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Introduction

The successful trading of securities on the stock market concedes
- the ability to trade an unlimited amount of securities with immediacy

and
- with a minimal in�uence on future prices.

These two requirements have been broadly discussed in the recent academic
and empirical literature through the concept of liquidity and price impact
of the trade. Liquidity measures and impact of trade on the future price
formation are discussed based on daily, weekly, monthly or annual data.
The rapid development of electronic trading in the recent years signi�cantly
improved the process of transferring securities from one market participant
to another. Electronic trading enables a large number of participants to
interact on the market, improves the speed of trade realization, and also
requires a fast reactions of participants on any new information. In such new
environment, knowing current liquidity state in the market, anticipating the
level of liquidity that will be left after realized transaction and estimation of
degree of the in�uence of realized transactions on immediate and future price
movements is crucial for every successful trading strategy. As a consequence,
the liquidity and price impact have to be analyzed on high frequency (trade-
by-trade) �nancial data. Analysis of di�erent aspects of liquidity measures
based on trade-by-trade data is given in Section 2 of the present thesis.

The price impact of the trade is discussed on several di�erent levels in the
literature. In many empirical applications, price impacts are measured over
short horizon as a di�erence of the midquote immediately after the transac-
tion and midquote just before transaction. Such approach is appropriate for
an immediate level of price impact of the trade. Due to this level, if the trade
is buyer-initiated, the price tends to go up, and when it is seller-initiated,
the price tends to go down. However, this approach does not discuss the pos-
sible reasons of price impact and its implications. The literature concerning

i



ii

the price impact of the trade often make distinction between temporary and
permanent price impact. Short-horizon temporary price impact has been at-
tributed to market frictions, while the source of the permanent price impact
is the presence of investors with superior information - private information.
The realized price impact is then a combination of the permanent and tem-
porary impacts. We will shortly discuss several approaches to measuring
price impact.

Farmer et al. [25] discussed the price formation dependent of trade order-
ing. They recognize a mechanical impact and informational impact, which
together make the total impact of the trade ordering. The placement of trad-
ing orders may depend of complicated factors but, once when the sequence of
trading orders is given, price formation is purely mechanical. The mechani-
cal impact of trading order can be de�ned as the change in the future prices
that occurs even if no trading orders are changed in any way. It is realized in
the absence of any information. The informational impact is the part which
is left after removing the mechanical impact from the total impact. Their
empirical �ndings based on e�ective market orders 1 from on-book market
of the London Stock Exchange during the period of three years (2000-2002)
implies that the average mechanical impact decays to zero monotonically in
transaction time, as a power function with an exponent of about 1.7. In
contrast, the informational impact is a concave function of transaction time
and approaches a constant value.

Lillo et al. [53] discussed how much the price changes in average in
response to an order to buy or sell of a given size. Their investigation was
based on Trade And Quotes (TAQ) database of the 1000 stocks with the
largest market capitalization traded in the New York Stock Exchange in the
period 1995-1998. They investigated the average price shift as a function of
the transaction size measured in dollars, doing separately for buys and sells.
Their �ndings indicate that an average price impact is a power function of
transaction size with an exponent less than one, and that it depends on the
market capitalization of the stock. The behavior was roughly the same for
both buy and sell orders.

Vasiliki et al. [65] empirically investigated how stock prices respond
to the changes in demand. They consider the change in demand through
two variables and examine them separately. The �rst one is the number
imbalance, a di�erence in the number of buyer-initiated and seller-initiated
trades in a certain time interval. The second one is the volume imbalance,

1An e�ective market order is de�ned as any order or component of order that generates
transaction
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a di�erence in the number of shares traded in the buyer-initiated and seller-
initiated trades in a certain time interval. They found that the price impact
function, de�ned as the conditional expectation function of price change,
given a number of imbalance (volume of imbalance) displays odd function
forming shape "S" through the �rst and the third quadrant of the coordinate
system that seems universal for all stocks.

An extensive amount of theoretical literature is devoted to the price
changes caused by the presence of informed and uninformed traders in the
market, i.e. by information asymmetry. These models examine market mak-
er�s behavior when some of the traders are better informed than the others.
The main result of such research is that the price changes due to market fric-
tion are temporary, while the presence of informed traders causes permanent
price changes.

Kyle [50] gave a fundamental model of the dynamics of the market with
information asymmetry. He assumes that a monopolistic insider, a market
maker and a noise traders interact. The market maker observes the aggregate
net order �ow of insider and noise traders. It can be positive - net buy, and
negative - net sell order �ow. This order �ow provides a signal about the
liquidation value of the asset to market maker. Based on this signal, market
maker revises her/his beliefs and sets price such that it equals the expected
liquidation value given the observed order �ow. The resulting equilibrium
price change is an increasing linear function of net order �ow, whose slope
represents a measure of the market depth. The smaller slope indicates the
deeper market. It determines how much the market maker adjusted the
price in response to the net order �ow. In the Kyle's model price changes
are completely information induced.

Kyle's model has been extended by Back [5], who allows for a more gen-
eral distribution of the private signal and formally derives an equilibrium
pricing rule. In [50] orders are batched together and cleared at the prede-
termined points in time. Glosten et al. [30] suggested the sequential trading
model which assumes that the orders arrive sequentially according to some
stochastic fashion. In this model and in Glosten [29] the order arrivals are
independent over time. Madhavan et al. [55] generalized Glosten [29] by
allowing autocorrelation in order �ow.

Hasbrouck's approach [39] to future price formation is also based on the
asymmetric information theory. In a market with asymmetrically informed
participants, the market environment is measured by bid-ask spread and the
trade is described by its direction (positive if the trade is a buyer-initiated
and negative if the trade is a seller-initiated) and by its size. The concept
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of an asymmetrically informed market concedes that market makers pos-
sess only public information and that they interact with the other market
participants who can have some superior information - private information.
The informed and uninformed traders are undistinguishable to the market
makers. The main idea of the model is that the trade conveys information
and that market makers posted bid and ask prices after the realized trans-
action and with respect to that information. The model is represented by
the vector autoregression system of the return and the trade equation based
on both price and order �ow history. Considering such a system, the ef-
fect of public and private information on the price formation is considered
and the transitory and permanent price impact is identi�ed. Hasbrouck's
empirical �ndings indicate that the e�ect of permanent price impact is not
instantaneous and that it takes several transactions before it is fully realized.
Using the impulse response technique Hasbrouck [40] constructed the per-
manent price impact as a cummulative response of return to a shock in the
innovation of trade equation, where private information must arise if such
exists. Also, by variance decomposition technique Hasbrouck [40] calculated
the contribution of private information to the future price formation.

Hausman et al. [44] introduced one of the �rst empirical models that
consider the e�ect of the time span or duration between the trades on price
movement - the ordered probit model. They investigate the conditional dis-
tribution of price changes given a set of explanatory variables which includes
the sequence of past prices and irregularly spaced order arrivals. Their cross-
sectional analysis illustrates how the sequence of trades a�ects the dynamics
of price changes.

A more sophisticated statistical approache to analyzing the transaction
arrival times is given by Engle et al. [22]. An Autoregressive Conditional
Duration (ACD) model is applied to explicitly specify the dynamics of the
time duration between order arrivals. Engle et al. [21], [23] explore a statis-
tical model suitable for analyzing transactions data, generalizing the VAR
model in Hasbrouck [39] to incorporate the role of time between trades in
stock price movements and trade processes.

This master thesis analyzes di�erent liquidity aspects and the e�ect of in-
formation asymmetry on the future price formation according to Hasbrouck's
approach [39], [40] on eighteen stocks traded on the London Stock Exchange
from the FTSE 100 index. The thesis is organized as follows.

In Chapter 1 is given an survey of de�nitions and theorems needed for
understanding the concept of Hasbrouck's vector autoregression model.
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In Chapter 2, a large number of di�erent liquidity measures based on
trade-by-trade data is presented.

Chapter 3 deals with the basic univariate and multivariate time series
analysis needed for understanding Hasbrouck's VAR approach to modelling
permanent price impact. Of primary interest is the multivariate form of
autoregression and its moving-average representations needed for the impulse
response and variance decomposition analysis.

An economic framework of the microstructure and asymmetric informa-
tion theory as a motivation for the Hasbrouck's model of price impact is delt
with in Chapter 4. Hasbrouck's VAR model is discussed in details.

Chapter 5 presents the results of an empirical analysis of the di�erent
liquidity measures based on trade-by-trade data, as well as the results of the
analysis of price changes due to the asymmetric distribution of information
using Hasbrouck's approach. The speci�cations of the obtained results in
comparison to Hasbrouck's results [39], [40] are also discussed.
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Chapter 1

Survey of de�nitions and
theorems

In this chapter we will brie�y recall the de�nitions and theorems from the
theory of probability and statistics, necessary for the understanding the work
developed in this thesis. We assume that integrable theory, theory of vector
spaces and Hilbert spaces are already known.

1.1 Probability space
Suppose that Ω is a nonempty set of events and A is a family of subsets of
Ω with the following properties.

1. Ω ∈ A

2. A ∈ A ⇒ Ω \A ∈ A

3. If A1, A2, ... are sets from A, then A1 ∪A2 ∪ ... ∈ A.

The family A with the properties 1-3 is called σ-algebra or σ-�eld of events
on Ω. The pair (Ω,A) is a measurable space.

A minimal σ-�eld which contains {(−∞, x) : x ∈ R} is a Borel's σ-�eld
of the subsets from {(−∞, x) : x ∈ R} in the notation B = B(R). The pair
(R,B) is a Borel's measurable space. Let x = (x1, x2, ..., xn) ∈ Rn and

(−∞, x) = (−∞, x1)× (−∞, x2)× ...× (−∞, xn)

1
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be an interval in Rn. A minimal σ-�eld which contains {(−∞, x), x ∈ Rn}
is a Borel's σ-�eld in Rn in the notation Bn = B(Rn). The pair (Rn,Bn) is
n-dimensional Borel's measurable space.

Let P be a function de�ned on the σ-�eld A such that

1. P (A) ≥ 0 for every A ∈ A
2. If {An} is a sequence of the sets on A which are disjoint in pairs, then

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...

3. P (Ω) = 1.

Than P is called the probability function and (Ω,A, P ) is called the probability
space.

Remark 1.1 Using the terminology from the measure theory, probability
function is a measure on the σ-algebra A. A set E ∈ A such that P (E) = 0
is called a zero set. If some property holds always except on a set W ∈ A
such that P (Ω \W ) = 0, then we say that this property holds almost surely.

Suppose that (Ω,A, P ) is a probability space and that A,B ∈ A, P (B) >
0. Let us de�ne

Ω̂ := B,

Â := {C ∩B : C ∈ A},

P̂B(D) =
P (D)
P (B)

, D ∈ Â. (1.1)

Then Â is a σ-algebra, P̂B is probability function, and space (B, Â, P̂B) is
a new probability space. Conditional probability of the event A ∈ A with
respect to B ∈ A is given by

P (A|B) = P̂B(A ∩B) =
P (A ∩B)

P (B)
.

1.2 Random variables
Let (Ω,A, P ) be a probability space and (R,B) be a Borel's measurable
space. The mapping X of a measurable space (Ω,A) into the measurable
space (R,B) with the property

X−1(B) ∈ A, for every B ∈ B,
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is called one-dimensional or real random variable. The n-dimensional vector
X = (X1, X2, ..., Xn) whose components are real random variables de�ned on
the same probability space (Ω,A, P ) is n-dimensional random variable. More
formally, n-dimensional random variable is a mapping X of a measurable
space (Ω,A) into the measurable space (Rn,Bn) with the property

X−1(Bn) ∈ A, for every Bn ∈ Bn.

Random variables de�ned on a measurable space (Ω,A) are calledA-measura-
ble functions. Every random variable X generates a σ-algebra on Ω. It is
de�ned by

A(X) = {X−1(Bn) : Bn ∈ Bn}.

It is the smallest σ-algebra which is a subalgebra of A such that X is measur-
able with respect to it. We say that A(X) contains all relevant information
about random variable X.

Let X be an n-dimensional random variable X = (X1, X2, ..., Xn). The
function

FX(x1, x2, ..., xn) = P ({ω ∈ Ω : X1(ω) < x1, X2(ω) < x2, ..., Xn(ω) < xn})

is called the joint probability distribution of one-dimensional random variables
X1, X2, ..., Xn. The random variables X1, X2, ..., Xn are independent if

FX(x1, x2, ..., xn) = FX1(x1)FX2(x2) · ... · FXn(xn).

A random variable X is discrete if X(Ω) is a �nite or countable in�nite set.
It is de�ned by its probability distribution. Random variable X is continuous
if there is a non-negative integrable function

fX : Rn −→ (0,∞)

such that for every x = (x1, x2, ..., xn) ∈ Rn,

FX(x) =
∫ x1

∞

∫ x2

∞
...

∫ xn

∞
fX(t1, t2, ..., tn)dt1dt2...dtn.

Such function is called joint probability density function of one-dimensional
random variables X1, X2, ..., Xn.
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1.2.1 Expectation and conditional expectation

Let (Ω,A, P ) be a probability space and X = X(ω) be a random variable
de�ned on that space. The Lebesgue integral of X with respect to P , given
by

E(X) =
∫

Ω

XdP ≡
∫

Ω

X(ω)dP (ω)

is called mathematical expectation of the random variable X. The conditional
expectation of random variable X with respect to B ∈ Ω is de�ned by

E(X|B) =
∫

Ω

XdP̂B =
1

P (B)

∫

B

XdP,

where P̂B is given by (1). It is a mean value of the random variable X(ω),
ω ∈ B. Let us de�ne a characteristic function for a given set A ∈ Ω as

1A =
{

1, ω ∈ A
0, ω ∈ Ω \A.

Then the conditional expectation of the random variable X with respect to
B ∈ Ω can be de�ned as

E(X|B) =
E(1BX)
P (B)

.

