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Abstract

Atomic Orders are the basic elements of any algorithm for automated
trading in electronic stock exchanges. The main concern in their execution
is achieving the most efficient price. We propose two optimal strategies
for the execution of atomic orders based on minimization of impact and
volatility costs. The first considered strategy is based on a relatively sim-
ple nonlinear optimization model while the second allows re-optimization
at some time point within a given execution time. In both cases a com-
bination of market and limit orders is used. The key innovation in our
approach is the introduction of a Fill Probability function which allows a
combination of market and limit orders in the two optimization models
we are discussing in this paper. Under certain conditions the objective
functions of both considered problems are convex and therefore standard
optimization tools can be applied. The efficiency of the resulting strategies
is tested against two benchmarks representing common market practice
on a representative sample of real trading data.
Key words: nonlinear programming, convex programming, optimal ex-
ecution strategy, algorithmic trading

MSC: 90C30, 90C90, 90B90.

1 Introduction

Algorithmic Trading is a relatively new way of executing orders at stock ex-
changes that began in the 1990’s and is now used extensively. This kind of
trading relies heavily on smart technologies and mathematical methods in order
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to provide efficient execution of orders. There are different models to suit the dif-
ferent needs of end-users such as VWAP (Volume Weighted Average Price), im-
plementation shortfall and participation. (See [6],[15].) Of all the asset classes,
equities has benefitted most from this kind of trading activity.

The main objective of algorithmic trading is the efficient execution of a given
order (buy or sell) with specified trading quantity and price conditions. In other
words, algorithmic trading is a mechanical execution of the investment decision
made by an investor. The price and quantity are specified by the issuer of the
order. The execution of an order inevitably yields execution costs and the main
concern in this work is an execution strategy which minimizes this execution
cost.

Execution costs are the difference between an ideal and actual trade. Direct
and predictable costs such as commissions and fees are in general proportional to
the transaction value and therefore not relevant to any optimization procedure
(although they may be large and significant). Indirect costs, which depend
heavily on an execution algorithm, come from limited liquidity and price motion
due to the volatility. These costs are difficult to measure and predict and they
will be the main concern in our optimization model.

The model will be built for the so-called atomic orders. Regardless of the
objectives of the algorithm used to execute an order, all orders are decomposed
into a sequence of atomic orders. The execution of these atomic orders directly
translate into the overall behavior of the algorithms. The main characteristics
of atomic orders is relatively short time span (measured in minutes) and rel-
atively small size (quantity that we are buying/selling) compared to average
daily volume (ADV). Without any loss of generality we will consider only buy
orders in this paper.

Indirect costs, such as price impact and volatility, are dependent on the order
type. There are two main order types - limit and market order. Limit order is
considered passive since one specifies the price and quantity he/she is willing to
pay and waits until/if the order is filled. Such orders are considered liquidity
providers and essentially do not make any market impact i.e., they do not move
the price1. The primary objective of limit orders is to capture a better price
than the currently available ask-price (the price acceptable for sellers) but due to
their passive nature they are subject to volatility costs and execution risk. Since
the price can move away in the opposite direction the order might be left unfilled
during a given time span and since execution must be fulfilled, a new order has
to be issued afterwards at a higher price. Market orders are used to execute the
transaction immediately and are considered aggressive. Execution of market
orders bears no execution risk but they assume a number of costs. First of all,
the order will be executed at the best available ask price (the smallest price
asked by the sellers) which is certainly bigger than all bid prices (prices offered
by buyers). Second, market orders are liquidity takers and therefore cause price

1In less liquid stocks arrival of limit order could either attract liquidity on the opposite
side or scare of participants. In that sense limit order has an impact but we will disregard
that aspect here since this kind of impact is significantly smaller than the impact made by
trading market orders
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movements that is called market impact. Intuitively it is quite clear that if one
is buying aggressively then the price is going up but actually measuring market
impact is quite difficult. Finally, if the order is large then it is divided into
a sequence of smaller orders that are executed within a given time window so
the volatility risk is again present. Since we are dealing with atomic orders,
time span is short and the volatility risk of suborders will not have a significant
influence.

There are many models of market impact available in the literature. Trading
institutions use their own models to measure market impact, their models are
based on academic work but are not available publicly. One of the most detailed
studies is done by Almgren and Chriss, [4] and Almgren et al., [5]. Another
approaches are presented in Bouchard et al. [7] and Lillo et al. [13]. In this
paper we will adopt the market impact model from Almgren and Chriss [4].

Models for optimal execution strategy in the sense of minimal execution
costs that are available in the literature deal with volatility and impact cost
of market orders only. Optimal strategy based on implementation shortfall is
derived in Almgren and Chriss [4]. A number of models focus on the risk and the
mean cost of execution of a single trade or in some cases a sequence of trades,
for example see Almgren and Chriss [3], Grinold and Kahn [12], Almgren [1],
Obizhaeva and Wang [14]. An optimization model that integrates the portfolio
decision and the execution strategy is developed in Engle and Fersteberg [10].
But in practice no main stream algorithm consists of market orders alone as
they can not be competitive in the execution costs of those using a combination
of market and limit orders. Therefore developing an optimization model for
execution of atomic orders as a combination of market and limit orders is of
considerable practical importance. In order to be applicable, a model must be
relatively simple to allow real time solution for a large portfolio of stocks that
are typically traded.

