20 9.59 7.57

bid/ask2

Mean (NS) -450.57 0.49 -14.14 1.33
St.Dev. (NS) 428.19 4.21 22.90 4.36
Coeff. Of Vari-
ation (NS)

-0.95 8.63 -1.62 3.28

Mean/St.Dev
(NS)

-1.05 0.12 -0.62 0.3

Median (NS) -428.27 0.00 -14.40 0.00
Mean(Tfill) 5.99 4.76 5.33 4.48
Mean(Tcancel) 9.56 9.49 9.71 9.00

bid/ask3

Mean (NS) -863.71 -1.16 -26.60 -0.82
St.Dev. (NS) 406.38 4.09 21.21 3.95
Coeff. Of Vari-
ation (NS)

-0.47 -3.52 -0.80 -4.78

Mean/St.Dev
(NS)

-2.13 -0.28 -1.25 -0.21

Median (NS) -847.46 -1.52 -25.86 -1.38
Mean(Tfill) 5.62 5.36 5.62 5.17
Mean(Tcancel) 9.56 9.54 9.65 9.37

Table 3: Negative Selection statistics and Fill/Cancel average time for Black
Box (BB) trading strategy

Figure 3 illustrates the property of NS described in Theorem 2 d) for VOD. A
random sample of triggers is used. Orders of 5% of the average traded quantity
are placed at bid/ask1, bid/ask2, ..., bid/ask5. Similar results are obtained
for the other shares, AZN, BARC, and SASY. Clearly, the Negative Selection
behaves as stated in Theorem 2 d). It is becoming more negative as the order
placement is more passive.

When an order is filled we notice that passive orders have absolute NS lower
than aggressive, because the price went in our direction affecting optimal place-
ment to be passive. This way passive orders were ”awarded” by the smaller
value of NS, i.e. they were closer to optimal placement. In the opposite case,
when for example for all bid levels the order was unfilled, for each level NS is
negative, but the bid1 order has the lowest absolute value. This reflects the fact
that the price went in the adverse direction, so the best strategy was to trade
aggressively i.e. more passive orders were undesirable.

Figure 4 illustrates Theorem 2 e). We are interested in NS for the orders at
the same price level but of different size. Again, we consider two order sizes, 1%
and 5% of the average traded quantity. Clearly, if there was enough liquidity to
fill the larger order, then there was enough liquidity to fill the smaller one. In
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Figure 3: Comparison of Negative Selection for VOD by price levels
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Figure 4: Comparison of Negative Selection by order size for bid/ask1

this case, NS of larger order dominates the NS of the smaller order, which enable
us to capture the impact caused by our own trading. It also indicates that in
the situation when the price is going in our direction, both orders will be filled
at an unfavourable price, but the effect is larger for the large order, i.e., the
overall costs are larger for suboptimal large order than the cost of a suboptimal
smaller order. On the other hand, if the larger order is unfilled, there are two
possibilities: First, the smaller order is filled i.e. there was enough liquidity to
fill the smaller one, but not enough to fill the larger. Hence, the smaller order
has nonnegative NS, while the large order has negative NS. In the second case,
the smaller order is also unfilled. Then, both orders have negative NS, with
the larger order being more negative. Obviously, the strategy was too passive
for the smaller order, but for the larger order, there is an additional cost for
passive behaviour, as filling the larger order, when the price is going away from
us, requires more aggressive behaviour.

Figure 5 represents the relative distribution of Negative Selection for bid/ask1
for BB. For more liquid stocks, Vodafone and Barclays, BB strategy has posi-
tive Negative Selection for bid/ask1, and negative for bid/ask2. This indicates
that price was trending in an adverse direction so the aggressive strategy was
more profitable. Moreover, trading at bid/ask2 and especially at bid/ask3 level,
because of passive behaviour we were exposed to the cost of crossing the spread.
For less liquid stocks AstraZeneca and Sanofi trading at bid/ask1 resulted in
positive Negative Selection, which means that with aggressive trading, a ma-
jority of orders were filled at the unfavourable price, while at bid/ask2 BB has
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slightly positive Negative Selection that implies that it was more profitable. At
bid/ask3 we see that the strategy is too passive resulting in less profit.