Suppose that X : Ω → Rn is a random variable de�ned on the proba-
bility space (Ω,A, P ) such that E(|X|) < ∞, and suppose that G ⊂ A is a
subalgera of A. The conditional expectation of X with respect to G in the
notation E(X|G), is an almost surely unique random variable Z with the
properties

1. Z is G-measurable,
2. E(Z1A) = E(X1A) for every A ∈ G.

Suppose that X and Y are random variables de�ned on the same prob-
ability space (Ω,A, P ), E(|Y |) < ∞, and suppose that A(Y ) is a σ-algebra
generated by Y . Conditional expectation of the random variable Y with
respect to the random variable X is the A(X)-measurable function de�ned
by

E(Y |X) = E(Y |A(X)).
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1.2.2 Moments of random variable

The moment of order r of the random variable X is the mathematical ex-
pectation of Xr given by

γr = E(Xr) =
∫

Ω

XrdP.

The �rst moment of the random variable X is the mathematical expectation
of the random variable X. The mathematical expectation of |X|r given by

αr = E(|X|r) =
∫

Ω

|X|rdP

is called the absolute moment of an order r of the random variable X. The
central moment of an order r of the random variable X is the mathematical
expectation of (X −E(X))r, i.e.

cr = E((X − E(X))r).

The second central moment of random variable X is called variance or dis-
persion of the random variable X in the notation V ar(X) or D(X).

Random variables with �nite absolute moments of order p de�ne the
space Lp ≡ Lp(Ω,A, P ), i.e.

X ∈ Lp if and only if E(|X|p) =
∫

Ω

|X|pdP < ∞.

Random variables X ∈ Lp are called p-integrable random variables.
Let X ∈ L2 be a real-valued random variable de�ned on a probability

space (Ω,A, P ) and let G be a subalgebra of A. The conditional variance of
X with respect to G, denoted by

V ar(X|G)

is a G-measurable random variable
E((X − E(X|G))2|G).

The conditional variance of a random variable X with respect to the random
variable Y , de�ned on (Ω,A, P ) and denoted by

V ar(X|Y )

is the A(Y )-measurable random variable
E((X − E(X|A(Y ))2|A(Y )).
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1.2.3 Some probability distributions

Normal distribution. A real random variable X is normally distributed with
the mean µ and variance σ2 in the notation X ∼ N (µ, σ2) if its probability
density function is given by

f(x) =
1

σ
√

2π
e

(x−µ)2

2σ2 .

Normally distributed random variables are also called the Gaussian random
variables. A normal random variable with zero mean and unit variance in
the notation N (0, 1) has a standard normal distribution.

χ2-distribution. If Xi ∼ N (0, 1) i = 1, 2, ..., n are independent variables then
Z =

n∑
i=1

X2
i is χ2-distributed with n degrees of freedom (d.f.) in the notation

Z ∼ χ2
n.

Student's t-distribution. If X ∼ N (0, 1) and Y ∼ χ2
n and X and Y are

independent, then

Z =
X√

Y
n

has a Student's t−distribution with d.f. n in the notation Z ∼ tn. As
n → ∞, Student's t-distribution approaches the standard normal distribu-
tion N (0, 1).

Fisher's F -distribution. If Y1 ∼ χ2
n1

and Y2 ∼ χ2
n2

are independent, then

Z =
Y1/n1

Y2/n2

has the F -distribution in the notation Z ∼ Fn1,n2 . The subscript n1 refers
to degree of freedom of the numerator and the subscript n2 refers to degree
of freedom of the denominator. As n2 → ∞, F -distribution approaches to
the χ2

n1
distribution.
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1.3 Stochastic processes - basic theory

1.3.1 Properties

Let (Ω,A, P ) be a probability space and T be a set of indexes t. The family
of random variables

Xt = {Xt(ω) : t ∈ T}
de�ned on the same probability space (Ω,A, P ) is a stochastic process. Stochas-
tic process is a function of two variables: ω ∈ Ω and t ∈ T . For shortening
notation it is usually written as Xt. For �xed t ∈ T , Xt represents a random
variable. For �xed ω ∈ Ω it represents a real function de�ned on T called
the trajectory. In the text to follow we will assume that T is a time interval
and t represents time point from that interval.

Let Xt be a stochastic process. The autocovariance function of the pro-
cess Xt at two di�erent time points t, s ∈ T is

CX(t, s) = E[(Xt − E(Xt))(Xs − E(Xs))] = E(XtXs)−E(Xt)E(Xs).

A normalized version of the autocovariance function is autocorrelation func-
tion (ACF ), given by

ρX(t, s) =
CX(t, s)√

V ar(Xt)V ar(Xs)
.

Both functions are real valued. It is obvious that for t = s, the covariance
of process Xt is a variance of the process Xt, i.e. CX(t, t) = V ar(Xt) ≥ 0.
Hence, ρ(t, t) = 1. It is easy to show from the Schwartz inequality

(
∫
|f(x)g(x)|dx)2 ≤

∫
(f(x))2dx

∫
(g(x))2dx,

that
(CX(t, s))2 ≤ CX(t, t)CX(s, s) = V ar(Xt)V ar(Xs),

which implies |ρX(t, s)| ≤ 1. A process Xt is covariance stationary or weak
stationary if:

1. It has a time-constant mean, i.e. E(Xt) = µ, for all t ∈ T .

2. It has a time-constant variances, i.e. E((Xt − µ)2) = σ2 < ∞, for all
t ∈ T .
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3. The covariance between two observations at two di�erent time points
depends only on the distance between them, but not on the time points
themselves, i.e. CX(t, s) = C(t− s) for every t, s ∈ T, t 6= s.

A stronger type of stationarity is strict stationarity. We say that the
process Xt is strict stationary if the probability distribution of every �nite
vector of observations (Xt1 , Xt2 , ..., Xts) and its shifted vector of observations
(Xt1+h, Xt2+h, ... , Xts+h) are always the same for an arbitrary h. Notice that
strict stationarity does not require existence of �rst and second moments. If
a strict stationary process has a mean, it is a constant. If a strict stationary
process has �nite moments of second order then its covariance function does
not depend on time points, but only on distance between them. Therefore,
the strict stationary process is weak stationary if it has a mean and if all
its second moments are �nite. A weak stationary process is strict stationary
only if all probability distributions are Gaussian. The concept of strict sta-
tionarity requires that the joint distributions of the variables Xt are known.
This may be quite complicated in practice. For a practical purpose, the weak
stationarity concept is usually su�cient. In the present paper, stationarity
would always mean a weak stationarity, unless speci�ed otherwise.

A weak stationary process can be described as a process that looks the
same for any time span of a certain �xed length. Because of �nite variance
we say that the weak stationary process has a mean revision property, which
means that it can never drift too far from its mean. The speed of mean
revision is determined by an autocovariance function: mean revision is fast
when autocovariances are small, and slow when autocovariances are large.

Since for weak stationary processes the covariance does not depend on
time, but only on the distance between time points, one can write

CX(t, s) = CX(t− s, s− s) = CX(t− s) = CX(h) = CX(t, t− h)

were h = t− s. Subsequently, the autocorrelation function is

ρX(h) =
CX(h)
C(0)

and it has maximum for h = 0. Also, the autocovariance and the autocorre-
lation function of a stationary process Xt are symmetric, i.e.

CX(h) = CX(−h),

ρX(h) = ρX(−h).
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For two di�erent stochastic processes Xt and Yt we de�ne a cross-covari-
ance function by

CXY (t, s) = E[(Xt −E(Xt))(Ys −E(Ys))] = E(XtYs)− E(Xt)E(Ys)

at two di�erent time points t and s. The cross-correlation function (CCF )
of two di�erent processes Xt and Yt at two di�erent time points t and s is

ρXY (t, s) =
CXY (t, s)√

V ar(Xt)V ar(Xs)
.

For two strictly stationary processes Xt and Yt the strict joint stationarity
means that their joint distributions do not depend on the origin from which
the indexes of these two processes are taken. A weak joint stationarity of two
di�erent weak stationary processes Xt and Yt means that the cross-covariance
function CXY (t, s) at two di�erent time points t and s from an observable
time interval depends only on the distance between the time points, but not
on time points themselves, i.e.

CXY (t, s) = C(t− s).

By analogy with stationary processes, for two di�erent jointly stationary
processes Xt and Yt the following equalities are satis�ed.

CXY (h) = CXY (t, t− h),

ρXY (h) =
CXY (h)

CX(0)CY (0)
,

CXY (h) = CY X(−h),

ρXY (h) = ρY X(−h),

|ρ(h)| ≤ 1,

but, ρXY (0) 6= 1. Since the autocorrelation represents a correlation of the
process with itself over successive time intervals it is also called the serial cor-
relation, while crosscorrelation represents the correlation between two pro-
cesses over successive time intervals and it is also called the joint correlation.

Autocovariance generating function of the speci�c process Xt is a function
constructed by taking the h-th autocovariance, h ∈ Z and multiplying it by
the h-th power of some complex number z and summing it over all possible
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values of h. This function generates all autocovariances of the speci�c process
Xt, and it is given by

gX(z) =
∞∑

h=−∞
CX(h)zh. (1.2)

Following a similar concept, for two speci�c processes Xt and Yt the function
which generates all their cross-covariances is a cross-covariance generating
function given by

gXY (z) =
∞∑

h=−∞
CXY (h)zh. (1.3)

The autocovariance (autocorrelation) function has a graphical represen-
tation. Graphical representation of an autocorrelation function is called cor-
relogram. Di�erent stationary processes have di�erent correlogram shapes,
whereas non-stationary processes do not have well de�ned ACF . The cor-
relograms of a stationary time series can be used for model selection.

Some processes are not stationary but they become stationary when they
are observed for a long time spans. These processes are called stable or
asymptotically stationary.

1.3.2 Linear projection

Let L2 denote a Hilbert space of the squared integrable random variables X
with the inner product

〈X, Y 〉 = E(XY )

and with the norm
‖X‖2 = E(X2).

Let S ⊂ L2. The random variables X, Y ∈ S are equivalent if

E((X − Y )2) = 0.

Let X ∈ L2 be a random variable. A random variable πS is called the
projection of X onto S if

E((X − πS(X))2) = min
S∈S

E((X − S)2).

Notice that there is no apriori guarantee that πS(X) exists or that it is
unique. A su�cient condition for the existence is that S is a closed subspace.
For the given random variables Y1, Y2, ..., Yk let

M(Y1, Y2, ..., Yk) = {h(Y1, Y2, ..., Yk) : h : Rk −→ R is measurable} ∩ L2



1.4. MULTIPLE LINEAR REGRESSION 11

be a closed linear subspace of L2 consisting of measurable functions of
Y1, Y2, ..., Yk with E(h2(Y1, Y2, ..., Yk)) < ∞. The mean-square projection
of X onto M(Y1, Y2, ..., Yk) is de�ned as

E(X|Y1, Y2, ..., Yk) ≡ πM(Y1,Y2,...,Yk)(X).

The statistical interpretation of the mean-square projection is as follows. We
consider the random variable X belonging to L2 and we want to have the
best approximation of this variable by the family {Yt : t = 1, 2, ..., k}. This
means that we are going to look after the element ofM(Y1, Y2, ..., Yk) which
minimizes the expression ‖X − Y ‖2. Therefore, E(X|Y1, Y2, ..., Yk) is the
best predictor of X based on Y1, Y2, ..., Yk in the mean-square error sense. In
other words, there exists a measurable function

f : Rk −→ R

with
E(X|Y1, Y2, ..., Yk) = f(Y1, Y2, ..., Yk)

and
E(X − f(Y1, Y2, ..., Yk)) = min

h
E(X − h(Y1, Y2, ..., Yk))

where h's are measurable functions h : Rk −→ R. If we insist that the
function f is linear, than E(X|Y1, Y2, ..., Yk) represents the best linear pre-
dictor of X based on Y1, Y2, ..., Yk and it is called linear expectation or linear
projection.

1.4 Multiple linear regression

1.4.1 De�nition

A linear multiple regression expresses a dependent random variable y as a
linear function of independent variables x1, x2, ..., xk and error term ε. De-
pendent variable y is also called endogenous variable or regressand. Indepen-
dent variables x1, x2, ..., xk, which are possible random are called exogenous
variables or regressors. The error term is the innovation, shock or unexpected
shift in exogenous variables. Considering all observations from a sample of
size n it can be written as

yi = β1xi1 + β2xi2 + ... + βkxik + εi
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where i = 1, 2, ..., n and β1, β2, ..., βk are regression coe�cients. In the matrix
notation it can be written as




y1

y2

.

.

.
yn




=




x11 x12 ... x1k

x21 x22 ... x2k

.

.

.
xn1 xn2 ... xnk







β1

β2

.

.

.
βk




+




ε1

ε2

.

.

.
εn




,

or in shorter notation
y = Xβ + ε. (1.4)

1.4.2 Estimation

First we will de�ne some properties of estimators. Suppose that θ̂ is an
estimator of the parameter θ. We say that θ̂ is

1. unbiased, if E(θ̂) = θ. If E(θ̂) 6= θ, the estimator is biased and the
di�erence E(θ̂)− θ is called a bias.

2. e�cient, if it is unbiased and it has a minimum variance in the class
of all unbiased estimators.

A linear multiple regression coe�cient can be estimated by minimizing
the error sum of squares i.e.

min
β

((y −Xβ)T (y −Xβ)) = min
β

n∑

i=1

(yi − xT
i β)2

where xi, i = 1, 2, ..., n are row vectors of matrix X in the equation (1.4).
Such method is called the least squares method. The least squares estimator
for β, denoted by β̂ is

β̂ = (XT X)−1XT y.

Following assumptions are required to examine the distribution of β̂ and the
optimality of the least square procedure.

