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Abstract

An optimization model for the execution of algorithmic orders at
multiple trading venues is herein proposed and analyzed. The optimal
trajectory consists of both market and limit orders, and takes advan-
tage of any price or liquidity improvement in a particular market. The
complexity of a multi-market environment poses a bi-level nonlinear
optimization problem. The lower-level problem admits a unique solu-
tion thus enabling the second order conditions to be satisfied under a
set of reasonable assumptions. The model is computationally afford-
able and solvable using standard software packages.

The simulation results presented in the paper show the model’s
effectiveness using real trade data. From the outset, great effort was
made to ensure that this was a challenging practical problem which
also had a direct real world application.

To be able to estimate in realtime the probability of fill for tens of
thousands of orders at multiple price levels in a liquidity fragmented
market place and finally carry out an optimization procedure to find
the most optimal order placement solution is a significant computa-
tional breakthrough.
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1 Introduction

Algorithmic Trading, also known as Algorithmic Execution, is the automated
process of trading exogenous orders in electronic (stock) exchanges. There
are many aspects to algorithmic trading that make it attractive. Algorithmic
trading consists of a whole range of standard algorithms to mimic mainstream
execution styles such as VWAP (Volume Weighted Average Price), Partici-
pation (Volume Participation with VWAP as benchmark), Implementation
Shortfall, and others. In addition there is a wide range of variations of these
mainstream algorithms and an endless range of customized algorithms to suit
each individual user’s requirements.

When executing an order, a trader is faced with the option of either
instantly transacting by paying a price premium or waiting for a better price.
Both options come with a cost component. If one opted to use a passive limit
order in order to wait for a better price, one is faced with volatility risk in
the event the price drifting away without filling one’s order. In this case,
the trader will have to transact at an even worse price. Alternatively, the
trader could issue a market order and instantly transact the desired quantity,
however, at the cost of paying the spread or more in cost.

Additionally, a market order will cause a shock to the orderbook by re-
moving liquidity. This shock, or market impact, can be divided into two
categories, a) temporary and b) permanent. A temporary impact dissipates
within a relatively short time, whereas a permanent impact will last long
after the trade is completed. Therefore, when executing a large order, one
should consider the effect one’s action has on the orderbook, that will affect
subsequent orders. The total cost of market orders therefore becomes the
aggressive price across the spread plus the impact costs. Extensive analysis
by Almgren [3] of a large number of trades shows that temporary impact
is significantly larger than permanent impact but neither of them can be
neglected in real trading. A number of different approaches to impact and
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the cost of trading caused by impact is present in the literature, for exam-
ple [8, 9, 14, 15, 16, 20, 23, 24]. The problem of impact modeling and its
corresponding costs are relevant in portfolio optimization models as well as
in determining optimal execution strategies of large portfolios, [21, 13]. The
role of market impact in optimal execution strategy is subject of intensive
research as understanding the trade execution is a key issue for market prac-
titioners. The optimal portfolio liquidation over a finite horizon in a limit
order book with temporary impact is considered in [18]. The high frequency
optimal execution is the subject of [2]. The nonlinear impact is incorporated
in a trading strategy in [25] while shape function assumption is presented
in [1]. A general framework for intraday trading based on the control of
trading algorithms is considered in [10]. A model that explains how high
frequency trading can be applied to supply liquidity and reduce execution
cost is developed and solved in [26].

Limit orders do not have market impact but have a volatility risk. Intu-
itively, there has to be a middle ground where, the right combination of both
order types should yield a more optimal price. The very ability to specify a
price limit in limit orders gives rise to a new dilemma, i.e. choice of risk to
take.

Historically, most stocks are listed on a single stock exchange. The emer-
gence of alternative trading venues in recent times, ECNs in the US, MTFs
in the UK and others, opens additional possibilities for trading as these
venues provide a significant amount of liquidity. Due to the choice of multi-
ple trading venues, it would intuitively seem less optimal to send an order to
a specific venue for execution, if that would result in a fill price that is worse
than if the order had been divided and sent to multiple venues. There is
not much mathematical complexity involved in dividing and routing the ag-
gressive component of an order to different venues. However, deciding where
to place passive orders require complex mathematics and still remains an
unresolved problem, at least in the public domain.

In the presence of multiple alternative trading venues, one is presented
with not only the dilemma of a) what price at which to place the order
in order to maximize the probability of getting filled while maximizing the
gain, but also with the option of b) whether or not to break up the order and
place it at multiple venues as well. In the latter case one is facing a stochastic
problem in which order placement has to maximize fill rate while minimizing
fill price. Intuitively, this requires some mathematical model to determine
the fill properties of the different venues for different order quantities (the
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Fill Probability Function) at various price levels. Probabilistic fill estima-
tion models are proprietary models used by large market players (investment
banks) to determine the fill probability curve. Even with these models, given
that prognosis remains an inaccurate science, a further question arises when
the actual fill rate is found to be lower than expected at a given venue. We
know that an orderbook is a price and time ordered queue. Therefore, remov-
ing an order from one venue and placing it at another venue or even simply
moving to a better price level within the same venue adds the disadvantage of
being placed at the back of the queue, lowering the fill probability compared
to it having been placed at that price level (and venue) from the outset.