The distribution of Cancel Time and Fill time for the same sequence of orders
is depicted on Figure 6. Cancel Time corresponds to points with negative Neg-
ative Selection, while Fill time is on the nonnegative side of the axis. Basically,
this is a consequence of Theorem 2a)-c), because filled orders have nonnegative
NS, while unfilled orders have negative NS. Time limit for all orders was T = 10
minutes causing a grouping of cancel time data at the 10th minute.
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Figure 5: Retaliative frequency histogram of Negative Selection
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Figure 6: The distribution of Cancel Time and Fill time

4 Conclusion

We presented Negative Selection as a post-trade performance measure for ex-
ecution algorithms. It is based on the concept of Optimal Placement - the
placement at t = 0 that would provide the most favourable execution price in
time window [0, T ] if all market information had been available. Thus, it is a
posteriori measure. Negative Selection posses theoretically desirable properties
- it is continuous, captures the toughness of market and price impact and thus
it is completely objective.

Properties of Negative Selection are tested using simulator built in Matlab
and MySQL, on real trade data for three liquid stocks from London Stock Ex-
change and one stock from Euronext. The obtained empirical results are aligned
with the theoretical expectations and demonstrate the ability of Negative Selec-
tion to capture all important properties of a trading strategy. The comparison
between NS and two main benchmarks, VWAP and IS are also presented.
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Appendix

Consider the following linear programming problem,

minimize J(x) = cTx

subject to Ax = b

Cx ≥ d
(14)

where A ∈ Rm×n, C ∈ Rp×n, x, c ∈ Rn, b ∈ Rm, d ∈ Rp.

Theorem. [17] A solution x∗ of linear programming problem (14) is unique if
and only if it remains a solution to all linear programs obtained from (14) by
arbitrary but sufficiently small perturbation of its cost vector c, or equivalently
for each q ∈ Rn there exist a positive real number ε such that x∗ remains a
solution of the perturbed linear program

minimize J(x) = (c+ εq)Tx

subject to Ax = b

Cx ≥ d
(15)

Proof of Theorem 1

Proof. Given that Aj = 0 for j = l + 1, . . . k , constrains (5)-(6) imply Oj = 0
for j = l+ 1, . . . k. Thus (10) holds. So, it is sufficient to consider the following
problem

min
O0,...,Ol

l∑
i=0

PiOi (16)

l∑
i=0

Oi = Q (17)

j∑
i=0

Ol−i ≤
j∑

i=0

Al−i, j = 0, . . . , l − 1 (18)

Oj ≥ 0, j = 0, . . . , l (19)

The standard form of (16)-(19) is the following

min J(x) = cTx

Mx = b

x ≥ 0

(20)

where c = [c0, ..., c2l]
T , x = [x0, ..., x2l]

T and b = [b0, ..., bl]
T are defined by

cj =

{
Pj , j = 0, . . . , l

0, j = l + 1, . . . , 2l
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xj =

{
Oj , j = 0, . . . , l

dj−l, j = l + 1, . . . , 2l

bj =


Q, j = 0
l∑

i=j

Aj , j = 1, . . . , l

and

M =



1 1 . . . 1 1 1 . . . 1 1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 1 1 1 . . . 1 1 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 1 1 . . . 1 1 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 1 . . . 1 1 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 1 1 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 1 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 1


The following vector is a basic solution of problem (20)

v = [0, 0, . . . , 0, Q−
l∑

j=h+1

Aj , Ah+1, . . . , Al−1, Al,

(

l∑
j=1

Aj)−Q, . . . , (
l∑

j=h−1

Aj)−Q, (
l∑

j=h

Aj)−Q, 0, . . . , 0, 0]T , (21)

with the basis matrix B and the non-basis matrix N

B =

 1 11×(l−h) 01×h

1h×1 1h×(l−h) Eh×h

0(l−h)×1 U(1)(l−h)×(l−h) 0(l−h)×h



N =

 U(1)h×h 0h×(l−h)