The model we present in this paper is based on minimization of execution
costs of atomic orders consisting of limit and market orders. The key inno-
vation in our model is the introduction of Fill Probability function that gives
the probability of being filled (executed) for limit orders. Such function is not
available analytically but it can be reasonably well estimated given the set of
market conditions. The Fill Probability model used in this research is a propri-
etary mathematical model and its inner working cannot be disclosed. However
we will address all the key properties of the model as required for the analysis.
It should be noted that the optimization framework we propose herein is not
dependent on this particular implementation of a Fill Probability model. Fill
Probability function is incorporated into the objective function together with
volatility and impact costs. We explain the necessary simplifications of trading
process and reasoning that yields a deterministic nonlinear optimization prob-
lem. The strategy obtained from the model is risk-averse and the model is solv-
able by standard optimization tools in real time due to its simplicity. Given the
differences in market properties of a large universe of stocks (mainly differences
in volatility and liquidity) we also introduce a two-period optimization model
that allows re-optimization of the strategy at mid (or some other appropriately
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chosen) point in time interval. This procedure appears to be particularly useful
for liquid and volatile stocks.

Both presented models are tested on real trade data from the London Stock
Exchange and Euronext. Comparison of trading strategies is dependent on the
choice of benchmark. There are a couple of benchmarks available in the liter-
ature, (see Almgren [2].) The two most popular are Arrival Price and VWAP.
The cost measured using arrival price as benchmark is called implementation
shortfall. In the case of VWAP the benchmark is the evolving VWAP of the
market. We are dealing with short time span using a combination of limit and
market orders. Furthermore we are simulating and not affecting the real mar-
ket, so we will measure the execution cost as a difference from an ideal trade.
The ideal trade is defined here as a combination of limit and market orders that
would yield the smallest execution costs i.e., the trade that would be possible if
we were able to predict all trades in a considered time window with certainty.
Using that benchmark, named perfect in this paper, we compare the optimal
strategies developed here with the two strategies that represent common mar-
ket practice.

This paper is organized as follows. In Section 2 we introduce details of the
problem describing order book, possible risks and gains, market impact model
and relevant market parameters as well as Fill Probability function. The model
is developed in Section 3 and the two-period model is presented in Section 4.
Numerical results are given in Section 5 while some conclusions are drawn in
Section 6.

2 Preliminaries

Let us start explaining the structure of orderbook in details that will be used
in optimization models. An orderbook at any moment contains buy and sell
orders for a given security as shown in Figure 1.

Each order is placed on the corresponding bid (ask) price level according
to the arrival time. Therefore orders form a queue of different sizes and filling
(execution) process is governed by price process and arrival time priority. In
other words, transactions take place when there is an agreement in price between
buy and sell orders and it is done respecting the arrival queue. At any given time
t, we will denote by bi(t) the price at ith bid level and by ai(t) the price at ith
ask level. If t is fixed, we might drop it from price expressions but the meaning
will be clear. The number of visible price levels varies at different exchanges
and in numerical experiments we will assume that 5 levels are visible. If one is
placing a limit order with price bi(t) and volume Qi then the order is placed
at the end of the existing queue at ith bid level. The order can be filled only
after the whole queue ahead of it is filled or cancelled. Filling and cancellation
distributions are very complex issues, (see [11]) but we will not need any details
of these processes here.

The smallest possible difference in prices is called tick size and it is deter-
mined by the rules of stock exchange. Therefore prices are discrete. For very

4



Figure 1: Orderbook.

liquid stocks the difference between bid levels is 1 tick - the smallest possible,
while less liquid stocks can have multiple ticks in difference. This property of
a particular stock will significantly influence the optimal execution trajectory.
The difference

ε = a1(t)− b1(t)

is called the spread. The size of spread is again dependent on stock liquidity.
Placing a market order actually means crossing the spread and buying at a1(t)
or greater price, depending on order size and available ask volume.

A number of additional properties is available from the orderbook. If M
denotes the current orderbook (current market conditions) then one can deter-
mine bid and ask prices, quantities, number of participants at each price level,
volatility, VWAP price, cancelation pattern and so on. In further consideration
we will denote by M an unspecified number of these properties since traders dif-
fer in their choice of relevant parameters and these differences will not influence
our model.

In this paper we will assume that all prices follow an arithmetic random
walk without drift,

bi(t) = bi(0) + σ
√

tξi, (1)

ai(t) = ai(0) + σ
√

tγi, (2)

P (t) = P (0) + σ
√

tζ, (3)
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where P denotes the mid-price, P = (a1 + b1)/2, volatility is denoted by σ and
the noise is Gaussian for bid and ask prices, ξi, γi : N (0, 1), i = 1, . . . , n and
consequently ζ : N (0, (

√
1/2)2). Since our time window is small there is no

crucial difference between arithmetic random walk and geometrical Brownian
motion. Due to a number of well calibrated models for intraday volatility, see[9],
the volatility parameter σ in (1)-(3) can be estimated in a satisfactory way in
normal market conditions.

Execution of any order is subject to two costs - volatility and market impact.
We adopt Almgren’s market impact model, [1]. Market impact is any deviation
(even a fractional one) from the equilibrium price due to one’s own trading
activity. It can be divided into permanent and temporary impact. Temporary
impact disappears in relatively short time according to liquidity pattern while
permanent impact can stay well after the trade is executed. Temporary impact,
according to [1], is larger than permanent by the order of magnitude and hence
significantly more important for our model. Impact function depends on two
parameters, spread ε and intensity of trade λ. Intensity of trade is defined
as ratio of traded volume and time, taking into account ADV (Average Daily
Volume) and the market impact function is given by

f(q) = ε + µ̄λb, λ = λ(q),

where ε is the spread and µ̄ is a stock-specific parameter, λ is trading intensity,
b ∈ [0, 1] and q is the size of market order. Market impact function f gives the
value of impact in money/share units and thus the total impact cost of trading
q shares is

π(q) = f(q)q (4)

For more details see [1], [4].
Market order of a reasonable size, meaning of non negligible volume, is never

executed as a single trade. So the Almgren model is assuming some kind of
optimal execution of market orders in a given time frame. Dividing an order
into a sequence of small suborders we have several possibilities for their time
schedule. One obvious possibility is uniform schedule within the time window.
Other possibility is optimization of schedule with respect to implementation
shortfall i.e. taking into account market impact and volatility. The relationship
between volatility and impact which yields optimal duration for market orders
is shown at Figure 2. We will assume uniform execution of market orders and
use the temporary market impact cost function (4) as suggested in [4].