Although multiple trading venues increase the problem of placing and
executing orders, they are becoming an integral part of the trading environ-
ment. The existing state of affairs of modern implementation of optimization
algorithms does not include, at least in academic publications, a solution for
this kind of trading environment.

To be able to estimate in realtime the probability of fill for tens of thou-
sands of orders at multiple price levels in a liquidity fragmented market
place and finally carry out an optimization procedure to find the most op-
timal order placement solution is a significant computational breakthrough.
Furthermore, great effort was made to ensure that this was a challenging
practical problem which also had a direct real world application.

The problem we are interested in is determined by short time execution
windows (measured in minutes) and quantities of up to 15% of the average
traded volume within the considered time window. In other words we are
mainly interested in execution of atomic orders. The principal aim of this
paper is to propose an optimization procedure that yields an optimal trading
trajectory for multiple trading venues applicable in live trading for a large
universe of instruments. The proposed optimal trajectory consists of both
types of orders, market and limit, and takes advantage of any temporary price
or liquidity improvements available at a particular venue. Thus it provides a
systematic way of employing both passive and aggressive trading strategies
in order to minimize risk and maximize gain. Any optimization procedure
meant to be deployed in a real trading environment must be computationally
affordable and applicable in real time for potentially large portfolios of securi-
ties. Hence some simplifications are inevitable in the modelling process. The
results obtained in this paper demonstrate that these simplifications did not
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interfere with the most important properties of the real situation. Although
we used the logic used for a single market problem in [19], the proposed gen-
eralization is far from trivial. The complex multi-market environment yields
a bilevel nonlinear optimization problem. The convexity of the lower level
problem allow us to solve it exactly and thus obtain an affordable algorithm
for generating an optimal trading strategy.

This paper is organized as follows. Section 2 contains necessary details
concerning the trading process and market microstructure. The optimiza-
tion model is developed in Section 3. Second order optimality conditions
are established. Section 4 deals with the multi-period model with which we
demonstrate how to perform re-optimization of the initially determined op-
timal trajectory. Numerical results obtained from simulation with real-trade
data are presented in Section 5.

2 Preliminaries

Without any loss of generality we will assume that the trading is done on
two markets, say A and B. Therefore all variables and functions that cor-
respond to the markets A and B will be denoted with superscripts A and
B respectively. If the same is true for both markets we will not use any
subscript.

Until recently, the majority of companies were listed and traded at a
single exchange only. In recent times however, the market place has rapidly
become crowded with multiple exchanges where a given security (company)
is listed and traded in multiple venues. As such, for a given security, each
exchange will have an orderbook for that security. Each orderbook consists
of a queue of buyers and another queue of sellers. Price and time of arrival
determine the place in which a new arrival is inserted. Priority is given
the ones who arrive first within a given price. Cancellations can take place
without any restrictions. When there is a price overlap between the two
queues, the intersection of all orders will be transacted.

A graphical representation of order books at two markets is shown at
Figure 1. It can be seen that, the two exchanges or markets do not have the
same order quantity or prices, although they are usually arbitrage free (where
one could not simultaneously buy and sell at the two markets, securing an
instant risk-less profit). It is however typical that one market can have a price
improvement on its best bid and/or ask. Another point to be noted from

5



Size # Orders Buy Orders Price Sell Orders # Orders Size

… … …

1.59 … …

1.58 3/11 20,000 

1.57 0/3 30,000 

1.56 3/1 15,000 

1.55 5/0 40,000 

1.54 4/3 25,000 

1.53 5/2 35,000 

1.52 0/3 15,000 

Best Bid 5/2 30,000 

Spread

Best Ask

15,000 0/6 1.5

25,000 3/4 1.49

30,000 5/0 1.48

25,000 1/2 1.47

20,000 7/4 1.46

20,000 0/2 1.45

40,000 8/3 1.44

35,000 12/0 1.43

… … …

Market A Market B

Figure 1: A typical orderbook in a multi-market environment.

the two orderbooks is that market A has significantly more orders (liquidity)
than market B for the corresponding or comparable price levels. Prices in
each market can only change in multiples of a defined minimum quantity
called Tick Size. The spread, i.e. the difference between the the best bid and
ask is usually a single tick size for liquid securities and several ticks for less
liquid ones. Two of the main reasons why one market can have better price
bids and/or asks than another market is due to different granularity in tick
size and amount of liquidity in those markets.

For a given security in a two venue environment, we will have two sets
of market conditions MA,MB. Each would have their respective queue
of buying price levels bAi (t), bBi (t), and selling price levels aAi (t), aBi (t) for
any time t. Time dependence will be dropped occasionally if no confusion is
implied.

The price difference between the highest bidder and lowest seller is called
bid/ask spread or just spread, defined as

εA = aA1 − bA1 , εB = aB1 − bB1

for the two orderbooks in markets A and B. Because two venues could work
with different price granularity and tick size, the spreads in the two markets
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most often differ. In any two liquid securities in liquid venues, the spread is
expected to be similar. Spread can differ mostly due to tick size differences.
Due to the efficiency of the market, risk free arbitrage is a rare event, an
opportunity where one could buy at one venue and sell at a higher price
at another venue simultaneously. Although completely independent, both
markets track each other very closely - hence their volatility is also near
identical.