1. y = Xβ + ε

2. E(εi|X) = 0, i = 1, 2, ..., n
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3. V ar(εi|X) = σ2, i = 1, 2, ..., n

4. E(εiεj |X) = 0, i, j = 1, 2, , ...n, i 6= j

5. rank(XT X) = rank(X) = k

6. ε|X ∼ N(0, Σ)

The �rst assumption is necessary if we want that the least square method is a
reasonable method for estimation. The second assumption is called the strict
exogeneity which provides that the least squares estimator β̂ of β is unbi-
ased, i.e. E(β̂|X) = E(β). The third assumption is called homoskedasticity.
The forth assumption provides that the errors are uncorrelated. The �fth
assumption provides that (XT X)−1 exists, and therefore β̂ can be estimated.
Assumptions 2 and 6 provide that

Σ = σ2In

where In is an n× n identity matrix. Assumptions 1-6 provide that

V ar(β̂|X) = σ2(XT X)−1.

Under the same assumptions the least squares estimator β̂ of β has the
lowest variance among all other linear unbiased estimators, and therefore it
is e�cient. Under assumptions 1-6 β̂ is normally distributed, i.e.

β̂ ∼ N (β, σ2(XT X)−1).

For dynamics models2, i.e. when regressors xi are lagged yt, the strict
exogeneity is not satis�ed. Therefore, this assumption has to be relaxed by
the assumption of predetermined regressors given by

E(xiεi) = 0, i = 1, 2, ..., n

which means that the error term is uncorrelated (orthogonal) to the contem-
poraneous regressors.

1.4.3 Hypothesis testing

We will consider the null hypothesis given by

H0 : Bβ − b = 0
2See section 3
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where B is an m × k matrix, k is the number of regressors and m is the
number of restrictions given by the hypothesis.

T- test. It is used to test the signi�cance of the coe�cients βi, i = 1, 2, ..., k.
Under assumption 1-6 to test H0 : βi = 0 against H1 : βi 6= 0, i = 1, 2, ..., k,
t-test is given by

Bβ̂ − r√
s2B(XT X)−1BT

∼ tn−k,

where b is a 1× k vector with all components being zeros expect of the i-th
component which is one. For n → ∞, Student's t-distribution converges to
the standard normal distribution, N (0, 1). The t-statistics for the speci�c βi

is given by

β̂i√
s2(XT X)−1

[ii]

. (1.5)

The term (XT X)−1
[ii] denotes the i-th diagonal element of (XT X)−1 and s2

is the sample error variance estimator given by

s2 =
ε̂T ε̂

n− k

where ε̂ is the estimated error term.

The Wald test. It tests whether an independent variable has a statistically
signi�cant relationship with a dependent variable. Under Assumptions 1-6
the Wald test is given by

(Bβ − b)T [BT (XT X)−1B]−1(Bβ − b)
s2

∼ Fm,n−k. (1.6)

If n →∞, Fm,n−k converges to the χ2
m distribution.

1.4.4 Large sample properties of the least squares estimator

The assumptions 1-6 are small sample assumptions of multiple linear regre-
sion. Most of them are not realistic in the applications to �nancial data which
are generally non-normal, heteroskedastic and correlated. To avoid employ-
ing more de�nitions and theoretical details, large sample assumptions will
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not be discussed here. Assuming that large sample assumptions are satis�ed,
we will discus the large sample properties or the asymptotic behavior of the
least squares estimators.

The asymptotic properties of the least squares estimator β̂ of β discuss
its behavior as n →∞. First we need the de�nitions of convergence in prob-
ability, convergence in distribution and consistency property of estimators.
Convergence in probability. A sequence of random variables Xn, n ∈ N
converges in probability to a constant c, in the notation Xn

P−→ c, if
lim

n→∞P (|Xn − c| > ε) = 0

for any ε > 0.
Convergence in distribution. Let X1, X2, ... be a sequence of random variables
with the corresponding distribution functions FX1 , FX2 , ... . A sequence of
random variables X1, X2, ... converges in distribution to a random variable
X with the distribution function FX , in the notation

Xn
d−→ X

if the sequence of distribution functions FX1(x), FX2(x), ... converge to FX(x)
in every point x at which FX is continuous.
Consistency of estimator. Suppose that θ̂ is an estimator of θ based on a
sample of size n. Then an estimator θ̂ is sad to be consistent if and only if

θ̂
P−→ θ.

A su�cient condition for θ̂ to be consistent is that its bias and variance
should both tend to zero as a sample size increases.

The asymptotic properties of the least squares estimator β̂ are

1. consistency, i.e. β̂
P−→ β.

This property is provided by assumption of predetermined regressors.

2. asymptotic normality, i.e.

β̂
d−→ N (β̂,

σ2

n
Q−1)

where
Q = E(xT

i xi)

and
XT X

n

P−→ Q
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which is in fact one of the large sample assumptions. We refer to [35] for
more details.

1.4.5 Heteroskedasticity

We say that in the multiple regression model (1.4) the error term is het-
roskedastic if

E(εi|X) = 0,

V ar(εi|X) = σ2
i = σ2wi, wi > 0, i = 1, 2, ..., n.

If we assume that the error terms are not autocorrelated, i.e.

E(εiεj |X) = 0, i 6= j, i, j = 1, 2, ..., n

then the error covariance matrix can be written as

Σ = V ar(ε|X) = E(εεT |X) = σ2W (1.7)

where W = diag(w1, w2, ..., wn). Under heteroskedasticity the least squares
estimator β̂ of β remains unbiased, consistent and asymptotically normally
distributed but it is not e�cient any more. The covariance matrix of β̂ is
given by

V ar(β̂) = (XT X)−1XT σ2WX(XT X)−1 6= σ2(XT X)−1.

Standard tests such as the Wald or t-test are not valid. Under very general
conditions the matrix

S =
XT σ2WX

n
=

1
n

∑

i

σ2
i xix

T
i

can be consistently estimated by the White's heteroskedasticity consistent
covariance estimator [69]

Ŝ =
1
n

∑

i

ε2
i xix

T
i . (1.8)

Then the White's estimator of covariance matrix V (β̂) is given by

V ar(β̂) = n(XT X)−1Ŝ(XT X)−1. (1.9)

Tests based on the White's estimator hold only asymptotically as the test
statistics is consistent but not unbiased.
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1.4.6 Generalized least squares

If data have heteroskedastic errors, e�ciency of the estimator β̂ of β in mul-
tiple linear regression (1.4) can be obtained by the generalized least squares
method, GLS. Let us assume that error covariance matrix (1.7) is known.
Multiplying both sides of equation (1.4) by W−1/2

W−1/2y = W−1/2Xβ + W−1/2ε

it is transformed into
ỹ = X̃β + ε̃, (1.10)

where ỹ = W−1/2y, X̃ = W−1/2X and ε̃ = W−1/2ε. Such transformation
provides that errors in equation (1.10) are homoskedastic, i.e.

V ar(ε̃|X) = σ2In.

Application of the least squares method in equation (1.10) leads to the gen-
eralized least squares estimator β̂GLS of β, given by

β̂GLS = (XT W−1X)−1XT W−1y.

The generalized least squares is also called the weighted least squares (WLS)
as it minimizes the sum of squared residuals weighted by 1/wi, i = 1, 2, ..., n,
i.e.

min
β

W−1((y −Xβ)T (y −Xβ)) = min
β

n∑

i=1

1
wi

(yi − xT
i β)2

where xi, i = 1, 2, ..., n are row vectors of matrix X in equation (1.4).
When the error covariance matrix is unknown, multiple linear regression

(1.4) has to be estimated by the feasible generalized least squares (FGLS).
We refer to [35] for more details.

1.4.7 Multivariate regression

The system of K standard multiple linear regressions is called a multivariate
regression

yj = Xjβj + εj , j = 1, 2, ...,K.

These regressions do not necessarily have the same number of regressors.
Multivariate regression can be written in the vectorized version for the all
system as

y# = X#β# + ε#. (1.11)
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If n is the number of observations, vectors y# and ε# are the nK×1 vectors
obtained by stacking vectors yj , that is by stacking vectors εj , j = 1, 2, ...,K.
The matrix X# is a block-diagonal matrix of the form

X# =




X1 0 ... 0
0 X2 ... 0
.
.
.
0 0 ... XK




.

If Mj is the number of regressors in equation j = 1, 2, ..., K, the dimension

of matrix X# is nK ×M , where M =
K∑

i=1
Mi.

In the multivariate regression model, crucial assumptions concern the
error covariance matrix of the model (1.11) given by E(ε#ε#T ). If the errors
are unrelated across equations and all regressors are di�erent, the regressions
are unrelated. For more general assumption of the error covariance matrix
we need the following de�nitions.
Positive de�nite matrix. A symmetric matrix A (A = AT ) is positive de�nite
if there is a positive constant α such that for all x ∈ Rn is satis�ed

xT Ax ≥ α||x||2, (1.12)

where || · || is the vector's norm.
Positive semide�nite matrix. A symmetric matrix A is positive semide�nite
if inequality (1.12) holds for α = 0.
Kronecker product. The Kronecker product of k × l matrix A, and m × n
matrix B, in the notation A⊗B is the km× ln-matrix given by

A⊗B =




a11B a12B ... a1lB
a21B a22B ... a2lB

.

.

.
ak1B ak2B ... aklB




.

Under assumptions

V ar(εj |Xj) = σjjIn, j = 1, 2, ..., K,

E(εjεk|Xj , XK) = σjkIn, j, k = 1, 2, ..., K, j 6= k,
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the error covariance matrix of the model (1.11) becomes

E(ε#ε#T ) =




σ11In σ12In ... σ1KIn

.

.

.
σK1In σK2In ... σKKIn




= Σ⊗ In,

where Σ is positive semide�nite matrix. Therefore, the error covariance ma-
trix E(ε#ε#T ) is a matrix �lled with diagonal blocks. Under such assump-
tion, the errors are uncorrelated over time, though they may be correlated
across the equations. This model is called the seemingly unrelated regression
or SUR, [67].

The least squares estimator β̂# of β# for the SUR model is given by

β̂#
j = (X#T X#)−1X#T y#, (1.13)

or viewed for a individual equation it is simply the least squares estimator
equation by equation

β̂j = (XT
j Xj)−1XT

j yj , j = 1, 2, ..., K.

The generalized least squares estimator β̂# of β# for the SUR model is
given by

β̂#
GLS = (X#T (Σ−1 ⊗ In)X#)−1X#T (Σ−1 ⊗ In)y#. (1.14)

The least squares estimator is consistent in the SUR model if the assumption
of strict exogeneity or the assumption of predetermined regressors is satis�ed.
To analyze the e�ciency of the least squares estimator we will consider two
special cases for the error covariance matrix in the SUR model given in [49].
Regressors are the same in all equations. Then,

X# = In ⊗X.

It is easy to see by classical matrix operations that putting this expression
of X# in the generalized least squares estimator (1.14) it becomes the least
squares estimator (1.13).
The error covariance matrix is diagonal. Since X# is the block-diagonal,
the expression (1.14) immediately decomposes into K separate estimates for
βj , j = 1, 2, ..., K of the form

(σ2
jjX

T
j Xj)−1σ2

jjX
T
j yj = (XT

j Xj)−1XT
j yj ,
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which is again the least squares estimator of β#.

Since the generalized least squares estimator is e�cient, these two cases
implies

1. The least squares estimator β̂# of β# in the SUR model with identi-
cal regressors is equal to the generalized least squares estimator, and
therefore it is e�cient.

2. The least squares estimator β̂# of β# in the SUR model with contem-
poraneously orthogonal errors is equal to the generalized least squares
estimator, and therefore it is e�cient.

In the economical literature this e�ciency property of the least squares esti-
mator in a multivariate regression with identical regressors or with diagonal
error covariance matrix is sometimes called the Kruskal's Theorem. We refer
to [48] for detail analysis of assumptions which make the least squares and
the generalized least squares estimators equal.

1.5 Trimmed mean
Let x1, x2, ..., xn be a set of real-valued observations ordered as x1 ≤ x2 ≤
... ≤ xn. The k-th trimmed mean xk is de�ned as

xk =
1

n− 2k

n−k∑

i=k+1

xi.

By ordering the original observations, and taking away the �rst k smallest
observations and the �rst k largest obserations, the trimmed mean takes
the arithmetic average of the resulting data. Trimmed mean dramatically
reduces sample standard deviation. The idea of a trimmed mean is to elim-
inate outliers, or extreme observations that do not seem to have any logical
explanations in calculating the overall mean of a population.

1.6 Spearman rank correlation test
The Spearman rank correlation [46] is a technique used to test the direction
and strength of the relationship between two variables. The data sets of
realization of observed variables has to be ranked from 1 to n according
to their values, where n is the sample size. The null hypothesis of this
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test states that there is no relationship between the two sets of data. Let
di, i = 1, 2, ..., n be the di�erences of corresponding ranks of two observable
sets of size n. The Spearman rank correlation is given by

Rs = 1−
6 ·

n∑
i=1

d2
i

n(n2 − 1)
.

The zero Rs indicates that null hypothesis is accepted, otherwise it is re-
jected. The sign of Rs indicates the sign of correlation. If |Rs| ≤ 0.5, the
correlation is weak. If |Rs| ≥ 0.5, the correlation is strong.
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Chapter 2

Liquidity measures

The universe we are interested in is a stock exchange market with a mecha-
nism of processing transactions between di�erent market participants. The
main participants in a traditional market are market makers and market
agents. A market maker is a �rm or a person that stands ready to buy and
sell a particular stock at a publicly quoted prices. There are two types of
stock prices in the stock market. They are the bid price - a price at which
a trader is willing to buy a number of stocks, and the ask price - a price at
which a trader is willing to sell a number of stocks. For every bid price a
bid volume is speci�ed - the number of shares that can be bought at that
price. Also, for every ask price an ask volume is speci�ed - the number of
shares that can be sold at that price. Agents interact with market makers
through a sell or buy transaction proposal which is called order. There are
two categories of orders: market orders and limit orders. If the purpose is to
trade securities as soon as possible one would put the market order - a buy
or sell order of a certain number of stocks at the current standing (bid or
ask) price. Therefore, this kind of order speci�es a number of stocks that has
to be executed in that transaction, but does not specify an execution price.
On the other hand, if the purpose is to trade at a speci�c price or better,
one would put the limit order - a limit bid or ask stock price at which the
transaction has to be executed. The buy limit order speci�es the maximum
price at which a trader is willing to buy, and the sell limit order speci�es the
minimum price at which a trader is willing to sell. Hence, for the limit orders
there is no certainty about whether it will be executed and when, but if the
order was executed it would be executed at the requested price or better.
The stock market is full of participants who want to buy or sell stocks at

23
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di�erent prices. Therefore, one who is willing to buy will try to buy from
one who o�ers the lowest price. On the other hand, one who is willing to
sell will try to sell to one who is ready to pay the highest price. The highest
bid and the lowest ask prices are the best bid and best ask price for which
trade can be executed in any speci�c time. The di�erence between the best
ask and bid price is called a spread. Market makers seek to buy shares at
the lowest price and sell at the highest price. The bid-ask spread is therefore
intended to compensate market makers for the risk they take in dealing with
a security.