Contrary to market orders, limit orders do not produce market impact but
face uncertainty of execution. Placing an order of size q at any bid level is thus
subject to volatility risk: If the price drifts away before the order is filled we
have the opportunity cost and since execution of an order is a must in our case,
a new order has to be placed at a higher price. On the other hand, if the order
is filled there is a clear gain in price compared with market order. Therefore,
for any bid level we define gain coefficients as

ci = a1 − bi, i = 1, . . . , n. (5)
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Figure 2: Impact and volatility costs versus time.

Obviously gain (5) occurs only if the order is filled within given time. We will
define gain function for limit orders as follows. For any fixed bid level i and
order of size q we define βi(q) as a random variable of Bernoulli type which
takes value 1 if the order is filled within time interval [0, t]. Then

βi(q) :
(

1 0
pi(q) 1− pi(q)

)
. (6)

Clearly pi is the probability that the order will be filled and it is dependent
on M and T. Keeping T fixed and placing an order at t = 0 with the price
bi = bi(0) we therefore expect that the filled amount will be qpi. Using (6) we
define the set of functions Fi(q) for all i = 1, . . . , n as

Fi(q) = pi(q),

assuming that T is fixed and M is available when we place the order at the ith
bid level. Functions Fi will be called Fill Probability functions in this paper. In
further considerations we will assume that given T and M, all Fill Probability
functions Fi(q) are smooth enough for q ≥ 0. If q0 denotes the volume ahead of
us at bid levels k = 1, . . . , i then

lim
q0+q→0

Fi(q) = 1, and lim
q0+q→∞

Fi(q) = 0.

Also Fi(q) > Fi+1(q). Using the above defined functions we can define the
success functions of the considered limit order as

Hi(q) = qFi(q) (7)

and gain functions as
Gi(q) = ciHi(q). (8)

7



10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% of ADV

F
ill

 P
ro

ab
ili

ty

Figure 3: Fill Probability functions for five bid levels.

Clearly functions Hi, Gi are smooth if the Fi are smooth. Although we have no
analytical expression for Fi(q) we are able to use an estimate of reasonable qual-
ity as will be demonstrated by numerical examples in Section 5. The empirical
data also give us reason to believe that Fi are convex functions, (see Figure 3.)

3 The optimization model

Let us consider an atomic buy order with given size Q and execution time
within [0, T ]. In this context atomic means that Q is up to certain percentage
of the average traded quantity within time window [0, T ] and T is small, say 10
minutes or similar. We want to formulate and solve an optimization problem
which yields an optimal combination of market and limit orders for buying Q
within given time. We will assume that the order book has n visible levels with
price trajectories given by (1)-(3). Our execution strategy will be a combination
of market and limit orders that minimizes expected costs in terms of volatility
and market impact.

We assume that the volatility parameter σ is available as well as market
impact functions defined in [4] and explained with (4). Furthermore, given the
market conditions M, we are able to state the Fill Probability functions Fi(q)
for any order size q and any bid level i = 1, . . . , n for time interval [0, T ].

If x = (x1, . . . , xn) then we will initially place limit order xi at ith bid level
for i = 1, . . . , n and trade market orders of size y. Since the order size is Q we
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naturally have

y +
n∑

i=1

xi = Q. (9)

The execution of limit orders is an uncertain event. Let Γ = (Γ1, . . . , Γn) be a
stochastic variable which denotes the filled quantity (in relative terms) at each
bid level during [0, T ] and let γ = (γ1, . . . , γn) be a realization of Γ. At the end
of time window, t = T, we are left with the residual that has not been filled

R = Q−
n∑

i=1

γixi − y (10)

and we will trade that residual as a market order in a short time afterwards,
say within a fraction of T.

Our objective is to minimize the execution cost of the above strategy, so let
us describe all possible costs. Initial market order y is causing market impact
and therefore its execution cost is

π(y) = f(y)y. (11)

Limit orders have their gains according to their respective gain coefficients if
filled and opportunity cost if unfilled within [0, T ]. The residual given by (10)
is subject to volatility risk and since we need to execute it fast at t = T (usu-
ally within a fraction of T ) its execution will cause larger impact due to larger
intensity of trade (larger traded volume within that time window). Let Π(R) de-
notes that impact costs. With Gi(q) defined by (8) as Gi(xi) = cixiFi(xi), ci =
a1(0)− bi(0) and assumptions made in Section 2, we can formulate the gain of
limit orders as

n∑

i=1

Gi(xi). (12)