Most securities have a liquidity pattern associated with the time of the
day. However, the ratio of liquidity in one market versus another is not
constant. At times, there can be disproportionately larger liquidity in the
smaller venue. This excess liquidity could last for an extended period. Since
this is a seemingly unpredictable process, market participants would gain by
moving their orders from the queue in one market to the queue on another
in order to maximize the probability of being filled - even if it meant joining
at the back of the queue at the same price level.

In this paper we will assume that all prices follow an arithmetic random
walk without drift. Denoting by P the mid-price, P = (a1+b1)/2, we assume
that

P (t) = P (0) + σ
√
tζ, (1)

and consequently,

bi(t) = bi(0)− ε

2
(2)

ai(t) = ai(0) +
ε

2
, (3)

where volatility is denoted by σ and the noise is Gaussian, ζ : N (0, 1), and
ε is the spread. Since our time window is small there is no crucial difference
between arithmetic random walk and geometrical Brownian motion. Due to a
number of well calibrated models for intraday volatility, see[12], the volatility
parameter σ in (1) can be estimated in a satisfactory way in normal market
conditions.

We adopt Almgren’s market impact model, [3]. Impact function depends
on two parameters, spread ε and intensity of trade λ. Intensity of trade
is defined as a ratio of traded volume and time, taking into account ADV
(Average Daily Volume), and the market impact function is given by

f(q) = ε+ µ̄λb, λ = λ(q),

where ε is the spread and µ̄ is a stock-specific parameter, λ is trading in-
tensity, b ∈ [0, 1] and q is the size of market order. Market impact function
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f gives the value of impact in money/share units and thus the total impact
cost of trading q shares is

π(q) = f(q)q (4)

For more details see [3, 4, 5, 6, 7].
Non-trivial order sizes cannot be executed as a single market order. As

such, Almgren assumes a larger order is broken into a sequence of sub orders,
executed according to some distribution. One common option is uniform
distribution and we will also assume this distribution for our market orders
and a temporary market impact function given by (4).

In two-market situation we are dealing with two sequences of gain coeffi-
cients for limit orders

cAi = aA1 − bAi , cBi = aB1 − bBi , i = 1, . . . , n, (5)

for bid levels i = 1, . . . , n. Obviously gain (5) occurs only if the order is filled
within a given time. We will define gain function for limit orders as follows.

At any of the considered venues at t = 0 with market conditions M we
define the set of functions Fi(q) that gives the probability that the order
of size q placed at the bid level i will be filled within time interval [0, T ].
These functions will be called Fill Probability functions in this paper. As-
suming that T is fixed and the set of market conditionsM is available these
functions clearly satisfy Fi(q) > Fi+1(q). Furthermore we will assume that
Fi are smooth enough. An analytical expression for Fi is not available and
the various trading institutions use their own proprietary functions. For de-
tailed comments one can see [19]. Clearly each market has its own set of Fill
Probability functions, FA

i and FB
i for each bid level i = 1, . . . , n. The Fill

Probability Functions for each of the markets are calculated independently
of each other.

Using the above defined functions we can define the success functions of
the considered limit order as

HA
i (q) = qFA

i (q), HB
i (q) = qFB

i (q), i = 1, . . . , n (6)

and gain functions as

GA
i (q) = cAi H

A
i (q), GB

i (q) = cBi H
B
i (q), i = 1, . . . , n (7)

Clearly functions Hi, Gi are smooth if Fi are smooth. Although we have no
analytical expression for Fi(q) we are able to use an estimate of reasonable
quality as will be demonstrated by numerical examples in Section 4.
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3 The optimization model

The problem we will consider is that of executing an order to buy some
volume Q within time window [0, T ] of a given security. The sell case is
clearly opposite so we will not consider it here. Our execution strategy
will be a combination of market and limit orders at both venues A and B
that minimizes estimated costs in terms of volatility and market impact.
We will follow the general idea successfully applied to a single venue in [19]
but taking into consideration additional possibilities arising from two venues.
The principal aim is to obtain an optimization model that is computationally
affordable in real time for a large portfolio of securities. As already mentioned
the price process is not deterministic nor is any of the other market micro
properties (liquidity arrival, cancellation pattern, changes in spread etc.) that
determine the market conditions. The existence of multiple trading venues
with mutual dependency makes the trading environment even more complex.

The question we are facing is distribution between market and limit or-
ders and distribution between venues A and B at t = 0. Both costs and
gains are clearly stochastic values. At t = T we have the residual amount
coming from the unfilled limit orders. As we have a fixed trade window, the
residual needs to be executed at t = T relatively fast and in an aggressive
manner i.e. using only market orders. This will produce large impact and
is subject to volatility risk since the prices P (0) and P (T ) will very likely
be different. Further more that residual volume can be traded at one or
both of the venues. Putting all these considerations together, one is facing a
two stage stochastic problem with the objective function being impact and
volatility costs of market orders and negative gain of limit orders. Such prob-
lems are not computationally feasible for real time use and large portfolios
of securities. Hence some simplifications in modelling are necessary.