A huge development of information technology enables a detail recording
of stock market activities in the electronic order book. Such book contains
information such as price, volume and time of realized transaction, several
levels of bid and ask prices with their related volumes posted after realized
transaction and time when they posted. Also, an order book contains infor-
mation about orders, such as the type (buy or sell) and number of orders.

One who intends to trade securities on the stock market wants to buy
or sell a certain quantity of securities at the acceptable price and in desired
time. Subsequently, the questions about market ability to provide trans-
ferring the ownership of a security from one market participant to another
with the lowest degree of di�culties naturally appear. This ability is called
liquidity. Liquid market is therefore a market where market participants
are able to buy or sell an unlimited amount of securities with immediacy,
at the price close to the last traded price. Alternatively, illiquid market is
the one where market participants will be able to trade securities only at
prices di�erent from the last traded price. In an illiquid market, the large
transactions cause shifting of the price from the observed price and they may
be executed only with a long time lag. Liquidity movement has a straight
impact on transaction price. The worse is liquidity in the market, the more
di�erent the price will be from its "fair" or "true" value. A perfectly liquid
market is the one where market participants would get the same price of the
security irrespective of the transaction time, transaction quantity and of the
transaction type (buy or sell).

Since in reality it is impossible to achieve perfectly liquid market one is
interested in the liquidity degree of the market or individual stock. In that
sense liquidity may be de�ned as a degree of realization of big transactions
in speci�ed time interval and with minimal in�uence on the future prices.
Therefore, it is necessary to measure such liquidity degree in some way.

Liquidity problems are complex and require analysis of di�erent aspects
of trading activity. That is the reason why it is impossible to have one
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de�nition of liquidity or one general measure of liquidity. In the recent liter-
ature, liquidity measures consider one aspect of liquidity - one-dimensional
liquidity measures, or combine a several liquidity aspects - multi-dimensional
liquidity measures. The following four aspects of liquidity are distinguished
in the literature.

Trading time. The ability to execute a transaction immediately at the
prevailing quote. It is measured by the waiting time or duration between
subsequent transaction or by its inverse - the number of trades per time unit.

Tightness. The ability to buy and sell an asset at about the same price
at the same time. Tightness shows the cost associated with transacting,
or the cost of immediacy. The natural measure of tightness are di�erent
versions of the spread.

Figure 2.1: Four liquidity aspects in a static image of the limit order book.

Depth. The ability to buy or sell a certain amount of an asset at a
particular bid-ask prices. It is measured by the volume of shares available
for immediate trade on both sides of the market, by order ratio, trading
volume or the �ow ratio.
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Resiliency. The ability to buy and sell a certain amount of an asset
with a small in�uence on quoted prices. It indicates the speed at which
prices revert to the previous level if there is a disturbance in the process
of price formation. This aspect of liquidity can be described by intraday
returns, or the liquidity ratio.
These four aspects of liquidity, represented in a static image of the limit
order book, are depicted in Fig. 2.1. Every dimension of liquidity is subject
to change at every point in time.

In the subsequent section we will introduce some of one-dimensional and
multi-dimensional liquidity measures based on intraday transaction data and
their properties.

2.1 One-dimensional liquidity measures
One-dimensional liquidity measures capture the following liquidity dimen-
sions: volume of trade, the time between consecutive trades and spread.

2.1.1 Volume-related liquidity measures

We will represent several measures that are based on some volume dimension
of trade and their reversal measures which calculate the time needed to
realize that volume dimension.

The trading volume [52] in a certain time interval I is

VI =
NI∑

i=1

vi

where NI denotes the number of trades in the time interval I and vi is the
number of shares of trade i. A higher trading volume measure indicates a
higher liquidity.

The volume imbalance or the net traded volume [66] measures the dif-
ference between the buyer initiated volume and the seller initiated volume
during a certain period of time. The volume imbalance gives an information
about direction of price changes. Positive volume imbalance indicates excess
demand over supply and the price will increase. Negative volume imbalance
indicates excess supply over demand and the price will decrease. Also, pos-
itive/negative volume imbalance indicates higher liquidity on the ask/bid
side than on the bid/ask side.
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The turnover [13] is the total money value of transactions over the time
interval I. It is given with

TOI =
NI∑

i=1

pivi

where pi is the price of trade i and NI denotes the number of trades in the
time interval I. The advantage of this measure is that it makes di�erent
stocks comparable.

The volume duration [33] is a reverse measure of the trading volume
measure. It is time needed to trade a certain number of shares. Similarly,
the volume imbalance duration and the turnover duration represent the time
needed to trade a certain volume imbalance, that is a certain turnover. A
higher duration indicates a lower liquidity.

The measures described are de�ned only if the transaction is realized
and in the time of realization. The following measures exist at every point
of time even if no transaction take place.

The volume depth [10] represents the sum of the best bid and best ask
volumes at the time point t, i.e.

Dt = va
t + vb

t .

This measure captures the total available volume to trade at the best bid and
ask prices. A higher depth indicates a higher liquidity. If the depth is divided
by two it is called the average volume depth [61], [32], [14]. Since the best
bid and ask volumes do not necessarily move in common, it is interesting to
investigate them separately [47]. Another version of volume depth measure
is the logarithmic volume depth [12], de�ned as a sum of the logarithms of
the best bid and ask volume, given by

Dlogt = ln(va
t ) + ln(vb

t ) = ln(va
t vb

t ).

This measure improves distributional properties of the volume depth.
The money depth [66] is de�ned as

D$t =
va
t pa

t + vb
tp

b
t

2
.

Similarly to the turnover measure, the money depth makes di�erent stocks
comparable.
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Larger bid or ask orders may exceed the depth on the bid or ask size.
Such orders cannot be executed at the best bid or ask price and therefore
they have to "walk the book". This situations are considered in the following
measures.

2.1.2 Time-related liquidity measures

Time-related liquidity measures are concerned with trading intensity.
The number of transaction per time unit NI [66], is the number of trades

in the observable time interval I. The reverse of this measure is the waiting
time between two subsequent transactions, or duration. The waiting time or
duration between a trade executed at the time point ti and the next trade
executed at the time point ti+1 is simply

Duri = ti+1 − ti.

The duration conveys the same information as the number of trades. Also,
it may be interesting to calculate the number of orders per time unit and its
reversal measure - the duration between subsequent orders. The higher the
number of transactions/orders per time unit the higher is the liquidity. A
higher duration between two subsequent transaction/orders indicates a lower
liquidity.

2.1.3 Spread-related liquidity measures

Spread related liquidity measures represent transaction cost measure of liq-
uidity. The smaller are the spread related measures the more liquid is the
market. The basic one is the absolute spread, de�ned as a di�erence between
the lowest ask and the highest bid price

St = pa
t − pb

t .

It is always positive and its lower limit is the minimum of the price change
- the tick size. Absolute spread contains two components of transaction
cost. The �rst one compensates market maker for inventory costs and order
processing cost. Inventory costs represent compensation to market makers
to bearing the risk of balancing inventory level due to market microstruc-
ture and stock market �uctuations. The order processing costs are the fees
charged by market makers for matching buy and sell orders. This component
is unrelated to underlying value of securities and therefore it is transient. The
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other one is information asymmetry cost that arises because market maker
may trade with unidenti�ed informed traders. The market makers compen-
sate for their losses to informed traders by widening the spread when deal-
ing with uninformed traders. Consequently, a higher proportion of informed
traders in the market will cause an increase of the bid-ask spread.3

The logarithm of absolute spread, [36] is de�ned as
logSt = ln(pa

t − pb
t).

The distribution of this version of spread is closer to the normal distribution
than the distribution of the absolute spread.

Let pt denote the price at which trade is executed at the time point t.
Then the notations pa

t−1 and pb
t−1 stand for the pre-trade bid and ask prices,

i.e. bid and ask prices prevailing before that trade. The following spread
measures are de�ned in terms of the given notation.

The relative spread [26] is calculated as

S
(rel)
t =

pa
t−1 − pb

t−1

pt
.

Since pt may be ask or bid price, this measure takes the market movements
in consideration. The ask price will move market upward, and bid price will
move market downward.

To make spreads of di�erent stocks comparable the proportional spread
is de�ned as

S
(prop)
t =

pa
t − pb

t

mt
(2.1)

where mt is a midquote calculated as

mt =
pa

t + pb
t

2
.

The relative spread of logarithmic quotes is calculated by analogy to the
logarithmic return of the asset

Slog
(rel)
t = ln(pa

t )− ln(pb
t) = ln(

pa
t

pb
t

).

This measure represents a good proxy for the proportional spread [56].
Again, the logarithmic relative spread of logarithmic quotes de�ned as

LogSlog
(rel)
t = ln(Slog

(rel)
t ) = ln(ln(

pa
t

pb
t

)).

3See section 4.
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improves the distributional properties.
The e�ective spread measures the actual cost of trading for investors. It

is calculated as an absolute value of the di�erence between the transaction
price at time t and pre-trade midquote mt−1, that is

S
(eff)
t = |pt −mt−1|.

Since the trades sometimes occur at prices that are better than the posted
quotes, the e�ective spread measure captures this "improved pricing." The
e�ective spread smaller than half the absolute spread re�ects trading inside
of the bid-ask spread.

Using e�ective spread the liquidity premium [8] is de�ned as

LPt = x0
t (pt −mt−1)

where x0
t is the trade indicator variable which takes value 1 if the trade is a

buyer initiated and value -1 if trade is a seller initiated. It can be determined
by the Lee and Ready rule [51]

x0
t =





1, pt > mt−1 (buyer initiated)
0, pt = mt−1 (undeterminated)
−1, pt < mt−1 (seller initiated).

(2.2)

The liquidity premium is positive if the buyer pays more, or if the seller pays
less than the midquote.

By an analogy to the proportional spread and relative spread, the relative
e�ective spread and the proportional e�ective spread are de�ned by

S
(releff)
t =

|pt −mt−1|
pt

,

S
(propeff)
t =

|pt −mt−1|
mt−1

.

These measures are comparable for di�erent stocks.

2.2 Multi-dimensional liquidity measures
Multi-dimensional liquidity measures combine properties of the di�erent one-
dimensional liquidity measures.
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Figure 2.2: The quote slope.

The quote slope measure [42] is the spread divided by the logarithmic
volume depth

QSt =
St

Dlogt
=

pa
t − pb

t

ln(va
t ) + ln(vb

t )
=

pa
t − pb

t

ln(va
t vb

t )
.

As depicted in Fig. 2.2, the quote slope is the slope of the line connecting
the bid and ask price/quantity pairs. The larger bid and ask volumes or the
closer are bid and ask quotes to each other, the �atter is the slope of the
quote and market becomes more liquid.

The logarithmic quote slope [42] has the relative spread of logarithmic
quotes in the numerator instead of the absolute spread

LogQSt =
Slog

(rel)
t

Dlogt
=

ln(pa
t

pb
t
)

ln(va
t vb

t )
.

Since the ask price is always higher than the bid price, the quote slope and
the logarithmic quote slope are always positive.
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Correction of the logarithmic quote slope for a market moving in one
direction is adjusted logarithmic quote slope [62], de�ned as

LogQSadjt =
ln(pa

t

pb
t
)

ln(va
t vb

t )
+
|ln( vb

t
va

t
)|

ln(va
t vb

t )
· ln(

pa
t

pb
t

)

= LogQSt · (1 + |ln( vb
t

va
t
)|).

The correction factor |ln( vb
t

va
t
)| is zero if volumes on the bid and ask side are

equal. If either bid or ask volume are higher than the other, the correction
factor is larger than one. Therefore, if this measure is increasing, then the
liquidity is decreasing.

The another version of the quote slope liquidity measure is the composite
liquidity [14]. It is the proportional spread divided by the money depth

CLt =
S

(prop)
t

D$t
=

2(pa
t − pb

t)
mt(va

t pa
t + vb

tp
b
t)

.

A higher composite liquidity measure indicates a lower liquidity.
The liquidity ratios combine some of volume-based liquidity measures

and return. The liquidity ratio 1 compares the turnover to the absolute price
change during the time interval I,

LR1I =
TOI

|rI | =

NI∑
i=1

pivi

|rI | .

If rI = 0 the liquidity ratio 1 is set to be zero. The higher is volume the
more price movement can be absorbed. Therefore, the higher liquidity ratio
1 indicated the higher liquidity in the market.

The reverse of the de�ned liquidity ratio 1 is the return per turnover [2],
given by

1
LR1I

,

or the Martin index [7], given by

MI =
N∑

i=2

(pi − pi−1)2

TOI
.
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The liquidity ratio 2 [4] is de�ned as an average price change of transaction

LR2I =

NI∑
i=1

|rI |
NI

.

The higher is the liquidity ratio 2, the lower is the liquidity.
The �ow ratio [60] is a combination of the turnover and average duration

in the analyzed time interval I,

FRI =

NI∑
i=1

pivi

1
NI−1

NI∑
i=2

Duri−1

.

The �ow ratio measures whether trading takes place in a few but large trans-
action or in lots of small trades. A higher �ow ratio indicates a higher
liquidity.

The order ratio [60] measures the size of market imbalance relative to the
turnover in the transaction time t

ORt =
|vb

t − va
t |

ptvt

A higher market imbalance causes a higher order ratio and therefore a lower
liquidity. If the turnover in a certain transaction time is equal to zero the
order ratio is set to be zero.