Residual R is clearly a stochastic variable depending on Γ. Volatility risk is
depending on price trajectories (1)-(3) and we will denote it with V (R), V (R) =
(P (T ) − P (0))R. Putting together all these costs we are facing a two-stage
stochastic problem - decision variables x, y are determined at t = 0 taking into
account expected value of the residual R and the costs that will be caused
by fast execution of the residual. Two-stage stochastic problems are solvable
under additional assumptions for Γ and the price trajectory P, (see [8].) The
distribution of Γ is not known. Furthermore Γ and P are not independent
since the fill rate depends directly on P but Γ also depends on the whole set of
variables in M. Solving the above problem is not a realistic task without further
simplifications and assumptions that are questionable in real life. Furthermore,
one needs to determine an optimal strategy in real time and for a large universe
of different stocks so solving two-stage stochastic problem is not an affordable
option. Due to all these reasons we will define a deterministic model which
has good theoretical properties and agrees with intuitive risk averse behavior of
traders.
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Instead of considering the volatility risk of the residual as stochastic value
dependent on price movement we can assume that during the time window [0, T ]
the price will drift away for one whole volatility σ. In fact the expected price
drift is zero under assumption (3) but volatility of price plays a more important
role within short time framework. Assuming that the price will move away from
us for σ we are actually being risk-averse in more than 90% of cases under the
assumption (4) since Φ(1) > 0.9, with Φ cumulative distribution function for ζ.

Analogously to gain function (8), instead of considering the residual as a
stochastic variable, we define the residual function as deterministic function,

r(x, y) = Q−
n∑

i=1

Hi(xi)− y. (13)

With these simplifications and taking the linear impact function we are able to
state the volatility and impact costs as follows

V (r(x, y)) = σ
√

Tr(x, y) (14)

and
π(y) = (ε + µy)y, Π(r) = (ε + ηr)r. (15)

The constants µ and η are depending on time duration for execution of the
corresponding market orders and the average traded volumes within these time
windows. Therefore larger intensity of trade (shorter execution time) of the
residual implies η > µ, while ε is the average2 historical spread value. Putting
together all analyzed costs and gains with

φ(x, y) = −
n∑

i=1

Gi(xi) + (ε + µy)y + σ
√

Tr(x, y) + (ε + ηr(x, y))r(x, y), (16)

our problem is

min
x,y

φ(x, y) (17)

s.t. Q =
n∑

i=1

xi + y (18)

x ≥ 0, y ≥ 0

Problem (17)-(18) is a nonlinear optimization problem with a single nonneg-
ativity constraint on the variables. It can be solved by standard optimization
tools. We will show that the Hessian matrix of the objective function is posi-
tive definite under some conditions. The simple structure of the problem and
positive definitness of the Hessian then imply application of second order con-
ditions and every KKT point is a minimizer of (17)-(18). Let R0 be the set of
nonnegative real numbers.

2Using the average historical spread value is slightly less precise than the actual spread in
function π but in the line with already introduced simplifications since ε(T ) is not known at
t = 0.
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Theorem 1 Let Hi ∈ C2(R0) and concave (H ′′
i < 0) for all i. Then ∇2φ(x, y)

is a positive definite matrix.

Proof. Let fij denote the elements of ∇2φ(x, y). Elementary calculations
give us

fn+1,n+1 = 2µ + 2η,

fii = 2η(H ′
i(xi))2 −AiH

′′
i (xi), Ai = σ

√
T + ci + ε + 2ηr(x, y), i = 1, . . . , n,

fn+1,j = fj,n+1 = 2ηH ′
j(xj), j = 1, . . . , n,

fij = 2ηH ′
i(xi)H ′

j(xj), i 6= j.

Therefore we can write

∇2φ(x, y) = D + uuT , D = diag(−A1H
′′
1 (x1), . . . ,−AnH ′′

n(xn), 2µ)

with
u = [

√
2ηH ′

1(x1), . . . ,
√

2ηH ′
n(xn),

√
2η]T .

Since uuT is positive semi definite it is sufficient to prove that D is positive
definite. As D is diagonal we must have that each entry of the diagonal is
positive but that is clear since Ai > 0 and H ′′

i (xi) < 0. So, we can conclude
that ∇2φ(y, x) is a positive definite matrix. ¤

We can not claim that the concave condition from this theorem is satisfied for
success functions Hi defined by Fill Probability functions Fi without analytical
expression for Fi. By definition, H ′′

i (q) = qF ′′i (q) + 2F ′i (q) and Fi is decreasing
and convex for q ∈ R0. Clearly, the sign of H ′′

i can not be determined from
these information only. But empirical results gives us good reasons to believe
that the functions Hi are indeed concave, at least for q smaller than the average
traded volume. Atomic orders are always significantly smaller than the average
traded volume (up to one third of that volume) so, it seems reasonable to assume
that Hi satisfy the conditions from the previous theorem. One typical empirical
example is shown in Figure 4.

4 Two-period model

Time window for execution of atomic order is generally small, say 10 minutes
or similar. However if we are buying a liquid but volatile stock we might find
that time too long to wait and see if orders will be filled according to our
expectations. The market conditions can change significantly and the strategy
obtained from (17)-(18) might be subject to re-optimization at certain time
point τ within (0, T ). On the other hand re-optimization cannot be performed
too often because the passive nature of limit orders require some time for them
to be realized. Taking into account both possibilities we will present a two-
period model without any loss of generality since it could be easily translated
into a multi-period model with as many re-optimizations as appropriate.
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Figure 4: Empirical Success function.

Let τ ∈ (0, T ) be the point when we start the re-optimization procedure.
Clearly market conditions M0 at t = 0 and Mτ at t = τ can differ signifi-
cantly due to price changes, cancelations, new liquidity arrival, trading activity,
announcement of important news etc.