We will adopt the gain and success functions as already defined in Section
2. Thus the distribution of limit orders between two venues and different bid
levels will be determined by the corresponding fill probability functions. The
impact costs will be modelled using (4) for each of the venues separately.
Possible price and liquidity improvements at one of the venues are thus taken
into account and will result in different distribution of market orders between
A and B. Therefore we are actually treating two venues as a single combined
venue with additional bid-ask levels and two impact functions compared to
strategy from [19]. The key difference in the two-venue situation is residual,
carrying its volatility risk and impact costs.
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The residual is clearly an unknown value at t = 0. To simplify the problem
we will introduce the residual function as a deterministic function available
at t = 0 following the logic of the success and gain functions. The volatility
risk can be simplified by adopting the risk averse attitude and assuming that
the price will move away from us for the whole σ. With these assumptions we
cover more than 90% of cases under the process (1). The total impact cost of
the residual will be the sum of impact costs at both markets assuming that
the residual is divided between them. The exact ratio of the split between A
and B is obtained minimizing the total impact costs. As the residual impact
and volatility costs influence the distribution of Q between limit and market
orders as well as the distribution between the venues at t = 0, the resulting
optimization problem will be a bi-level problem as stated in this Section.

We assume that the volatility parameter σ is available as well as market
impact functions defined in [6] and explained with (4). Risk free arbitrage
opportunities force the prices in the two venues to be aligned and as such the
volatilities of the different venues are virtually identical. Furthermore, given
the market conditions MA,MB we are able to state the Fill Probability
functions FA

i (q), FB
i (q) for any order size q and any bid level i = 1, . . . , n for

time interval [0, T ] at any of the markets A and B.
If xA = (xA1 , . . . , x

A
n ) then we initially place limit order xAi at ith bid

level for i = 1, . . . , n and trade market orders of size yA at market A and
analogously for xB = (xB1 , . . . , x

B
n ) and yB at market B. We also use the

notation x = (xA, xB) ∈ R2n, y = (yA, yB) ∈ R2.
At t = T we are left with the residual that has not been filled

R̄ = Q−
n∑
i=1

γAi x
A
i −

n∑
i=1

γBi x
B
i − yA − yB (8)

where Γ = (γA1 , . . . , γ
A
n , γ

B
1 , . . . , γ

B
n ) is a stochastic variable showing the rela-

tive value of each limit order that was filled, i.e. γi ∈ [0, 1]. We will trade that
residual as a market order at any of the markets depending on the market
conditions at t = T. The residual will be executed in a short time afterwards,
say within a fraction of T.

Initial market order yA is causing market impact and therefore its execu-
tion cost is

πA(yA) = (εA + µAyA)yA, (9)

The same is true for market B and yB,

πB(yB) = (εB + µByB)yB. (10)
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Here µA and µB are stock specific parameters.
Limit orders have their gains according to their respective gain coefficients

if filled and opportunity cost if unfilled within [0, T ]. The residual given by
(8) is subject to volatility risk and since we need to execute it fast at t = T,
its execution will cause larger impact due to larger intensity of trade (larger
traded volume within that time window). Let ΠA(R),ΠB(R) denote these
impact costs. With Gi defined by (7) as

Gi(xi) = cixiFi(xi), ci = a1(0)− bi(0)

and assumptions made in Section 2, we can formulate the gain of limit orders
as

GA(xA) =
n∑
i=1

GA
i (xAi ), GB(xB) =

n∑
i=1

GB
i (xBi ). (11)

Instead of considering the volatility risk of the residual as stochastic value
dependent on price movement we can assume that during the time window
[0, T ] the price will drift away for one whole volatility σ. In fact the expected
price drift is zero under assumption (1) but volatility of price plays a more
important role within short time framework and thus we put an additional
safeguard with the residual function. Analogously to gain function (7) we
define the residual function,

R(x, y) = Q−HA(xA)−HB(xB)− yA − yB, (12)

HA(xA) =
n∑
i=1

HA
i (xAi ), HB(xB) =

n∑
i=1

HB
i (xBi ).

The residual has to be executed within a fraction of T in a manner that will
minimize the total impact cost. Hence we need to split it to rA and rB such
that rA is executed at A and rB is executed at B. So rA and rB are the
solutions of

min
r
φ(r)

under constraints
rA + rB = R(x, y), rA, rB ≥ 0,

with r = (rA, rB). Given that the residuals are executed faster than y they
are causing larger impact than stated by fA and fB. So we model the impact
cost of the residual orders as

ΠA(q) = (εA + ηAq)q, ΠB(q) = (εB + ηBq)q
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with ηA > µA, ηB > µB, and

φ(r) = Π(rA) + Π(rB).