01×h 01×(l−h)

0(l−h)×h E(l−h)×(l−h)

 .
Here, U(c) is an upper triangular matrix with all nonzero elements equal to c,
L(c) is a lower triangular matrix with all nonzero elements equal to c, 0 is the
zero matrix, and 1 has elements equal to 1, E is the identity matrix. As the
inverse of B is

B−1 =

 1 01×h [−1,01×(l−h−1)]

0(l−h)×1 0(l−h)×h U(1)−1
(l−h)×(l−h)

−1h×1 Eh×h 0h×(l−h)

 ,
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and

B−1N =

 11×h [−1,01×(l−h−1)]

0(l−h)×h U(1)−1
(l−h)×(l−h)

L(−1)h×h 0h×(l−h)

 ,
the Simplex table for the basic solution v is

O0 O1 . . . Oh−1 dh+1 dh+2 . . . dl vB

Oh 1 1 . . . 1 −1 0 . . . 0 Q−
l∑

j=h+1

Aj

Oh+1 0 0 . . . 0 1 −1 . . . 0 Ah+1

Oh+2 0 0 . . . 0 0 1 . . . 0 Ah+2

...
...

... . . .
...

...
... . . .

...
...

Ol−1 0 0 . . . 0 0 0 . . . −1 Al−1

Ol 0 0 . . . 0 0 0 . . . 1 Al

d1 −1 0 . . . 0 0 0 . . . 0 (

l∑
j=1

Aj)−Q

d2 −1 −1 . . . 0 0 0 . . . 0 (

l∑
j=2

Aj)−Q

...
...

... . . .
...

...
... . . .

...
...

dh −1 −1 . . . −1 0 0 . . . 0 (

l∑
j=h

Aj)−Q

∆O0
∆O1

. . . ∆Oh−1
∆dh+1

∆dh+2
. . . ∆dl

All reduced costs are negative: ∆Oj
= Ph − Pj < 0, j = 0, . . . , h − 1 and

∆dj = Pj − Pj−1 < 0, j = h + 1, . . . , l. The basic solution v is an optimal
solution of problem (20). Further, the vector

[0, 0, . . . , 0, Q−
l∑

h+1

Aj , Ah+1, . . . , Al−1, Al]
T

is an optimal solution of (16)-(19) and the optimal solution of (3)-(6) is indeed
given by (7)-(10).

The uniqueness will be proved using Mangasarian’s result [17], Theorem 1
above.

Let q ∈ Rl+h+1 be an arbitrary vector, we will show that there is positive
number ε > 0 such that the vector v, defined in (21), remains a solution of
perturbed problem

minimize J(x) = (c+ εq)Tx

subject to Mx = b

x ≥ 0.

(22)
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The vector v is a basic solution of the problem (22), and the reduced costs for
(22) are

∆Oj
= Ph + εqh − (Pj + εqj) = Ph − Pj + ε(qh − qj), j = 0, . . . , h− 1

∆dj
= (Pj + εqj)− (Pj−1 + εqj−1) = (Pj −Pj−1) + ε(qj − qj−1), j = h+ 1, . . . , l.

By choosing ε as

ε = min({ Pj − Ph

2(qh − qj)
|qh > qj , j = 0, . . . , h−1}∪{ Pj−1 − Pj

2(qj − qj−1)
|qj > qj−1, j = h+1, . . . , l}),

we get

∆Oj
<

1

2
(Ph − Pj) < 0, j = 0, . . . , h− 1

∆dj
=<

1

2
(Pj − Pj−1) < 0, j = h+ 1, . . . , l.

This means that v is an optimal solution of (22).