Let B0 = {i1, . . . , in} be the set of visible bid levels at t = 0. The optimal
market and limit orders obtained from (17)-(18) at t = 0 are denoted by y0 and
x0, while the initial gain functions for [0, T ] are G0

i .
At t = τ we know the volume that is already traded so we have to trade

some Qτ , Qτ ≤ Q, within [τ, T ]. Also, for all x0
i initially posted at bid levels

i ∈ B0, the unfilled amount x̃i, x̃i ≤ x0
i is known. Reasoning the same way as at

t = 0 we can distribute Qτ between market and limit orders taking into account
the existing limit orders that are still unfilled but potentially progressed in their
queues. We can also consider cancelation of initially posted limit orders x0

i if
Mτ is significantly different from M0 or if the price has moved so the level i is
not visible anymore. When canceling unfilled orders we are losing the place in
the queue. Placing a new limit order means that we are going to the end of the
existing queue. Clearly unfilled order placed at t = 0 and a new order placed at
t = τ at the same bid level will have different Fill Probability functions for the
same time interval [τ, T ]. For the existing but unfilled x̃i, the Fill Probability
function has changed due to the change from M0 to Mτ . Therefore, we will
have two sets of Fill Probability functions, F τ

i (q) for orders placed at t = τ
and F̃ τ

i (q), for unfilled orders posted at t = 0, both of them depending on
Mτ and considering time [τ, T ] but depending on the order’s queue position.
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Furthermore, F̃ τ
i will be different from the initial function F 0

i .
Let `τ

i , i ∈ B0 denote the volume we are keeping at the initial position.
Then clearly

`τ
i ≥ 0, `τ

i ≤ x̃i i ∈ B0. (19)

These orders will have success rate functions

H̃τ
i (`τ

i ) = F̃ τ
i (`τ

i )`τ
i (20)

and gain functions G̃τ
i (`i) = cτ

i H̃τ
i (`i) with gain coefficients

cτ
i = a1(τ)− bi(τ), i ∈ B0. (21)

Due to price movement the set of visible bid levels might have changed so
let

Bτ = {k1, . . . , kn}
be the set of visible bid levels at t = τ. If xτ

k, k ∈ Bτ are new limit orders to be
placed at t = τ then their success functions are

Hτ
k (xτ

k) = F τ
k (xτ

k)xτ
k, (22)

while the gain functions are Gτ
k(xτ

k) = cτ
kHτ

k (xτ
k) with

cτ
k = a1(τ)− bk(τ), k ∈ Bτ . (23)

Finally let yτ denote the volume we will trade as market orders in [τ, T ].
Then the impact cost with the linear impact function is

πτ (yτ ) = (ε + µτyτ )yτ

with µτ being a stock specific constant dependent on time T − τ. The new
residual function is analogously to (13),

ρ(lτ , xτ , yτ ) = Qτ −
∑

i∈B0

H̃τ
i (`τ

i )−
∑

k∈Bτ

Hτ
k (xτ

k)− yτ . (24)

The optimization problem now becomes

min
lτ ,xτ ,yτ

Φ(`τ , xτ , yτ ) (25)

s.t. `τ
i ∈ [0, x̃i], i ∈ B0 (26)

Qτ = yτ +
∑

i∈B0

`τ
i +

∑

k∈Bτ

xτ
k

xτ , yτ ≥ 0

with

Φ(`τ , xτ , yτ ) = −
∑

i∈B0

G̃τ
i (`τ

i )−
∑

k∈Bτ

Gτ
k(xτ

k) + πτ (yτ ) + (27)

σρ(lτ , xτ , yτ )
√

T − τ + Πτ (ρ(lτ , xτ , yτ ))
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and
Πτ (ρ) = (ε + ητρ)ρ

with ητ > µτ due to faster execution of the residual at the end of time window
i.e., larger traded volume within shorter execution window for the residual ρ.

The problem (24)-(27) has the same structure as (17)-(18) except for the
box constrains for lτ and larger dimension. Therefore the objective function
again has positive definite Hessian under the conditions stated below.

Theorem 2 Let Hτ
k , H̃τ

i ∈ C2(R0) and Hτ
k , H̃τ

i concave for all k ∈ Bτ and
i ∈ B0. Then ∇2Φ(`, x, y) is a positive definite matrix.

One important issue deserves additional clarification here. The proposed
two-period model is not equivalent to the application of (17) - (18) on consecu-
tive time intervals [0, τ ] and [τ, T ]. Re-optimization of the execution trajectory
according to (24)-(27) allows an important advantage by the fact that we can
keep initially placed orders in the queue if chances of being filled are good
enough. Since

F̃ τ
i (q) > F τ

i (q)

due to different positions in the corresponding queue it is clear that solving (17)-
(18) at t = 0 and then (24)-(27) at t = τ is better than applying (17)-(18) twice
due to the passive nature of limit orders and queue positions. Furthermore
the fill probability is an increasing function of time. Therefore, overlapping
time windows [0, T ] and [τ, T ] is preferable over disjoint [0, τ ] and [τ, T ]. On
the other hand, market orders y0 and yτ are always realized according to some
predefined schedule, (see [4]), and their executions bear no time risk. So any
change between initially planned y0 and second period yτ is actually capturing
market movements.

As already mentioned, it is quite easy to perform re-optimization procedure
as many times as we want within [0, T ]. We report numerical results for τ = T/2
in the next section. We also tried three-period models but the results made us
stick to the initial idea of one re-optimization at τ = T/2. It appears that
more frequent re-optimization is actually chasing the high-frequency noise and
thus losing the main advantage of this approach: Fill Probability function and
combination of market and limit orders.