Denoting

ϕ(x, y) = πA(yA) + πB(yB)−GA(xA)−GB(xB) + (13)

σ
√
TR(x, y) + ΠA(rA) + Π(rB),

our problem yields the following bi-level optimization problem

min
x,y

ϕ(x, y) (14)

s.t.
∑n

i=1 x
A
i +

∑n
i=1 x

B
i + yA + yB −Q = 0 (15)

r = argminr φ(r(x, y)) (16)

rA + rB = R(x, y) (17)

x, y, r ≥ 0 (18)

Function φ(r) is quadratic and the lower level problem is a strictly convex
quadratic problem with linear and nonnegativity constraints. Therefore it
admits a unique solution so we are able to prove the following statement.
Let R0 be the set of nonnegative real numbers.

Theorem 1 Let (HA
i ), (HB

i ) ∈ C2(R0) be concave functions for i = 1, . . . , n
and r be the optimal solution of (16)-(17). Then ∇2ϕ(x, y) is a positive
definite matrix.

Proof. See Appendix.
Without an analytical expression for the Fill Probability function Fi, one

cannot claim that the success function Hi which is defined by Fi, satisfies the
concave condition from this theorem. However, the empirical results give us
reasons beyond any doubt that for q smaller than the average traded volume,
Hi is indeed concave. Atomic orders rarely are more than 33% of the average
traded volume.

3.1 Multiperiod model

After placing the orders at t0, if the market price moved away, one may
then want to revise one’s initial order placements by finding another optimal
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execution strategy, taking into consideration these changes to the market
conditions.

Let τ ∈ (0, T ) be the point when we start the re-optimization procedure.
The goal of the re-optimization is to improve the performance of the initially
planned execution strategy defined by x0,A, x0,B, y0,A and y0,B which are the
optimal values obtained by solving (14)-(18) at t = 0. Let us denote by
superscript 0 the corresponding Fill Probability functions F 0,A

i and F 0,B
i and

gain function G0,A
i , G0,B

i . These functions are assumed to be available at t = 0
considering time execution window [0, T ]. At t = τ several informations are
available. Firstly, for all x0,Ai and x0,Bi initially placed at bid levels i ∈ B0 the
unfilled amounts x̃Ai ≤ x0,Ai , x̃Bi ≤ x0,Bi are known. The amount traded as
market orders at both exchanges is also known and therefore the remaining
quantity Qτ is known. The basic idea of re-optimization procedure is to take
advantage of new market conditionsMτ,A andMτ,B if they are significantly
different from the initial conditions M0,A and M0,B. Thus starting with Qτ

and the execution window [τ, T ] one can repeat the reasoning which yields
(14) - (18) with one important difference. Namely the unfilled part of the
limit orders x0,A and x0,B i.e. x̃Ai and x̃Bi can be either canceled or left at
their position in the corresponding queues at t = τ.

The situation is essentially different from t = 0 since the orders which are
not filled at t = τ have very likely progressed in their respective queues and
hence have different fill probability than new limit orders one might place
at t = τ. Furthermore their fill probability functions are different from the
initial F 0

i since the market conditions as well as the execution window are
different. So we will have two sets of fill probability functions, F̃ τ,A

i and F̃ τ,B
i

for the orders placed at t = 0 that we keep at their positions and F τ,A
i , F τ,B

i

for the new limit orders that will be placed at the end of the corresponding
queues at t = τ. To distinguish between these two sets of limit orders we
introduce a new set of variables `τ,Ai , `τ,Bi i ∈ B0 denoting the volume we
are keeping at the initial positions, while xτ,Ai and xτ,Bi are the limit orders
submitted at t = τ.

Clearly we cannot rule out the possibility of a significant change of the
market conditions contrary to our aims which yields a decrease in the fill
probability functions if compared with the initial fill probability functions
i.e. F̃ τ,A

i < F 0,A
i and F̃ τ,B

i < F 0,B
i nor a significant (although temporary)

change in liquidity distribution between A and B. The change of prices could
be of such magnitude that the set of available bid levels change at t = τ. So
cancellation of the initially posted but unfilled orders has to be taken as a
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possibility. All these imply the following inequality conditions on the limit
orders we will keep as initially placed

`τ,Ai ≥ 0, `τ,Ai ≤ x̃Ai `
τ,B
i ≥ 0, `τ,Bi ≤ x̃Bi i ∈ B0. (19)

These orders will have success functions

H̃τ,A
i (`τ,Ai ) = F̃ τ,A

i (`τ,Ai )`τ,Ai , H̃τ,B
i (`τ,Bi ) = F̃ τ,B

i (`τ,Bi )`τ,Bi (20)

and gain functions G̃τ,A
i (`Ai ) = cτ,Ai H̃τ,A

i (`Ai ), G̃τ,B
i (`Bi ) = cτ,Bi H̃τ,B

i (`Bi ) with
gain coefficients

cτ,Ai = aA1 (τ)− bAi (τ), cτ,Bi = aB1 (τ)− bBi (τ), i ∈ B0. (21)

The price process might yield a new set of the available bid levels at t = τ,
say Bτ . If xτ,Ak and xτ,Bk , k ∈ Bτ are the new limit orders to be placed at t = τ
at markets A and B then their success functions are