The information about increase or decrease of the absolute spread is not
su�cient to determine whether the liquidity increases or not. The market
impact, de�ned as the spread for a given volume V ∗, is much better indicator
of liquidity movement. It is calculated as

MIV ∗
t = pa,V ∗

t − pb,V ∗
t .

The market impact may be calculated separately for the two sides of the
market. The market impact for the ask side and the bid side separately is
given by the following two formulas:

MIa,V ∗
t = pa,V ∗

t −mt,

MIb,V ∗
t = mt − pb,V ∗

t .
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The grater is the increase of spread per additional volume, the lower is the
liquidity.

Let transaction of the size v be executed at K di�erent prices with vi

shares traded at the price pi where i = 1, 2, ..., K, that is

K∑

i=1

vi = v.

The price impact [15] is the execution cost dependent on the prevailing de-
mand and supply schedules in the market. The price impact of the trade
is then de�ned in terms of the appropriately signed percentage di�erence
between the weighted-average execution price and the pre-trade midquote
for the bid and ask side separately. For the ask side of the order book (buy
order) the price impact is

PIa(v) = ln(

K∑
i=1

pivi

vmt−1
). (2.3)

For the bid side (sell order) the price impact is

PIb(v) = −ln(

K∑
i=1

pivi

vmt−1
) (2.4)

where mt−1 is, as before, the pre-trade midquote. A negative sign in front
of the logarithm in the equation (2.4) is set because the expression in the
brackets is in the interval (0, 1). A higher price impact indicates a lower
liquidity.

The depth for price impact measures the number of shares to be traded
before the price move a certain amount of k ticks away from the midquote.
This measure can be calculated for the bid and ask side of the market sep-
arately. The grater depth for the price impact means that the market can
absorb a greater volume without signi�cant movement in price, meaning
more liquidity for the security. Obviously, the price impact is an inverse
measure of the depth for the price impact.



Chapter 3

Time series

In this chapter we introduce a basic theory of univariate and multivariate
time series of interest in the present thesis - the autoregression and moving-
average time series.

3.1 Univariate time series
A time series is a stochastic process {Xt(ω), t ∈ T} de�ned on the proba-
bility space (Ω,A, P ), where T is a set of discrete points in time. In other
words, it is a sequence of numbers that represents observations of some sys-
tem's features that are usually taken at equidistant time points. In fact, the
requirement of equidistant time points is just for simpli�cation sake. In real
problems, there is often a need to observe some feature in non-equidistant
time points as, for example, observing price changes transaction by transac-
tion. Even when we observe daily price changes, we have to notice that stock
prices are not observed on weekends and holidays. In the present section we
will consider a sequence of real-valued random variables indexed by Z. The
notation Xt means that the variable X has a realization at the time point
t and that it comes before Xt+1, the realization of variable X at the time
point t + 1. As �rst we will de�ne two important stochastic processes - the
white noise and the random walk.

De�nition 3.1 The sequence {εt}, consisting of independent (uncorrelated)
random variables with equal mean of zeros and equal �nite variances σ2 is
the white noise, i.e.

E(εtεs) = 0

35
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E(εt) = 0

E(ε2
t ) = σ2 < ∞

for every t, s ∈ Z and t 6= s. If {εt} are not only independent, but also
identically distributed with zero means and variance σ2 (i.i.d.(0, σ2) property)
the white noise is called the strict white noise.

The white noise is an extremely irregular and unpredictable process. In
statistics, it is known as the purely random process.

De�nition 3.2 The random walk process is a process whose �rst di�erences
are white noises, i.e.

Xt −Xt−1 = εt.

Apart from the white noise process, the random walk must be de�ned as being
initiated at t = 0 or t = 1. If its �rst di�erences are strict white noises, the
random walk is called the strict random walk.

In the present thesis, the white noise and random walk would always mean
the strict white noise and strict random walk.

We have seen a simple relationship between these two processes but it
has to be noticed a strong di�erence between them. While the white noise
is an extremely irregular and unpredictable process, the random walk is
characterized by slow changes and high predictability.

Now we can represent two time series models of interest in the present
thesis - autoregressive and moving average models with their most important
properties.

3.1.1 Autoregressive and moving-average time series

De�nition 3.3 An autoregressive process of order p, AR(p) is de�ned as

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt

where εt is the white noise and φi, i = 1, 2, ...p are �xed real numbers.

A moving-average process of interest here is de�ned as follows.

De�nition 3.4 A moving-average process of order q, MA(q) is de�ned as
a weighted sum of the subsequent observations of white noise

Xt = εt + θ1εt−1 + ... + θqεt−q.
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Moving-average processes are �nite independent, that is Xt and Xt−j are
uncorrelated for all j > q. For any time series Xt and n ∈ Z, the lag
operator L is de�ned as

LnXt = Xt−n.

Obviously,
L0Xt = Xt,

L−nXt = Xt+n.

Using the lag operator L, the AR(p) and MA(q) processes can be rewritten
as

AR(p) : εt = (1− φ1L− φ2L
2 − ...− φpL

p)Xt, (3.1)

MA(q) : Xt = (1 + θ1L + θ2L
2 + ... + θqL

q)εt. (3.2)

Setting z instead of L in the expressions in brackets on the right-hand sides
of equations (3.1) and (3.2) we de�ne the lag polynomial for an AR(p) process

Φ(z) = 1− φ1z − φ2z
2 − ...− φpz

p

and the lag polynomial for the MA(q) process

Θ(z) = 1 + θ1z + θ2z
2 + ... + θqz

q.

Therefore, both processes have shorter representations given by

AR(p) : εt = Φ(L)Xt,

MA(q) : Xt = Θ(L)εt.

The advantage of using lag polynomials is not only in shortening notation.
The �rst advantage is checking the stability of autoregression and moving-
average processes. If we consider the lag polynomial of the AR(p) process

Φ(z) = 1− φ1z − φ2z
2 − ...− φpz

p,

according to The Fundamental Theorem of Algebra, the characteristic equa-
tion Φ(z) = 0 has p solutions or roots in C if roots are counted by their
multiplicity. If the modulus of all p roots are larger than one, i.e. if all roots
lie outside of the unit circle AR(p) process is stable, otherwise it is not. For
example, the lag polynomial of the AR(1) model is

Φ(z) = 1− φz.
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Its root is 1/φ, so the condition that the root of the AR(1) process lies
outside of the unit circle is equivalent to the condition that |φ| < 1. The
same holds for a moving-average. It is stable if all roots of its characteristic
equation θ(z) = 0 lie outside of the unit circle.

The lag polynomials have all algebraic properties like ordinary polynomi-
als, which enables establishing of a relationship between autoregressive and
moving-average processes. If AR(p) process, written as

Φ(L)Xt = εt

is stable, its inverted lag polynomial converges as a power series (polynomial
of in�nite order). Then one can write

Xt = Φ−1(L)εt.

Since for an AR(1) process, the stability implies that |φ| < 1, using the
geometric series one may obtain

Φ−1(z) = 1 + φz + φ2z + ... .

Hence
Xt =

∞∑

i=0

φiLiεt =
∞∑

i=0

φiεt−i,

which is the moving-average representation of the in�nite order MA(∞) of
an AR(1) process. More generally, every stable �nite order AR(p) process,
de�ned with

Φ(L)Xt = εt,

has MA(∞) representation

Xt = Φ(L)−1εt.

Similarly, under the same condition a moving average process MA(q) of �nite
order, given by

Xt = Θ(L)εt

has an autoregression representation of in�nite order given by

εt = Θ−1(L)Xt.

If an autoregressive (moving-average) process of �nite order has a moving
average (autoregression) representation of in�nite order, we say that it has
an invertible property. A �nite-order stationary autoregressive process has



3.1. UNIVARIATE TIME SERIES 39

roots larger than one in the modulus, therefore it is stable, i.e. invertible.
Because of the �nite variance, every moving-average process of �nite order
is stationary whatever its coe�cient might be. A moving average process of
in�nite order

Xt =
∞∑

i=0

θiεt−i

is stationary only if its coe�cients form a convergent series, that is if
∞∑

i=0

θ2
i < ∞.

Apart from autoregressive processes, stationary moving average processes
may not be stable, and therefore they may be non-invertible. For example,
a �nite moving average process

Yt = εt − εt−1 = (1− L)εt

is stationary, but it is not stable (invertible) since its characteristic root
is one. Invertible representations have the most satisfactory properties in
forecasting since they provide that the future is generated by the past. If
the process is non-invertible, one would need that the past is generated
by the future which is not a reasonable strategy. The following theorem
provides that every weakly stationary process may be decomposed into two
mutually uncorrelated parts, one purely deterministic and the other purely
non-deterministic, with satisfactory forecast properties.

Theorem 3.1 (Wold's Theorem)[68] Any weakly stationary stochastic pro-
cess Xt can be uniquely represented in the form

Xt = Xd
t +

∞∑

i=0

θjεt−1

where
(i) θ0 = 1 and

∞∑
i=0

θ2
i < ∞

(ii) εt are white noises
(iii) E(εtX

d
s ) = 0 for every t, s > 0; εt is the error in forecasting Xt, i.e.

εt = Xt − E∗(Xt|Xt−1, Xt−2, ...)

where E∗ stands for a linear projection.
(iv) Xd

t is a deterministic process and it can be predicted from a linear func-
tion of the lagged Xt.
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The Wold's theorem says that any weakly stationary process (even non-
linear) has a linear representation: a deterministic part and a purely non-
deterministic part represented with stationary in�nite moving-average pro-
cess. Hence, this theorem provides that some non-invertible processes have
a moving average representation with satisfactory forecast properties, which
is very important for dynamic analysis.

The main models of interest in the present section are autoregressive
models. There are two important questions: lag order determination and
model estimation. Lag order can be determined according to partial au-
tocorrelation function (PACF ), which is the highest order autoregression
coe�cient that is signi�cantly di�erent from zero according to its t-value.
Except for this criterion, there are also information criterions like AIC-
Akaike information criterion, AICc-corrected Akaike information criterion
and BIC-Bayesian information criterion. We refer to [49] for more details
about these criteria. Estimating of AR(p) model is simple - it can be esti-
mated by the least squares method. In fact, autoregressive models are the
only time series models that can be estimate by the least squares method.

3.2 Multivariate time series

In the following subsection we will introduce the generalization of autoregres-
sive processes - vector autoregressive process, VAR. All variables and error
term in this process are vectors. Regarded as a system of individual equa-
tions, a vector autoregressive process represents the system of linear multiple
regressions - multivariate regression.

3.2.1 Vector autoregressions

The vector autoregression VAR (p) model is a multivariate form of an AR(p)
process. At �rst it was proposed by Granger [34], then used by Sims [64]
and Doan et al. [17]. It is based on the following ideas. The distinction be-
tween endogenous and exogenous variables is arti�cial, so all variables should
be regarded as endogenous; restriction of coe�cients imposed by traditional
econometric models should be avoided. A model should rise possible restric-
tion by itself at the time of estimation and analysis. A vector autoregresssion
model of order p, VAR(p) is de�ned by equation

Xt = Φ1Xt−1 + ... + ΦpXt−p + εt, (3.3)
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where Xt = (X1,t, X2,t, ..., Xn,t)T is a vector of n variables, εt = (ε1,t, ε2,t, ...,
εn,t)T is a vector of unobservable white noise errors and Φj , j = 1, ..., p are
coe�cients matrices of dimension n×n. For example, a bivariate VAR(p) is
given by

X1,t = Φ11
1 X1,t−1 + Φ12

1 X2,t−1 + ... + Φ11
p X1,t−p + Φ12

p X2,t−p + ε1,t

X2,t = Φ21
1 X1,t−1 + Φ22

1 X2,t−1 + ... + Φ21
p X1,t−p + Φ22

p X2,t−p + ε2,t

or in the matrix form
[

X1,t

X2,t

]
=

[
Φ11

1 Φ12
1

Φ21
1 Φ22

1

] [
X1,t−1

X2,t−1

]
+ ...

... +
[

Φ11
p Φ12

p

Φ21
p Φ22

p

] [
X1,t−p

X2,t−p

]
+

[
ε1,t

ε2,t

]
.

Components ε1,t, ε2,t, ..., εn,t are uncorrelated over time, but they are not
necessarily contemporaneously orthogonal, hence the VAR is a variant of
the SUR model. An error covariance matrix is given by

Σ = E(εtε
T
t )

where E(εtε
T
t−j) = 0 for j 6= 0. Since in a VAR model the variables are

modelled as depending on its own lags only it is a dynamic system, apart
from simultaneous system where variables are modelled being dependent on
other variables at the same time point t. The VAR is weakly stationary if
its both mean vector and covariance matrix are independent of time t. The
covariance matrix for VAR(p) is de�ned by

CX(h) = CX(t, t− h) =




CX1(h) CX1X2(h) ... CX1Xn(h)
CX2X1(h) CX2(h) ... CX2Xn(h)

.

.

.
CXnX1(h) CXnX2(h) ... CXn(h)




.

Equation (3.3) can be rewritten as

Φ(L)Xt = εt

where L is the lag operator and

Φ(L) = In −
p∑

i=1

ΦiL
i
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is a matrix lag polynomial. Checking the VAR stability is based on the
same idea as in the univariate case, but it is slightly more di�cult. In the
univariate case, stability is checked by analyzing roots of the characteristic
equation. In multivariate case the lag polynomial is the matrix polynomial

Φ(z) = 1−
p∑

i=1

Φiz
i

that consists of n2 separate polynomials in its rows and columns. Considering
the determinant of Φ(z), which is an univariate polynomial, it can be shown
that VAR is stable if all roots of detΦ(z) = 0 lie outside of the unit circle.
Su�cient condition for stability of VAR model is that all variables in the
system are stationary [54].