5 Numerical results

All numerical results presented here are derived from simulations. A simulator
was written in MATLAB for this purpose. Within that simulator fmincon sub-
routine was used to solve (17) - (18) and (24) - (27). Since our research topic
originated from the dire need of a framework for optimal execution, we have
endeavored to be as faithful as possible to the real-time usage of the proposed
model. There are no assumptions made in the simulation framework that would
prevent deployment to production from being used in actual trading.
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Data used in the simulation is European level-2 tick data provided by Reuters.
This consists of 5 levels of orderbook depth with consolidated volume on each
price level. Data used are for the following five securities: VOD.L, AAL.L,
KGF.L, SDR.L and SASY.PA. The period in question is January - March 2008.
Simulations are run everyday with continuous tick, i.e. every single tick is con-
sidered.

The historic tick database being used provides snapshots of the market every
time a change takes place. The simulation process changes between subsequent
snapshots to recreate the orderbook. When recreating the orderbook, we main-
tain the changes to a given price level as a sequence of individual orders. This
will effectively evolve into reflecting the size of the individual orders in a given
price level.

When the trading models within the simulator harness places an order, the
order is added to the end of the queue and tagged. The tag will record the
position and quantity ahead. For all subsequent trades on that price level, the
quantity ahead is reduced by the traded amount. However, a cancelation may or
may not change the ahead quantity as one does not know whether the canceled
order was in front or behind our order in question. We choose the worst case
scenario to assume that all canceled orders were behind ours if there were any,
hence not changing the ahead quantity.

In our simulated orderbook, an order qi at price level i is filled only when the
quantity traded at that price level exceed the ahead quantity and qi. The task
of determining changes to the best bid price due to a cancelation or a trade is
very difficult. We use a proprietary data matching filter to re-stream the data in
real-time in the correct chronological order and change attribution. The success
rate of this filter varies from exchange to exchange. For LSE, 98% of the tick
changes are correctly identified and re-streamed. With Euronext for instance,
this number is approximately 90%.

The optimization models use a number of different static variables. Three
variables of particular importance are:

• Average Daily Volume (ADV)
ADV is used by the Market Impact Model to measure the relative size of
an order. A simple 90 days average is used in this calculation.

• Intraday Volatility
We use the intraday volatility to estimate the short term volatility risk σ.
We calculate this from 90 days of historic data for non-overlapping 15 min-
utes. The sample of 15-minutely time-of-day sensitive volatility estimates
are further interpolated to cater for arbitrary time of day. Return num-
bers in the volatility calculation are calculated between two mid-prices at
the start and end of the 15-minutes time slice.

• Market Impact Model Coefficients
Based on thousands of actual trades on the stocks in question, we use a
method similar to Almgren as discussed above, to estimate the model’s
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coefficients with a proprietary modification. Nevertheless, following Alm-
gren’s algorithm for calibration will also work.

We have only considered order size up to 15% of ADV. Order quantities
larger than this will cause significant market impact. The effect of this impact
is difficult to quantify. The market impact itself will become non-linear. The
excess impact will affect the liquidity arrival pattern in the orderbook. This will
further affect other quantitative models such as fill probability, etc. Therefore,
although simulated results for larger ADV order will look attractive, not incor-
porating the significant effects of our trades into the simulation will make the
results depart from our aim to be in line with real trading.

We propose a benchmarking scheme that makes a fairer measure taking
into consideration the price process, when estimating slippage to the bench-
mark price. The primary aim of all atomic orders is to get the best possible
price within a small window. As such, we define the universal reference price
Pperfect. This reference price is theoretically the best possible that one could
have achieved if one had complete foresight of where the market was to trade
during the window. With this foresight, the quantity that would not have been
filled will be traded using a uniform profile over the entire window.

We introduce two measure, PB and PM , to closely reflect market practice.
PB is achieved through an algorithm that always places the entire order on the
first bid level and trades the residual as market order at the end, while PM is
obtained from the uniform trajectory of market orders only.

All execution costs are calculated as relative difference between Pperfect and
the individual algorithm’s performance, expressed in basis points (1bp = 10−4).

We tested all mentioned algorithms for 5 stocks which cover whole spectrum
of liquidity with VOD.L being very liquid, SDR.L very illiquid, AAL.L and
KGF.L medium liquid and SASY.PA fluctuating between quite liquid to medium
liquid. In terms of volatility, less liquid is usually more volatile so these 5 stocks
cover the whole range with SDR.L being the most volatile one. The mean
spreads are also quite different, varying from 23bp for SDR.L with standard
deviation of 18 bp to 8 bp for VOD.L with standard deviation of 4 bp. The size
of spread and its deviation directly influence the gain coefficients in our models.

The results are given in Tables 1-5. We considered 3 months worth of data
(January to March 2008), each day sliced into 61 time slots of 8 minutes, from
8.16 to 16.24. In all those tables, the first column gives the order size which
is defined as a percentage of period average traded quantity. Therefore our
atomic order is defined with 8 minutes and first column quantity. The second
column gives the mean execution costs of uniform trajectory of market orders,
i.e M = (PM − Pperfect)/Pperfect, while in column 3 we have B = (PB −
Pperfect)/Pperfect. The cost of optimal strategy coming from (17)-(18) is O1

given in column four and the cost of two-period optimal strategy (24)-(27), O2,
is reported in column 5. All values are expressed in basis points. The last two
columns give the differences between the corresponding strategies. The quality
of Fill Probability we are using is illustrated in Figure 5. For 15% of ADV of
VOD.L we plot the mean error between forecasted Fi by our model and the
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Figure 5: Mean error of the Fill Probability model.

realized fill rate for the whole tested range. The cumulative results for the
whole considered period are illustrated graphically at Figure 6 for 10% of ADV
for VOD.L.