Hτ,A
k (xτ,Ak ) = F τ,A

k (xτ,Ak )xτ,Ak , Hτ,B
k (xτ,Bk ) = F τ,B

k (xτ,Bk )xτ,Bk , (22)

while the gain functions are

Gτ,A
k (xτ,Ak ) = cτ,Ak Hτ,A

k (xτ,Ak ), Gτ,B
k (xτ,Bk ) = cτ,Bk Hτ,B

k (xτ,Bk )

with
cτ,Ak = aA1 (τ)− bAk (τ), cτ,Bk = aB1 (τ)− bBk (τ), k ∈ Bτ . (23)

Clearly F τ,A
k (q) ≤ F̃ τ,A

k (q) and F τ,B
k (q) ≤ F̃ τ,B

k (q) due to different positions
in the queues for k ∈ B0 ∩ Bτ . The distribution of the new limit orders will
depend on improvement (deterioration) of F̃ τ

k compared to F 0
i as well as the

relationship between F̃ τ,A
k (q) and F̃ τ,B

k (q).
Finally let yτ,A, yτ,B denote the volumes we will trade as market orders in

[τ, T ] in both markets. Then the impact costs with the linear impact function
are

πτ,A(yτ,A) = (εA + µτ,Ayτ,A)yτ,A, πτ,B(yτ,B) = (εB + µτ,Byτ,B)yτ,B

with µτ,A, µτ,B being a stock specific constants dependent on time T −τ. The
new residual function is analogously to (12),

ρ(lτ , xτ , yτ ) = Qτ−H̃τ,A(`τ,A)−H̃τ,B(`τ,B)−Hτ,A(xτ,A)−Hτ,B(xτ,B)−yτ,A−yτ,B,
(24)
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with
H̃τ,A(`τ,A) =

∑
i∈B0

H̃τ,A
i (`τ,Ai ), H̃τ,B(`τ,B) =

∑
i∈B0

H̃τ,B
i (`τ,Bi ),

Hτ,B(xτ,B) =
∑

k∈Bτ,B

Hτ,B
k (xτ,Bk ), Hτ,B(xτ,B) =

∑
k∈Bτ,B

Hτ,B
k (xτ,Bk ).

Denoting `τ = (`τ,A, `τ,B), xτ = (xτ,A, xτ,B), yτ = (yτ,A, yτ,B) and splitting the
residual ρ(lτ , xτ , yτ ) into two parts, rτ,A and rτ,B to be executed at A and B,
with rτ = (rτ,A, rτ,B) we are again facing the bilevel problem.

The optimization problem now becomes

min
lτ ,xτ ,yτ

Φ(`τ , xτ , yτ ) (25)

s.t. `τi ∈ [0, x̃i], i ∈ B0 (26)

Qτ = yτ,A + yτ,B +
∑
i∈B0

(`τ,Ai + `τ,Bi ) +
∑
k∈Bτ

(xτ,Ak + xτ,Bk )

rτ ∈ argmin Πτ,A(rτ,A) + Πτ,B(rτ,B) (27)

ρτ = rτ,A + rτ,B (28)

xτ , yτ ≥ 0

with

Φ(`τ , xτ , yτ ) = −G̃τ,A(`τ,A)− G̃τ,B(`τ,B)−Gτ,A(xτ,A)−Gτ,B(xτ,B) +

πτ,A(yτ,A) + πτ,B(yτ,B) + σρ(lτ , xτ , yτ )
√
T − τ +

+Πτ,A(rτ,A) + Πτ,B(rτ,B)

and Gτ,A, Gτ,B, G̃τ,A, G̃τ,B defined analogously to the success functions H
functions, i.e. summing up all components. Due to faster execution of the
residual, the impact costs of the residuals are

Πτ,A(q) = (εA + ητ,Aq)q, Πτ,B(q) = (εB + ητ,Bq)q

with ητ,A > µτ,A and ητ,B > µτ,B.
The problem (25)-(28) has the same structure as (14)-(18) except for the

box constrains for lτ and larger dimension. Therefore the objective function
again has positive definite Hessian under the conditions stated below.

Theorem 2 Let Hτ,A
k , Hτ,B

k , H̃τ,A
i , H̃τ,B

i ∈ C2(R0) and Hτ,A
k , Hτ,B

k , H̃τ,A
i , H̃τ,B

i

concave for all k ∈ Bτ and i ∈ B0. Then ∇2Φ(`, x, y) is a positive definite
matrix.
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4 Numerical Results

Throughout our simulations, we have endeavored to be as faithful as pos-
sible to the real-time usage of the proposed models. This is of paramount
importance to us as the primary objective is to develop a model that can
be utilized in live trading. Therefore, there are no assumptions made in the
simulation framework nor in the preprocessing of the data that could pre-
vent direct application. The simulator was written in Java and Matlab and
the granularity of data used was level 2 tick data. Where one is concerned
with the orderbook queue, queue details such as position and quantity were
maintained to accurately assess the fills. Where cancellation positions can-
not be determined, we made the conservative assumption that the order was
cancelled at the back of the queue. The matlab sub-routine fmincon() was
used to solve (14) - (18) and (24) - (28).