Proof of Theorem 2

a) If the order is optimally placet then O = Q, so

N = (O −Q)TG = (O −O)TG = 0

b) If the order is filled at level m then m ∈ IH and m ≤ h holds. Further-
more,

N = (O −Q)TG =

k∑
i=0

Oigi −Qgm ≥
k∑

i=0

Oigh −Qgm

= Qgh −Qgm = Q(gh − gm) ≥ 0

c) If the order is unfilled at level m then m ≥ l. Assume that m < l. Then
Pm > Pl and as Al > 0, it is clear that there has been some trading at the
level l. Therefore, the price decreased from Pm to Pl. But that further implies
that all orders at the price Pm were filled, which is in contradiction with the
assumption m < l. Thus,

N = (O −Q)TG =

k∑
i=0

Oigi −Qgm <

k∑
i=0

Oigl −Qgm

= Qgl −Qgm = Q(gl − gm) ≤ 0.

d)
In this case we have

Nm −Nm+1 = (O −Qm)TG − (O −Qm+1)TG = (Qm+1 −Qm)TG
= Qgm+1 −Qgm = Q(gm+1 − gm) > 0.
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e) Let Pl be the lowest price level for which Al > 0. For Q1 > Q2 we have

IH1 = {j|
l∑

i=j

Ai ≥ Q1, j = 0, . . . , l},

IH2
= {j|

l∑
i=j

Ai ≥ Q2, j = 0, . . . , l},

h1 = max(IH1
),

and
h2 = max(IH2

).

It is quite clear that h2 ≥ h1. The optimal placements are given by OQ1 =
[O1

0, ..., O
1
k]T and OQ2

= [O2
0, ..., O

2
k]T . The order sizes could be rewritten as

Q1 =

l∑
i=h1

O1
i and Q2 =

l∑
i=h2

O2
i . The definition of optimal placement implies

O1
i = O2

i , i = h2 + 1, . . . , l, and

Q1 −Q2 =

l∑
i=h1

O1
i −

l∑
i=h2

O2
i

=

h2−1∑
i=h1

O1
i +O1

h2
+

l∑
i=h2+1

O1
i −

l∑
i=h2+1

O2
i −O2

h2

=

h2−1∑
i=h1

O1
i +O1

h2
−O2

h2

1. If both orders are filled then m ≤ h1 ≤ h2 ≤ l. Let us consider the
following two cases.

(a) If Al ≥ Q1 and m = l, then m = h1 = h2 = l,

N1 −N2 = (OQ1
−Q1)TG − (OQ2

−Q2)TG = (Q1 −Q1)gm − (Q2 −Q2)gm = 0.

(b) If Al < Q1 then m ≤ h1 < h2 = l or m ≤ h1 ≤ h2 < l,

N1 −N2 = (OQ1
−Q1)TG − (OQ2

−Q2)TG = (OQ1
−OQ2

)TG − (Q1 −Q2)TG

=

l∑
i=h1

O1
i gi −

l∑
i=h2

O2
i gi − (Q1 −Q2)gm =

h2−1∑
i=h1

O1
i gi + (O1

h2
−O2

h2
)gh2
− (Q1 −Q2)gm

>

h2−1∑
i=h1

O1
i gh1 + (O1

h2
−O2

h2
)gh1 − (Q1 −Q2)gm = (Q1 −Q2)gh1 − (Q1 −Q2)gm

= (Q1 −Q2)(gh1
− gm) ≥ 0.
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2. If the order with size Q1 is unfilled, then there are two possibilities:

(a) The order with size Q2 is filled and

N2 ≥ 0 > N1.

(b) The order with size Q2 is unfilled ( m ≥ l ) and

N1 −N2 = (OQ1
−Q1)TG − (OQ2

−Q2)TG = (OQ1
−OQ2

)TG − (Q1 −Q2)TG

=

l∑
i=h1

O1
i gi −

l∑
i=h2

O2
i gi − (Q1 −Q2)gm =

h2−1∑
i=h1

O1
i gi + (O1

h2
−O2

h2
)gh2
− (Q1 −Q2)gm

<

h2−1∑
i=h1

O1
i gl + (O1

h2
−O2

h2
)gl − (Q1 −Q2)gm = (Q1 −Q2)gl − (Q1 −Q2)gm

= (Q1 −Q2)(gl − gm) ≤ 0.
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