As in the univariate case, there are also lag ordering and model esti-
mation problems. Since the VAR is a special variant of SUR multivariate
regressions with predetermined regressors, the least squares estimator is con-
sistent. Since it is a multivariate regression with identical regressors, by the
Kruskal's Theorem [48] it can be e�ciently estimated by the least squares
method or equation-by-equation. In order to keep e�ciency, the lag order
should be determined blockwise - �xing a common factor p for all matrix
elements. As in univariate case, the methods for lag ordering are visual, i.e.
using the ACF or PACF functions, or using a multivariate version of some
information criteria mentioned in subsection 3.1.

3.2.2 Relationship between VAR variables

Traditional reporting of the estimated parameters or standard test statis-
tics is not useful for the VAR model. The relationship between VAR vari-
ables cannot be analyzed by interpretation of estimated coe�cients because
the VAR estimated coe�cients are matrices. The (j, k) entry of the ma-
trix Φl cannot be viewed as the marginal reaction of the variable Xj to a
unit change in Xk after l times periods. There are several concepts of in-
terpreting relationship between VAR variables such as Granger's casuality,
impulse response analysis [64] and variance decomposition [37], [28], [54].
While the Granger's casuality concept gives information about relationship
between VAR variables based on predictability, impulse response and vari-
ance decomposition give information about the dynamic relationship between
variables.
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3.2.3 Granger's casuality

The Granger's casuality concept was introduced by Clive Granger [34]. The
idea is simple and can be formulated as that cause cannot come after e�ect.
The de�nition of casuality given by Granger is focussed on predictability -
an event X causes the event Y , if Y can be better predicted by observing X
than without observing X. Denoting the set {xj , tj ≤ j ≤ t2} by xt2

t1 , the
formal de�nition of Granger's casuality is as follows.

De�nition 3.5 [34] Suppose that a universe consists of the vector of time
series variables (X, Y, Z)T , where Z may have an arbitrary dimension. Then,
X is said to Granger cause Y if and only if

E(Yt+1|Xt
1, Y

t
1 , Zt

1)

is a better forecast than
E(Yt+1|Y t

1 , Zt
1),

where the better forecast is determined by the prediction error variance

E((Yt+1 − E(Yt+1|...))2).

The one-step forecast of the VAR(p) model is de�ned by

Xt+1|t = Φ̂1Xt + Φ̂2Xt−1 + ... + Φ̂pXt−p+1.

Clearly, the-two step forecast would be

Xt+2|t = Φ̂1Xt+1|t + Φ̂2Xt + ... + Φ̂pXt−p+2,

etc.
In linear VAR models, the Granger's casuality can be easily checked by

testing its coe�cients. We will say that a VAR variable Y causes the VAR
variable X if and only if at least one matrix coe�cient of Y is not zero, or
as Granger formulated it in the following theorem:

Theorem 3.2 [34] Suppose (X, Y, Z)T has a VAR representation

Xt =
p11∑

j=1

Φ11
j Xt−j +

p12∑

j=1

Φ12
j Yt−j +

p13∑

j=1

Φ13
j Zt−j + ε1,t

Yt =
p21∑

j=1

Φ21
j Xt−j +

p22∑

j=1

Φ22
j Yt−j +

p23∑

j=1

Φ23
j Zt−j + ε2,t
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Zt =
p31∑

j=1

Φ31
j Xt−j +

p32∑

j=1

Φ32
j Yt−j +

p33∑

j=1

Φ33
j Zt−j + ε3,t.

Then,

X causes Y ⇔ Φ21
j 6= 0 for at least one j ∈ {1, 2, ..., p21}.

Y causes X ⇔ Φ12
j 6= 0 for at least one j ∈ {1, 2, ..., p12}.

A complete picture about the interaction between system's variables cannot
be embraced only by Granger's casuality concept. It is necessary to examine
a dynamic interaction between VAR variables.

3.2.4 Impulse response analysis

In order to analyze a dynamic interaction between VAR variables we will
consider a VAR(p) model with the lag polynomial Φ(L) written as

Φ(L)Xt = εt, (3.4)

Φ(L) = In −
p∑

i=1

ΦiL
i. (3.5)

If VAR is stable, that is if all its variables are stationary, it has a VMA (∞)
representation

Xt = Φ−1(L)εt = Ψ(L)εt,

where

Ψ(L) = In +
∞∑

i=1

ΨiL
i.

Hence the VMA(∞) representation of VAR model de�ned with (3.4) and
(3.5) is

Xt =
∞∑

i=0

Ψiεt−i, Ψ0 = In. (3.6)

The vector moving average coe�cient matrices can be obtained from the
identity

Φ(L)Ψ(L) = (In −
p∑

i=1

ΦiL
i)(In +

∞∑

i=1

ΨiL
i) = In,
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which leads to
∞∑

i=1

ΨiL
i −

p∑

i=1

ΦiL
i − (

p∑

i=1

ΦiL
i)(

∞∑

i=1

ΨiL
i) = 0.

Thus, to �nd the coe�cient matrices Ψi one has to set all resulting coe�cient
matrices of each power L equal to zero. For L1 we have

Ψ1 − Φ1 = 0 ⇒ Ψ1 = Φ.

The obtained equality can be rewritten as

Ψ1 =
1∑

i=1

Ψ1−iΦi.

For L2 we have

Ψ2 −Ψ1Φ1 − Φ2 = 0 ⇒ Ψ2 = Ψ1Φ1 + Φ2 =
2∑

i=1

Ψ2−iΦi.

Continuing with the same procedure, we obtain all coe�cient matrices Ψj

for j ≥ 1. Hence
Ψ0 = In,

Ψj =
j∑

i=1

Ψj−1Φi

where Φj = 0 when j > p. A moving-average representation of the VAR(p)
model gives a straightforward form to analyze the dynamic relations among
the VAR(p) variables. To see that we will consider VMA(∞) representation
of VAR(p) given in (3.6) for s steps ahead

Xt+s = Ψ(L)εt+s =
∞∑

i=0

Ψiεt+s−i.

The e�ect of a unit change in εt on Xt+s is

∂Xt+s

∂εt
= Ψs.

The εt's represent shocks or innovation in the system. Therefore the Ψs,
s = 1, 2, ... matrices represent the model's response to a unit shock at time
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point t in each of the variables which will be realized s periods ahead. They
are called the dynamic multipliers.

The response of Xj to a unit innovation in the k-th variable that has
occurred s periods ago is given by

∂Xj,t+s

∂εk,t
= Ψjk,s

that is with the (j, k) entry of Ψs. Viewed as a function of s = 0, 1, 2, ... ,
(j, k) entries of matrix Ψs represent the impulse response functions of a
variable Xj to a unit innovation in the k-th variable. The VAR with n
variables has n2 such functions. Generally, an impulse response function
traces the e�ect of a one-time shock to one of the innovations on current
and future values of the endogenous variables. A plot of these values as a
function of s is the graphical representation of the impulse response function.
If

lim
s→∞

∂Xj,t+s

∂εk,t
= 0

is satis�ed, then the shock to Xj,t has no permanent impact on the level
of Xk,t. Also, one may be interested in the accumulated e�ect over several
or more periods of a shock in variable. This e�ect can be determined by
summing up the VMA coe�cient matrices. More precisely, the (j, k) entry
of

Υn =
n∑

i=0

Ψi

is the accumulated response variable Xj over n periods to a unit shock in
the variable Xk. The total accumulated e�ect for all future periods is given
by long-run-e�ect or total multipliers, obtained by summing up all VMA
coe�cients

Υ∞ =
∞∑

i=0

Ψi.

If the VAR variable Xk,t does not Granger cause the VAR variable Xj,t,
then the variable Xj,t does not react to a shock in Xk,t, i.e. the impulse
response variable Xj,t to the shock in Xk,t is zero. To see that, suppose
that X2,t does not Granger cause X1,t. Then, all coe�cient matrices Φi,
i = 1, 2, ..., n have zero on (1, 2) place. Therefore, the coe�cient matrices
Ψi, i = 1, 2, ..., n in the moving-average representation will also have zero on
(1, 2) place.
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The problem with the described impulse response functions is that com-
ponents of εt are usually contemporaneously correlated. That is the reason
why it is di�cult to recognize an e�ect of a single change in one component
of εt keeping all other components unchanged, since they usually come at the
same time. That problem can be overcamed by orthogonalizing the errors.
If we �nd a matrix Q such that QQT = Σ and de�ne ε∗t = Q−1εt, then

E(ε∗t ε
T
t∗) = E(Q−1εtε

T
t (Q−1)T ) = In.

Since the error covariance matrix Σ is real, symmetric and if it is positive
de�nite, it can be decomposed as

Σ = ADAT

where A is a lower triangular matrix with ones on the main diagonal and D
is a positive diagonal matrix. Setting ut = A−1εt, we obtain

E(utu
T
t ) = A−1Σ(A−1)T = A−1ADAT (A−1)T = D.

We say that components of the vector ut are mutually uncorrelated and ut is
called orthogonal innovation. The covariance matrix Σ can be decomposed
into the product of a left triangular matrix and its transpose

Σ = ADAT = AD1/2D1/2AT = PP T .

It is the Cholesky decomposition of the covariance matrix Σ. Setting ε∗t =
P−1εt we obtain

ε∗t = P−1εt = D−1/2A−1εt = D−1/2ut.

Therefore E(ε∗t εT
t∗) = In. Now, the orthogonalized VMA representation is

Xt =
∞∑

i=0

Ψiεi =
∞∑

i=0

Θiε
∗
i

where ε∗ = P−1ε and Θi = ΨiP . Hence, the orthogonalized dynamic multi-
pliers are

∂Xt+s

∂ε∗t
= Θs = ΨsP

and orthogonalized impulse response functions are

∂Xj,t+s

∂ε∗k,t

= Θjk,s =
n∑

l=1

Ψjl,sPlk.
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The triangularity of the matrix P implies triangularity of the matrices Θi,
i = 1, 2, ... . That is the reason why the shocks εk,t, ..., εn,t do not have
contemporaneous a�ect on X1,t, ..., Xk−1,t, but have on Xk,t, ..., Xn,t. Sub-
sequently, the ordering of variables is important and di�erent ordering pro-
duces di�erent impulse response functions. In order to �nd the ordering for
which the resulting interpretations will be consistent to, practitioners usu-
ally proceed as follows. The �rst variable should be selected such that it
is the only one with potential immediate impact on all other components
of Xt. The second variable may have immediate impact on the last n − 2
components, but not of the �rst one, and so on. The other suggestion is the
ordering of variables according to Granger-casual ordering. A practitioners
also can order variables in their own way, if it is reasonable for her/him,
usually due to her/his theoretical knowledge about variables.

3.2.5 Variance decomposition

Consider now again stable VAR(p) with n components and its orthogonal
VMA representation

Xt =
∞∑

i=0

Θiε
∗
t−i.

Then, the s step-ahead forecast for Xt is given by

Et(Xt+s) =
∞∑

i=s

Θiε
∗
t+s−i.

where Et denotes the expectations formulated at a time t, based on the
estimated VAR model. Hence, the s step-ahead forecast error is given by

errt+s = Xt+s − Et(Xt+s) =
s−1∑

i=0

Θiε
∗
t+s−i.

The j-th component of the forecast error is given by

errj,t+s =
s−1∑

i=0

n∑

k=1

Θjk,iε
∗
k,t+s−i =

n∑

k=1

s−1∑

i=0

Θjk,iε
∗
k,t+s−i.

If the shocks are both serially and contemporaneously uncorrelated, the error
variance is

V ar(errj,t+s) =
n∑

k=1

s−1∑
i=0

V ar(Θjk,iε
∗
k,t+s−i)
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=
n∑

k=1

s−1∑
i=0

Θ2
jk,iV ar(ε∗k,t+s−i).

The sum
s−1∑

i=0

Θ2
jk,iV ar(ε∗k,t+s−i)

corresponds to the error variance generated by innovations to one speci�c
Xk. The sum

n∑

k=1

s−1∑

i=0

Θ2
jk,iV ar(ε∗k,t+s−i)

corresponds to the error variance generated by the sum of all innovation
responses. Subsequently, the ratio

R2
jk,s =

s−1∑
i=0

Θ2
jk,iV ar(ε∗k,t+s−i)

n∑
k=1

s−1∑
i=0

Θ2
jk,sV ar(ε∗k,t+s−i)

is a relative measure of how important innovations of the k-th variable are in
the explaining the variation in the variable j at an s step-ahead forecast. The
described procedure is called variance decomposition, and R2

jk,s are called the
variance decomposition coe�cients of Xj,t at the horizon s.

The impulse response functions traces the e�ect of a shock to one endoge-
nous variable on the other variables in the VAR. Variance decomposition
separates the variation in an endogenous variable into the components shock
to the VAR. In other words, the impulse response functions give the answer
to the question how the system's endogenous variables respond dynamically
to the exogenous shock. The variance decomposition gives the answer to the
question which shocks are the primary causes of variability in the exogenous
variables.
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Chapter 4

Hasbrouck's VAR model

4.1 Asymmetrically informed market

The market microstructure concept has been de�ned in di�erent ways, by
focusing on di�erent aspects of it. Following the de�nition given by O'Hara
[58], "market microstructure is a study of the process and outcomes of ex-
changing assets under a speci�c set of rules. Microstructure theory focuses
on how speci�c trading mechanisms a�ect the price formation process." For
the purpose of analysis in this thesis, we will focus on the information aspect
of market microstructure, and on the impact of the information on the price
formation.

The theory of e�cient market assumes that a market is anonymous and
all the participants in the market are equally informed about traded instru-
ment. Therefore, no participant can make economic pro�t by trading such
information, and information contained in trades is immediately re�ected in
stock prices. However these assumptions would hardly hold in practice. In
reality, all information are not available to all participants at the same time,
hence some market participants have a de�nite advantage over the others.
Moreover, although information is public, there is still di�erence in speed of
processing them by di�erent participants, which produces lag e�ect between
the news announcement and trade realization.

Traders may be classi�ed into informed traders - traders with superior
information and uninformed traders or liquidity traders - traders with only
public information. Informed traders may possess information about true
value of the security, fundamentals, quantities or about who is informed.
They tend to trade the speci�c stock in which they have private information.