In addition to the mean execution costs, one is naturally interested in the
standard deviation of execution costs. We report these numbers in Table 6
for all considered stocks and 10% of ADV as a representative example of all
simulations again comparing all four algorithms. The strategies proposed in
this paper have smaller variance numbers and are preferable to the common
market practice (algorithms M and B) by these criteria.

The difference between single period model and two-period model is ob-
vious in Tables 1-5. We give more details taking the example of 10% ADV
for SASY.PA order as a typical example. All reported numbers are given as
a percentage of the initial order size. At t = 0 mean values of market and
limit orders are y0 = 3.7% and x0

1 = 64.1%, x0
2 = 21.5%, x0

3 = 5.9%, x0
4 =

0.9%, x0
5 = 0.4%. At τ = T/2 one half of y0 is realized while the unreal-

ized limit orders were x̃1 = 14.8%, x̃2 = 11.9%, x̃3 = 3.6%, x̃4 = 0.4% and
x̃5 = 0.1% with respect to the total order size. The order size for the second
period was Qτ = 34.5% of the initial order and that value was distributed as
y1 = 3.4%, xτ

1 = 23.1%, xτ
2 = 5.3%, xτ

3 = 0.2%, while we kept at initial bid
positions lτ1 = 2.0%, lτ2 = 0.4% and lτ3 = 0.2%. Therefore the total amount
of cancelations was 28% and new orders account for 28.5% of the initial order
size Q with yτ = 3.4%. At the end of time window t = T , we had average
residual size of 8.8% which was executed as a market order within roughly 3
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Figure 6: Costs for 10% of ADV through whole tested period, VOD.L.

minutes. Looking at the same example with the single period model we get
the same values initially with y = 7.4%. The realized quantities during whole
time period [0, T ] are different - filled quantity at bid level 1 is 59.9% and then
6.8%, 1.3%, 0.2% and 0.2% at the lower bid levels. The residual is 24.2%

We can see that both optimization models are not only significantly better
than common market practice but are indeed generating distribution of volume
between different bid levels and re-optimization procedure leads to new limit
orders as well as preserving some initially posted limit orders as expected. The
share of market orders is relatively small (7.3% within time frame and 8.8%
for residual) in the two period optimization procedure against 31.6% for single
period and that is the key reason for small execution costs. Another important
observation is the high rate of success of limit orders at lower levels of depth
which yields significantly higher gain than putting everything at best bid posi-
tion. The gain from the optimal trajectory is increasing with the size of atomic
order. That is caused by the quadratic impact cost, so any decrease in cost due
to decrease of market orders and increase of limit orders is more significant.

The same behavior can be seen if we consider the gain achieved with two-
period procedure against single period for four stocks but not for SDR.L. For
this stock the single period trajectory has the best performance of all considered
stocks. However the two-period model performs worse than the single period
one for larger orders. The reasons for this behavior are due to high volatility and
sparse trading pattern. As a results the Fill Probability model overestimates
the real probability for the best bid and at mid point we have large unfilled
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amount. By re-optimization we are actually chasing the noise since 4 minutes is
not an optimal reevaluation point of the market conditions. Therefore we end
up sending large amount as a market order which yields large impact costs. On
the other hand, in the single time procedure we benefit from keeping the initial
position at limit orders since the effect of volatility disappears and the fill rate
is significantly better that the rate within 4 minutes.

% of ADV M B O1 O2 B −O1 O1 −O2

1 13.8 11.4 10.0 9.6 1.4 0.5
2 14.6 11.7 10.3 9.6 1.4 0.7
3 15.4 12.1 10.6 9.7 1.5 0.9
4 16.2 12.5 10.9 9.8 1.7 1.1
5 17.0 13.0 11.1 9.8 1.9 1.3
6 17.8 13.5 11.4 9.9 2.1 1.5
7 18.6 13.9 11.6 10.0 2.3 1.6
8 19.4 14.4 11.9 10.1 2.6 1.7
9 20.2 14.9 12.1 10.3 2.8 1.8
10 21 15.4 12.4 10.5 3.0 1.9
11 21.8 15.9 12.7 10.7 3.2 2.0
12 22.6 16.5 13.1 11.0 3.4 2.1
13 23.4 17.0 13.4 11.2 3.6 2.2
14 24.2 17.5 13.8 11.5 3.8 2.3
15 24.9 18.1 14.1 11.8 4.0 2.4

Table 1: VOD.L

% of ADV M B O1 O2 B −O1 O1 −O2

1 14.9 11.9 10.7 9.2 1.2 1.5
2 16.3 12.4 11.1 9.0 1.3 2.1
3 17.9 12.9 11.6 9.1 1.3 2.5
4 19.5 13.5 12.1 9.1 1.4 3.0
5 21 14.1 12.7 9.2 1.4 3.5
6 22.5 14.7 13.2 9.2 1.5 4.0
7 24.1 15.3 13.7 9.3 1.5 4.4
8 25.7 15.9 14.2 9.4 1.6 4.8
9 27.2 16.5 14.8 9.5 1.7 5.2
10 28.8 17.1 15.3 9.7 1.8 5.7
11 30.4 17.8 15.9 9.9 1.8 6.1
12 31.9 18.4 16.5 10.1 1.9 6.4
13 33.5 19.1 17.0 10.3 2.0 6.8
14 35.1 19.8 17.6 10.5 2.1 7.1
15 36.6 20.5 18.3 10.8 2.2 7.5

Table 2: AAL.L
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% of ADV M B O1 O2 B −O1 O1 −O2