The results are given in Tables 1-5. We considered 3 months worth of data
(August to October 2009) from LSE and Euronext as the primary markets
while Chi-X was the secondary market in our simulations. Each day was
sliced into 61 time slots of 8 minutes, from 08:16 to 16:24. In all those tables,
the first column gives the order size which is defined as a percentage of
period average traded quantity. Therefore our atomic order is defined with 8
minutes duration. The first column denotes quantity. The termsMMSP and
MMMP are acronyms for Multi-Market Single-Period and Multi-Market
Multi-Period optimal execution strategies.

% of ADV M B O1

1 47 28 12
3 53 30 17
5 61 32 22
8 70 37 29
10 75 39 31
12 77 40 36
15 75 37 33

% of ADV M B O1

1 53 15 8
3 61 15 9
5 65 15 9
8 76 19 14
10 80 19 16
12 81 19 17
15 82 17 16

Table 1: VOD Table 2: AAL
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Figure 2: Mean Error of the Fill Probability Model for multiple venues.

% of ADV M B O1

1 35 25 7
3 58 28 15
5 73 32 20
8 87 35 25
10 88 30 22
12 90 29 20
15 89 25 18

% of ADV M B O1

1 60 18 4
3 66 20 8
5 64 19 9
8 64 20 10
10 61 19 9
12 61 20 11
15 57 17 10

Table3: SASY Table 4: KGF

% of ADV M B O1

1 61 5 3
3 62 5 5
5 57 2 0
8 56 2 -2
10 52 0 -5
12 49 -1 -7
15 41 -5 -10

Table 5: SDR

Columns 2 to 4 show the relative performance of the three basic alter-
native benchmarks, i.e. Market, All on Bid and Single Period Optimal tra-
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Figure 3: Performance comparison of trading VOD in two venues.

1 3 5 8 10 12 15
0

10

20

30

40

50

60

70

80

90

100

% ADV

Pe
rfo

rm
an

ce
 o

f M
M

M
P 

re
al

tiv
e 

to
 o

th
er

 B
en

ch
m

ar
ks

 (%
)

Relative performance of different benchmarks for AAL 

 

 
Mkt
AllOnBid
MMSP
10% ADV SMMP

Figure 4: Performance comparison of trading AAL in two venues.
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Figure 5: Performance comparison of trading SASY in two venues.
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Figure 6: Performance comparison of trading KGF in two venues.
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Figure 7: Performance comparison of trading SDR in two venues.

jectory. The performance of these benchmarks are given as the percentage
worse than the optimal multi-market multi-period optimization method. The
choice of the above three measures as benchmarks is rooted in the fact that
the finance industry does not have any valid benchmarks for measuring per-
formance. Furthermore benchmarks can be affected by the way in which one
trades. Therefore, we have chosen two benchmarks that are common market
practice. In a multi-market environment, the market place could be thought
of as an aggregated single market, hence the performance of optimal execu-
tion in a single market is included. In addition to these three benchmarks,
included also is a single point benchmark of Single Market Multi-Period.

The difference between the single period model and the two-period model
has been extensively covered in earlier chapters. The objective of the multi-
market execution method was to further improve the execution performance
by tapping into the additional liquidity provided by alternative venues to the
primary market. We now look in detail at 10% of ADV for VOD order as a
typical example. Intuitively, this model resembles the Single Market Multi-
Period model in terms of split between market and limit orders. Both models
have a mid-point re-balancing opportunity to cancel orders and reconsider
better alternatives. In the case of multi-market, one will have the option of
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not only choosing a better price to place the new orders, but also the option
to choose a different venue.

All reported numbers are given as a percentage of the initial order size.
Orders are split among two venues, A and B. At t = 0, mean values of mar-
ket orders are y0,A = 6.8% and y0,B = 1.6%. Limit orders in the two markets
are x0,A1 = 59.2%, x0,B1 = 16.7%, x0,A2 = 10.6%, x0,B2 = 3.3%, x0,A3 =
0.6%, x0,B3 = 0.2%, x0,A4 = 0.1%, x0,B4 = 0.1%, x0,A5 = 0.8%, x0,B5 = 0.1%.
At τ = T/2, one half of y0 is realized while the unrealized limit orders were
x̃0,A1 = 14.1%, x̃0,B1 = 4.1%, x̃0,A2 = 5.3%, x̃0,B2 = 1.6%, x̃0,A3 = 0.4%, x̃0,B3 =
0.1%, x̃0,A4 = 0.1%, x̃0,B4 = 0.1%, x̃0,A5 = 0.8%, x̃0,B5 = 0.1% with respect to
the total order size.
The order size for the second period was Qτ = 30.9% of the initial or-
der and that value was distributed as y1,A = 2.8% and y1,B = 0.7% for
market orders. New limit orders for the second period were distributed as
xτ,A1 = 13.6%, xτ,B1 = 4.5%, xτ,A2 = 1.0%, xτ,B2 = 0.4%, xτ,A3 = 0.0%, xτ,B3 =
0.0%, xτ,A4 = 0.0%, xτ,B4 = 0.0%, xτ,A5 = 0.0%, xτ,B5 = 0.0%. While we kept
at initial bid positions lτ,A1 = 5.3%, lτ,B1 = 0.9%, lτ,A2 = 1.0%, lτ,B2 = 0.4%.
Therefore the total amount of cancellations was 19% across both markets,
given as sτ,A1 = 8.8%, sτ,B1 = 3.2%, sτ,A2 = 4.3%, sτ,B2 = 1.2%, sτ,A3 =
0.4%, sτ,B3 = 0.1%, sτ,A4 = 0.1%, sτ,B4 = 0.1%, sτ,A5 = 0.8%, sτ,B5 = 0.1% and
new limit orders account for 19.7% of the initial order size Q.