51
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Liquidity traders trade to smooth consumption or to adjust the risk return
pro�les on their portfolios. They buy stocks if they have excess of cash or
have become more risk tolerant, and they sell stocks if they need cash or
have become less risk tolerant.

Information in�uences the bid-ask spread in the market and hence liquid-
ity. Before the information is publicly available the spread tends to be wider,
producing a lot of volatility in the market. The informed traders knowing
that the spread will narrow down once when the information become public,
tend to take the liquidity from the market by executing trades at available
price. The uninformed traders or traders who do not have access to the
information that can a�ect the market value of the trading instrument, tend
to adopt di�erent trading strategies compared to the informed traders. In-
formed traders will make a bene�t at an expense of the uninformed traders.
Consequently, the uninformed traders seek to identify the counterpart, while
informed traders seek to hide their identity.

The presence of informed and uninformed traders causes an asymmetric
distribution of information among market participants which is the basis of
asymmetric information market theory. Bagheot [6] was the �rst to consider
market with heterogeneously informed traders. Then this problem is ana-
lyzed by Copeland et al. [16] and formulated and developed by Kyle [50],
Glosten et al. [30], Easely et al. [18] Admati et al. [1], Foster et al. [27].

The market makers possessing only public information expose bid and
ask quotes to the trading participants and faces informed and uninformed
traders, but they cannot distinguish between them. Because market makers
have an access only to the public information, they compensate for the loss
that appears from trading with informed traders by �xing a spread.

Even if the di�erence between informed and uninformed traders is undis-
tinguishable to market makers, informed traders can be recognized by ob-
serving trading activity. Informed traders transact only when they have
superior information and tend to trade quickly larger quantities in order to
bene�t from their information before it becomes public. Under the presence
of information, trades are clustered in time, so that the duration between
trades are shorter and the prices adjusted very quickly in the calendar time.
Also, in the presence of private information the bid-ask spread tends to be
wider. Consequently, trades convey information and that is the driving force
idea in the asymmetric information theory.

Hasbrouck [39] in his analysis of market microstructure found empiri-
cal evidence that in a market with asymmetrically informed traders, trades
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convey information which causes a persistent impact on the security price.
According to Hasbrouck the magnitude of the price e�ect for a given trade
size is generally held to be a positive function of the proportion of potentially
informed traders in population, the probability that a private information
signal has in fact been observed, and the precision of the private informa-
tion. Also, information asymmetry is positively correlated to price impact
of the trade and spread. However, some market imperfections like price dis-
creteness, clearing fees, inventory control, order fragmentation, vitiates this
correlation.

4.2 The model
In this subsection we will introduce Hasbrouck's model of the asymmetric
information e�ect on the future prices. According to this model, trades are
motivated by private information and/or liquidity needs. Price impact of
the trade can appear on both transitory and permanent levels. The transi-
tory price impact of the trade is attributed to the trades e�ects that drive
current transaction prices away from the e�cient price, i.e. from the price
updated based on all available public information. Those e�ects are non-
information based microstructure e�ects caused by market imperfections as
price discreteness, market makers costs such as costs associated with in-
ventory control and order processing, demand and supply e�ects, etc. The
permanent response of security prices to trading activity is caused by in-
formation asymmetry between the public and private information, i.e. by
the agent's belief about private information content of the trade. Hasbrouck
modelled the quote revision and trade dynamics as a non-standard bivariate
vector autoregressive system to examine the public and private information
components in the price changes and the speed of price adjustment to these
e�ects.

Hasbrouck considered the following trading mechanism: the transaction
characterized by the signed volume xt is realized at the time t and at price
pt. The signed volume is the size of transaction multiplied by trade indicator
variable de�ned by (2.2). After the transaction realization and announce-
ment of trade xt the market makers post bid and ask quotes denoted by
pb

t and pa
t . If these quotes are posted in the absence of trade xt, they are

posted due to non-trade public information and then xt is set to be zero.
In this notation, the transaction realized at the time t is realized at the bid
or ask price prevailing before that transaction, denoted by pb

t−1 and pa
t−1.

The initial assumption in Hasbrouck's model is that the quotes are set sym-
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metrically about the expected value of the security conditional on all public
information expressed as

E((pb
t + pa

t )/2− Vτ |Ft) = (pb
t + pa

t )/2−E(Vτ |Ft) = 0, (4.1)

where Vτ is the security value at some convenient terminal time τ in the
distant future and Ft is the public information set at the time t. That
makes reasonable to consider the midquote

mt =
pb

t + pa
t

2

as an unbiased proxy of the e�cient price. Subsequent revision of the
midquote given by

rt =
pb

t + pa
t

2
− pb

t−1 + pa
t−1

2
contains the information inferred from the trade xt that occurs at a time t.
Hasbrouck assumed that the public information arrives after the t-th trade,
but before associate quote revision. Subsequently, the quote revision will
re�ect the public information as well as the private information.

Initially, Hasbrouck assumed that the relationship between the quote
revision rt and signed trade xt is contemporaneously linear

rt = bxt + ν1,t.

The price impact of the trade is represented by the coe�cient b while ν1,t is
the disturbance which re�ects the public information. Many market imper-
fections mentioned above require some corrections of the proposed model.
Price discreteness, inventory control e�ect, lagged adjustment to informa-
tion, price smoothing, all of them cause serial dependence in quote revision.
On the other hand, the order fragmentation causes serial dependence in
trades. Therefore, neither quote revision nor signed trade can be viewed as
exogenous variables. Hasbrouck suggested joint analysis of quote revision
and trade by the bivariate VAR system

rt = a1rt−1 + a2rt−2 + ... + b0xt + b1xt−1 + b2xt−2 + ... + ν1,t, (4.2)

xt = c1rt−1 + c2rt−2 + ... + d1xt−1 + d2xt−2 + ... + ν2,t. (4.3)

Theoretically, this model can be of in�nite order, but for practical purposes
it is truncated at some lag. Under serial correlation condition of the quote
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revision the initial assumption of quote symmetry from equation (4.1) has
to be relaxed. The weaker version of asymmetry is given by

E((pb
s + pa

s)/2− Vτ |Ft) → 0 (4.4)

when s → τ . Therefore, the deviations of the midquote from the e�cient
price are transient. Intuitively, this relation expresses expectation that dur-
ing some time quotes on average will return to their fair value.

Coe�cient b0 in the quote revision equation represents immediate impact
of contemporaneous trade xt. Coe�cients bi, 1, 2, ... in the same equation
capture transitory trade e�ects on prices and the innovation term ν1,t repre-
sents the e�ect of non-trade public information. The innovation in the trade
equation ν2,t captures an unexpected transaction activity where the private
information resides if such exists. It is modelled as a component of the trade
relative to an expectation formed from a linear projection based on the his-
tory of previous transactions and quote revisions which is entirely known.
It is not purely deterministic because the presence of liquidity traders will
cause the noise component of ν2,t that is uncorrelated with private informa-
tion. Since the predictable portion of the trade conveys no new information,
Hasbruck formally de�ned the informational impact of the trade as the ul-
timate impact on the stock price resulting from an unexpected component
of the trade, i.e. the persistent price impact of the trade innovation. This
impact probably would not be instantaneous, but rather occurs over a long
period of time. The model assumes predetermined regressors, i.e. that the
innovations ν1,t and ν2,t are uncorrelated with regressors. Also, it is assumed
that they have zero mean

E(ν1,t) = E(ν2,t) = 0

and that they are jointly and serially uncorrelated

E(ν1,tν1,s) = E(ν2,tν2,s) = E(ν1,tν2,s) = 0, for every t 6= s.

The described VAR model is not entirely standard since it assumes that a
market maker has information about all lagged quote revisions and lagged
trades, as well as an information about contemporaneous trade available at
time t. That means that the quote revision rt contains all publicly avail-
able information at the time t, and that market makers act primarily on
this information set. This model permits Granger's casuality running from
trade to quote revision both contemporaneously and with lags. The model
also permits Granger's casuality running from the lagged quote revision to
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trades, but it does not permit contemporaneous casuality running from quote
revisions to trades. The presence of contemporaneous trade xt, and assump-
tion of predetermined regressors imply that errors are contemporaneously
orthogonal, i.e. E(ν1,tν2,t) = 0, which does not hold for the standard VAR
model in general.

Under assumptions of predetermined regressors and contemporaneous
orthogonality of errors ν1,t and ν2,t, the least squares estimation of the de-
scribed VAR model is consistent and e�cient. The innovation in the quote
revision equation represents a transitory e�ect of public information. Has-
brouck [43] and Stoll [63] argued that many market imperfections are of a
transient character. On the other hand, information inferred from a trade
due to asymmetric information is permanently impounded in the stock prices.
The main point of Hasbrouck's analysis is that the innovation component of
quote revision equation is e�ected by the public information, causing tran-
sitory price impact.

4.3 Cumulative impulse response - price impact
The original VAR system given by (4.2) and (4.3) may be rewritten in the
matrix form[

1 −b0

0 1

] [
rt

xt

]
=

[
a1 b1

c1 d1

] [
rt−1

xt−1

]
+

+
[

a2 b2

c2 d2

] [
rt−2

xt−2

]
+ ... +

[
ν1,t

ν2,t

]
.

After multiplying both sides of the last equation by
[

1 −b0

0 1

]−1

=
[

1 b0

0 1

]

it becomes
[

rt

xt

]
=

[
a1 + b0c1 b1 + b0d1

c1 d1

] [
rt−1

xt−1

]
+

+
[

a2 + b0c2 b2 + b0d2

c2 d2

] [
rt−2

xt−2

]
+ ... +

[
ν1,t + b0ν2,t

ν2,t

]
.

Notice that after the last transformation the trade innovation ν2,t remains
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the same, but the quote revision innovation is modi�ed, and it contains a
trade innovation part. Denoting

ν1,t + b0ν2,t = ν ′1,t

and assuming that these two time series are weakly stationary, by the Wold's
theorem we have that the VAR is invertible and it has the vector-moving
average representation of a in�nite order given by

[
rt

xt

]
=

[
ν ′1,t

ν2,t

]
+

[
a′1 b′1
c′1 d′1

] [
ν ′1,t−1

ν2,t−1

]
+

[
a′2 b′2
c′2 d′2

] [
ν ′1,t−2

ν2,t−2

]
+... (4.5)

The coe�cients in the VMA(∞) representation form the impulse response
functions described in Section 3. Writing the last matrix equation as a
system of equations, and after some grouping, we obtain

rt = ν1,t+a′1ν1,t−1+a′2ν1,t−2+...+b0ν2,t+(a′1b0+b′1)ν2,t−1+(a′2b0+b′2)ν2,t−2+...

xt = c′1ν1,t−1 + c′2ν1,t−2 + ... + ν2,t + (c′1b0 + d′1)ν2,t−1 + (c2b0 + d′2)ν2,t−2 + ...

Finally, the system becomes

rt = ν1,t + a∗1ν1,t−1 + a∗2ν1,t−2 + ... + b∗0ν2,t + b∗1ν2,t−1 + b∗2ν2,t−2 + ... (4.6)

xt = c∗1ν1,t−1 + c∗2ν1,t−2 + ... + ν2,t + d∗1ν2,t−1 + d∗2ν2,t−2 + ... (4.7)
where

a∗i = a′i, c∗i = c′i, b∗0 = b0,

d∗i = c′ib0 + d′i
b∗i = a′ib0 + b′i, i = 1, 2, ...

The coe�cients b∗i , i = 1, 2, ... give the e�ect of a unit trade innovation
on the midquote revision at a i period horizon. Since the model operates
with the data indexed in tick time, the price impact is measured in units of
transactions. The sum

l∑

i=0

b∗i

represents the impact of an unexpected trade on quote revisions after l trans-
actions. The long-run impact of trade on quote revisions is given by

∞∑

i=0

b∗i .
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Hasbrouck's empirical �ndings indicate that the price impact takes many
periods before it is fully realized. The cumulative sum of impulse responses
creates the price impact function. Hasbrouck empirically found that price
impact function is concave and it has positive horizontal asymptote. The
asymptote of price impact function represents the total price impact of the
trade.

4.4 Variance decomposition - trade informativeness
Hasbrouck assumed that the midquote may be divided in two unobservable
components

mt = et + st. (4.8)

The term et is e�cient price, that is the expected value of the asset con-
ditional on all currently available public information modelled as a random
walk process

et = et−1 + ωt.

The e�cient price is the permanent component of the midquote. The inno-
vation ωt re�ects updates to the public information set. Being a white noise
process, it has the following properties:

E(ωt) = 0,

E(ω2
t ) = σ2

ω,

E(ωtωτ ) = 0, τ 6= t.

The second component st is a zero mean stochastic process jointly covari-
ance stationary with ωt. It is a transitory component of the midquote. It
represents the disturbance term that incorporates inventory control, price
discreteness and other market imperfections that drive the midquote away
from the e�cient price. As we mentioned above, these imperfections are
of transient character, which is compatible with the implication of weakly
stationarity assumption

Et(st+k) → E(st+k) = 0, k →∞

where Et is the expectation formulated at a time t based on equation (4.8).
The market's signal private information is de�ned as

xt − E(xt|Ft−1)
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where Ft−1 is the public information set available by the time t. The impact
of the trade innovation on the e�cient price innovation is

E(ωt|xt − E(xt|Ft−1)).

Therefore, the absolute measure of trade informativeness is

V ar(E(ωt|xt −E(xt|Ft−1))),

and its relative measure to the total public information is

V ar(E(ωt|xt − E(xt|Ft−1)))/V ar(ωt).

The problem with these measures is that the random walk decomposition is
unobservable. It can be captured from Hasbrouck's VAR given by equations
(4.2) and (4.3), that is by its moving average representation given by (4.6)
and (4.7). We will denote the variance of quote revision innovation ν1,t and
trade innovation ν2,t by

V ar(ν1,t) = σ2
1,

V ar(ν2,t) = Λ.