1 21.5 16.2 14.7 13.4 1.5 1.3
2 22.1 16.6 15 13.5 1.6 1.6
3 22.8 17 15.3 13.5 1.8 1.8
4 23.5 17.5 15.5 13.6 1.9 1.9
5 24.2 17.9 15.8 13.7 2.2 2.0
6 24.9 18.4 16.0 13.9 2.4 2.1
7 25.6 18.8 16.2 14.0 2.6 2.2
8 26.3 19.3 16.5 14.2 2.8 2.2
9 27 19.8 16.7 14.4 3.0 2.3
10 27.7 20.3 17.0 14.6 3.3 2.4
11 28.4 20.8 17.3 14.9 3.5 2.4
12 28.4 21.3 17.6 15.1 3.7 2.5
13 29.8 21.9 18 15.4 3.9 2.6
14 30.5 22.5 18.4 15.7 4.1 2.7
15 31.2 23.1 18.8 16.0 4.3 2.8

Table 3: KGF.L

% of ADV M B O1 O2 B −O1 O1 −O2

1 16.7 12.0 11.1 9.9 0.9 1.2
2 17.0 12.4 11.0 9.9 1.4 1.1
3 17.4 13.0 11.1 10.1 1.9 1.0
4 17.9 13.6 11.2 10.4 2.4 0.8
5 18.4 14.3 11.4 10.8 2.9 0.6
6 18.9 15.0 11.6 11.3 3.4 0.4
7 19.5 15.8 11.9 11.7 3.9 0.2
8 20.0 16.5 12.2 12.2 4.3 0.0
9 20.6 17.3 12.5 12.8 4.8 −0.3
10 21.2 18.1 12.9 13.4 5.2 −0.5
11 21.7 18.9 13.2 14.0 5.7 −0.7
12 22.3 19.7 13.6 14.6 6.1 −1.0
13 22.9 20.6 14.0 15.3 6.6 −1.2
14 23.4 21.4 14.4 15.9 7.0 −1.5
15 24.0 22.3 14.8 16.6 7.4 −1.7

Table 4: SDR.L

% of ADV M B O1 O2 B −O1 O1 −O2

1 11.7 9.0 8.3 7.2 0.8 1.0
2 13.1 9.7 8.7 7.2 1.0 1.5
3 14.6 10.4 9.2 7.4 1.2 1.8
4 16.0 11.1 9.7 7.5 1.4 2.1
5 17.3 11.8 10.2 7.7 1.6 2.5
6 18.8 12.6 10.8 8.0 1.9 2.8
7 20.2 13.5 11.3 8.2 2.1 3.1
8 21.6 14.3 11.9 8.6 2.4 3.4
9 23.0 15.1 12.5 8.9 2.6 3.6
10 24.4 16.0 13.2 9.3 2.8 3.9
11 25.8 16.8 13.8 9.7 3.1 4.1
12 27.2 17.7 14.4 10.0 3.3 4.3
13 28.6 18.6 15 10.4 3.6 4.6
14 29.9 19.5 15.7 10.9 3.9 4.8
15 31.3 20.5 16.4 11.4 4.1 5.0

Table 5: SASY.PA
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* M B O1 O2

VOD.L 14.4 12.8 10.3 9.9
AAL.L 18.7 15.4 15.6 11.4

SASY.PA 15.4 14.8 11.5 11.4
KGF.L 21.7 18.1 15.6 15.8
SDR.L 21.3 16.9 12.5 13.5

Table 6: Standard deviation of execution costs

6 Conclusions

Execution of atomic orders is the core element of any algorithm for automated
trading in electronic stock exchanges. Given the specification of a trade or-
der (buy or sell, quantity, price and time window for execution) a sequence
of atomic orders is generated and executed. The execution of an (atomic) or-
der is causing execution costs and the principal objective in efficient trading
is the minimization of these costs. The main characteristic of atomic orders,
short time window and relatively small size, allow significant simplifications in
modeling complex market conditions such as price trajectory, volatility, market
impact etc. Execution costs can be divided into two main categories. Direct
costs are predictable and proportional to the transaction value so they are not
considered in the models we present. Indirect costs, mainly price impact and
volatility, are depending on order type (market or limit) and market conditions
as well as execution strategy. Their minimization was the main topic of this
research.

We considered an execution strategy for atomic orders consisting of limit
and market orders. The key innovation in our approach was the introduction
of Fill Probability function for limit orders. A deterministic model with good
theoretical properties (positive definite hessian of the objective function) was
derived. The optimal execution strategy, obtained from the model, is risk averse
and the model is solvable in real time for a large universe of stocks.

Different properties of typically traded stocks (volatility and liquidity) call
for re-optimization of the strategy within atomic order execution time. There-
fore a two period model was also considered. The model has the same structure
as the first one with larger number of variables and is again solvable in real
time.

Both proposed models are tested on a representative sample of real trade
data from London stock Exchange and Euronext. A simulator is build in Matlab
environment and the optimization problems were solved by fmincon subroutine.
The optimal strategies obtained from the proposed models are tested against
two trading strategies that represent common market practice. The execution
costs are calculated as a deviation from an ideal trade - the trade that would be
optimal if all market conditions were known in advance. Five stocks with differ-
ent liquidity and volatility are tested. The optimal strategies are significantly
better than common market practice. Further more, they generated distribution
of volume between different levels and thus employed fully the advantage of Fill
Probability function. The second period execution path, arising from the two-
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period model, yields new limit orders and preserves some initially posted limit
orders. Therefore the reasoning in formulating these models proves empirically
good although significant simplifications of the real environment are introduced.
Another important property of the considered models is that they generate ex-
ecution strategy with reasonably small standard deviation of execution costs.
This property is highly desirable in real trading.
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