At the end of time window t = T , we had average residual size of 7.1%
which was executed as a market order within roughly 3 minutes divided
among both markets, dictated by price improvement and liquidity.

Figures 6-10 show the performance of the different benchmarks. We can
see that the Multi-Market Multi-Period optimization models are not only
significantly better than common market practice but are indeed generat-
ing distribution of volume between different bid levels and venues. The re-
optimization procedure leads to new limit orders as well as preserving some
initially posted limit orders as expected.

The share of market orders split among the two venues is relatively small
(7.7% within time frame and 7.1% for residual). Another important obser-
vation is the high rate of success of limit orders at lower levels of depth as
found in single market, multi-period. The gain from the optimal trajectory
is increasing with the size of atomic order. That is caused by the quadratic
impact cost, so any decrease in cost due to decrease of market orders and
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increase of limit orders is more significant.

Although the average daily volume traded on the security VOD on B is
approximately 25% of that of VOD traded on A, the split of new limit orders
between venues A and B at t = 0 are A = 71.3 and B = 20.3 of the total
available quantity for execution. Essentially, B is given 28.4% of the order
size of A. At τ = T/2, B is given 30.5%. Interestingly, when re-balancing at
τ = T/2, a smaller amount of 62.5% was cancelled at A as opposed to 77.6%
at B. This difference however in absolute terms is a mere 0.64%. We argue
that the general fill properties of A and B as well as the marginally better
estimation of fill probability at venue B is the cause of this difference.

Unlike the other securities considered, for SDR, the performance charac-
teristics is somewhat different. In the single market scenario, after a certain
order size, the single period performed better than multi-period optimiza-
tion. Even in a multi-market scenario, single period optimal trajectory has
the best performance, for, order size greater than 8% of ADV. The reasons
for this are due to high volatility and sparse trading pattern. As a result the
Fill Probability model overestimates the real probability for the best bid and
at mid point we have large unfilled amounts. By re-optimization we are ac-
tually chasing the noise, since 4 minutes is not an optimal reevaluation point
for this security. Therefore we end up sending a larger amount as a mar-
ket order which yields large impact costs. On the other hand, in the single
time procedure, we benefit from keeping the initial position at limit orders
since the volatility works in the model’s favor and the fill rate is significantly
better.
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A Appendix

Proof of Theorem 1.
For ΠA(q) = (εA + ηAq)q, ΠB(q) = (εB + ηBq)q we have

φ(r) = rTBr + rTd
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with B = diag(ηA, ηB) and d = (εA, εB). As B is positive definite the mini-
mizer of (16)-(18) is given by

r =
R + eTd

eTB−1e
B−1e− d, e = (1, 1)T (29)

with R = R(x, y) = Q −HA(xA) −HB(xB) − yA − yB. Plugging (29) back
to (14) - (15), after some elementary calculations we can show that for η =
ηAηB

ηA+ηB

∂2ϕ

∂(xAi )2
= −(cAi + σ

√
T +

εAηB + εBηA

ηA + ηB
)(HA

i )′′(xAi )R + η((HA
i )′(xAi ))2

∂2ϕ

∂(xBi )2
= −(cBi + σ

√
T +

εAηB + εBηA

ηA + ηB
)(HB

i )′′(xBi )R + η((HB
i )′(xBi ))2

∂2ϕ

∂(yA)2
= µA + η,

∂2ϕ

∂(yB)2
= µB + η

∂2ϕ

∂(yA)∂(xAi )
= η(HA

i )′(xAi ),
∂2ϕ

∂(yB)∂(xAi )
= η(HA

i )′(xAi )

∂2ϕ

∂(yA)∂(xBi )
= η(HB

i )′(xBi ),
∂2ϕ

∂(yA)∂(xBi )
= η(HB

i )′(xBi ).

Thus ∇2ϕ(x, y) can be expressed as

∇2ϕ = D + uuT

where D is the diagonal matrix with elements

dk = −(cAk + σ
√
T +

εAηB + εBηA

ηA + ηB
)(HA

k )′′(xAk )R, k = 1, . . . , n

dk = −(cBk + σ
√
T +

εAηB + εBηA

ηA + ηB
)(HB

k )′′(xBk )R, k = n+ 1, . . . , 2n

d2n+1 = µA, d2n+2 = µB

and

u =
√
η[(HA

1 )′(xA1 ) . . . (HA
n )′(xAn ) (HB

1 )′(xB1 ) . . . (HB
n )′(xBn ) 1 1].

As uuT ≥ 0 the statement follows if all elements of D are positive which is
clearly true.
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