If the public information set is de�ned by the trade and quote history Ft =
xt, rt, xt−1, rt−1, ... then

V ar(E(ωt|xt − E(xt|Ft−1))) = V ar(E∗(ωt|v2,t)) ≡ σ2
ω,x,

V ar(E(ωt|xt − E(xt|Ft−1)))/V ar(ωt) = σ2
ω,x/σ2

ω ≡ R2
ω (4.9)

where E∗ stands for a linear projection. Therefore, R2
ω tells us which part

of variance in the random walk component of stock price, that is in e�-
cient price, is attributable to the trade innovation. Theorem 4.1 gives the
computational details. Before de�ning and proving the following theorem
we will show that for every MA(p) process, de�ned by Xt = θ(L)εt, the
autocovariance generating function is

gX(z) = σ2
εθ(z)θ(z−1) (4.10)

where σ2
ε is the variance of white noise process εt. Let us consider a double

in�nite moving average process given by

Xt =
∞∑

j=−∞
θjεt−j = θ(L)εt.
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Since εt is white noise, then
E(Xt) = 0,
CX(h) = E(XtXt−h)

= E(
∞∑

j=−∞
θjεt−j

∞∑
k=−∞

θkεt−h−k)

= σ2
ε

∞∑
j=−∞

θjθj−h.

The last equality follows from

E(εt−j , εt−k−h) =
{

σ2
ε , j = h + k

0, otherwise

The autocovariance generating function is then

gX(z) =
∞∑

h=−∞
CX(h)zh

=
∞∑

h=−∞
(σ2

ε

∞∑
j=−∞

θjθj−h)zh.

If we set j − h = k, then

gX(z) = σ2
ε

∞∑
j=−∞

∞∑
k=−∞

θjθkz
j−k

= σ2
ε

∞∑
j=−∞

∞∑
k=−∞

θjθkz
jz−k

= σ2
ε

∞∑
j=−∞

θjz
j

∞∑
k=−∞

θkz
−k

= σ2
εθ(z)θ(z−1).

To see that this function generates all autocovariances for every MA(p)
process let us observe the MA(1) process given by

Xt = εt + θεt−1 = (1 + θL)εt.

Its autocovariance generating function is
gX(z) = σ2

εθ(z)θ(z−1)
= σ2

ε(1 + θz)(1 + θz−1)
= σ2

ε((1 + θ2)z0 + θz + θz−1).
From the last equality there follows

CX(0) = 1 + θ2

CX(1) = CX(−1) = θ

CX(k) = CX(−k) = 0, k = ±2,±3, ...
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Theorem 4.1 [40] For the trade/quote-revision VMA, given by (4.5) and
(4.6), the random walk variance, and the contribution of trades to the vari-
ance, de�ned by (4.8) are given by

σ2
ω = (1 +

∞∑

i=1

a∗i )
2σ2

1 + (
∞∑

i=0

b∗i )
2Λ, (4.11)

σ2
ω,x = (

∞∑

i=0

b∗i )
2Λ. (4.12)

Proof. The VMA representation (4.6) and (4.7) implies

rt = a∗(L)ν1,t + b∗(L)ν2,t

where a∗ and b∗ are the lag polynomials

a∗(L) = 1 + a∗1L + a∗2L
2 + ... ,

b∗(L) = b∗0L
0 + b∗1L + b∗2L

2 + ... .

The return rt also can be written as

rt = mt−mt−1 = (1−L)mt = (1−L)et +(1−L)st = ωt +(1−L)st. (4.13)

Now, the result (4.10) implies

gr(z) = a∗(z)a∗(z−1)σ2
1 + b∗(z)b∗(z−1)Λ. (4.14)

From equation (4.13) the covariance of rt will be
Cr(h) = E(rtrt−h)

= E[(ωt + (1− L)st)(ωt−h + (1− L)st−h)]
= E(ωtωt−h) + E(ωt(1− L)st−h)+

+E((1− L)stωt−h) + E((1− L)st(1− L)st−h).
Then, the autocovariance generating function of rt is

gr(z) =
∞∑

h=−∞
[E(ωtωt−h)]zh +

∞∑
h=−∞

[E(ωt(1− L)st−h)]zh+

+
∞∑

h=−∞
[E((1− L)stωt−h)]zh +

∞∑
h=−∞

[E((1− L)st(1− L)st−h)]zh.

We will calculate every term on the right-hand side of the last equation.
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(1) From E(ωtωt−h) = Cω(h) there follows
∞∑

h=−∞
E(ωtωt−h)zh = gω(z). (4.15)

(2) From

E(ωt(1− L)st−h) = E(ωtst−h)− E(ωtst−h−1) = Cωs(h)− Cωs(h + 1),

implies

∞∑
h=−∞

Cωs(h)zh −
∞∑

h=−∞
Cωs(h + 1)zh =

=
∞∑

h=−∞
Cωs(h)zh −

∞∑
h=−∞

Cωs(h)zh−1

= (1− z−1)gωs(h).
(3) Using

E((1− L)stωt−h) = E(stωt−h)− E(st−1ωt−h)
= Csω(h)− Csω(h− 1),

we get
∞∑

h=−∞
Csω(h)zh −

∞∑
h=−∞

Csω(h− 1)zh

=
∞∑

h=−∞
Csω(h)zh −

∞∑
h=−∞

Csω(h)zh+1 = (1− z)gsω(h).

(4) Taking into account
E((1− L)st(1− L)st−h) =

= E(stst−h)− E(stst−h−1)− E(st−1st−h) + E(st−1st−h−1)
= Cs(h)− Cs(h + 1)− Cs(h− 1) + Cs(h),

one can see that
∞∑

h=−∞
Cs(h)zh −

∞∑
h=−∞

Cs(h + 1)zh −
∞∑

h=−∞
Cs(h− 1)zh +

∞∑
h=−∞

Cs(h)zh

=
∞∑

h=−∞
Cs(h)zh −

∞∑
h=−∞

Cs(h)zh−1 −
∞∑

h=−∞
Cs(h)zh+1 +

∞∑
h=−∞

Cs(h)zh

= (1− z)(1− z−1)gs(ω).
Finally, we get

gr(z) = gw(z) + (1− z−1)gws(z)(1− z)gsw + (1− z)(1− z−1)gs(z).
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Putting z = 1 into the last equation we obtain

gr(1) = gw(1). (4.16)
Equality (4.15) implies

gw(1) = σ2
w. (4.17)

Finally, from (4.14), (4.16), (4.17) there follows

gr(1) = σ2
w = [a∗(1)]2σ2

1 + [b∗(1)]2Λ = (1 +
∞∑

i=1

a∗i )
2σ2

1 + (
∞∑

i=0

b∗i )
2Λ.

The �nal result has to be understood as follows. Public information events
are incorporated into quote revision via the innovation ν1,t. The permanent
e�ect on midquotes of a unit quote revision innovation is given as the sum
of one (the contemporaneous impact) and

∞∑
i=1

a∗i . Hence, the variation in
e�cient price implied by public information is given by the �rst term of
the equation (4.11). A permanent e�ect on midquotes of the unexpected
unite trade is

∞∑
i=0

b∗i . Therefore, the variation in e�cient price implied by
private information is the second term of the equation (4.11). The variation
in e�cient price caused by both public and private information is then a sum
of variations in the e�cient price caused by public and private information
separately.

Remark 4.1 The described VAR system may be generalized taking a vector
of trade attributes instead of the signed trade variable xt. In that case, bi

and ci are coe�cient matrices, and Λ is the variance-covariance matrix of
the vector ν2,t, and the equations from Theorem 4.1 will be

σ2
ω = (1 +

∞∑

i=1

a∗i )
2σ2

1 + (
∞∑

i=0

b∗i )Λ(
∞∑

i=0

bT
i∗)

σ2
ω,x = (

∞∑

i=0

b∗i )Λ(
∞∑

i=0

bT
i∗).
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Chapter 5

Empirical results

5.1 The properties of London Stock Exchange

The two types of markets can be distinguished. A quote-driven market and
an order-driven market. The �rst one is traditional market, where market
makers have an obligation to quote continuously two-way prices at which
they are prepared to buy and sell a security. In that way they �ll gaps
arising from imperfect synchronization between the arrivals of buyers and
sellers. They are the counterpart in all transactions at the quoted prices:
the bid price, at which they are willing to buy securities and the ask price,
at which they willing to sell. They are the only providers of liquidity in the
quote-driven market.

The development of electronic trading technology in the recent years has
led to a rapid spread of so-called order-driven trading. In an order-driven
market there are no designated market makers. Any trader can choose to
execute trade via a limit or a market order. They input buy and sell orders
for a security into a central computer system where they are automatically
executed whenever they can be matched in terms of price and amount. The
London Stock Exchange is predominantly an order-driven market.

In the present chapter we have used high frequency trading data of eigh-
teen stocks listed on the London Stock Exchange from the FTSE 100 index.
The FTSE 100 is the share index of the 100 largest publicly quoted UK
companies. Taken together, these shares are worth around 80% of the UK
stock market. The trading process of FTSE stocks is provided by the stock
electronic order driven system, called the Stock Exchange Trading System or
shortly SETS. The SETS is an order matching system based on the concept

65
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of priority trading, where orders are ranked in priority of price, then in time
within the price. The order book is conveyed publicly in real time. As a
result, market bene�ts from pre-trade transparency, which means that par-
ticipants have an access to the whole order book and the post-trade trans-
parency, which means that participants can immediately observe the last
trades recorded by the system. On the other hand, order and trades are
mostly anonymous. Regarding liquidity problem and process of price set-
ting, the order-driven market is signi�cantly di�erent from the quote-driven
market. Since limit orders allow a trader to set a limit price at which the
order might be �lled, but there is a risk the order will not be executed, the
liquidity and establishing the bid-ask spreads in an order-driven market rely
only on limit orders.

5.2 Data and cleaning
Over a period of 62 days, from March 1, 2006 to May 31, 2006 the trading
attributes of interest for the liquidity analysis are viewed trade-by-trade for
a group of eighteen stocks listed on FTSE 100 index. The 62 day trading
sample is long enough to allow reasonably precise estimations [19], [20]. We
used data organized in the order book containing following columns.

1. date

2. symbol

3. local time

4. �ve levels of bid prices

5. �ve levels of ask prices

6. bid volumes related to the given �ve levels of bid prices

7. ask volumes related to the �ve levels of ask prices

8. the number of bid orders related to the �ve levels of bid prices

9. the number of ask orders related to the �ve levels of ask prices

10. is a trade

11. transaction price
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12. transaction size

13. trade time

The trading attributes of interest for our analysis are time, price and
volume of executed trade, pre-trade bid and ask prices with their related
volumes. In Table 1 is given a part of the order book which includes only
eight columns of interest.

bid1 ask1 bsize1 asize1 is a trade price size trade time
129.5 129.75 27211 836899 1 129.5 122789 8:02:19
129.5 129.75 0 836899 1 129.5 27211 8:02:19
129.25 129.75 750000 836899 0 129.5 27211 8:02:19
129.25 129.75 950000 836899 0 129.5 27211 8:02:23
129.25 129.75 950000 836899 0 129.5 27211 8:02:23
129.25 129.75 950000 836899 0 129.5 27211 8:02:23
129.25 129.75 950000 686899 0 129.5 27211 8:02:23
129.25 129.75 850000 686899 1 129.25 100000 8:02:23
129.25 129.75 650000 686899 0 129.25 100000 8:03:06
129.5 129.75 200000 686899 0 129.25 100000 8:03:06
129.5 129.75 100000 686899 1 129.5 100000 8:03:06
129.5 129.75 100000 686899 0 129.5 100000 8:03:07
129.5 129.75 86410 686899 1 129.5 13590 8:03:07
129.5 129.75 86410 686899 0 129.5 13590 8:03:15
129.5 129.75 186410 686899 0 129.5 13590 8:03:15

Table 1: The part of the order book for Vodafone at day March 14, 2006.

The column is a trade takes value 1, if trade was executed, and 0 if it
was not. For example, the trade which was executed at time 8:02:23, was
executed at pre-trade bid price 129.25 and therefore it was seller initiated.
The size of executed trade is 100000, which decreased pre-trade bid size
from 950000 to 850000. Using Matlab software we proceeded the following
cleaning.

All data that occur outside the normal trading hours, i.e. before 8:00
a.m. and after 4:30 p.m. were deleted from the sample. Then we matched
the executed trades with their related pre-trade bid and ask prices and bid
and ask sizes. After that, we excluded all rows in the order book for which
is a trade was zero. We eliminated all anomalous data caused by human and
system errors, such as negative spreads, zero bid prices and spreads that are
larger than 10% of actual stock prices. To eliminate any observation which
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does not re�ect the market activity we applied the cleaning procedure for
eliminating outliers taken from [11]. Let {pi}N be an ordered tick-by-tick
series. The procedure for removing outliers is as follows. If

|pi − pi(k)| < 3si(k) + γ, (5.1)

pi is kept, otherwise pi is removed. Here pi(k) and si(k) denote respective α-
trimmed sample mean and sample standard deviation of a neighborhood of k
observations around i and γ is a granularity parameter. The neighborhood of
observations is always chosen so that an observation considered is compared
with observations belonging to the same trading day. If the observation is
at the very beginning or end of a trading day, then �rst (and respectively
last) k ticks are used, whereas for an observation in the middle of a day
approximately k/2 ticks before and k/2 ticks after, are considered. The
percentage of trimming α should be based on the frequency of outliers - the
higher the frequency, the higher is α to be chosen. The choice of k depends
on frequency of trading, and it should be chosen in such a way that it does
not include "too distant" prices. Therefore, for very frequent stocks the
value for k should be signi�cantly bigger than the value for some other less
frequently traded stock.

The procedure is heuristic and it depends heavily on the proper choice of
α, γ and k. In order to decrease the level of heuristic dependence we apply
the same procedure iteratively, applying described algorithm iteratively - two
or three times. The data cleaning procedure described above is applied for
all eighteen shares considered. Since our price data are discrete with minimal
allowed change or tick, the granulation parameter for each stock equal to its
tick size is the only reasonable choice by our empirical experience. On the
other hand, �ltering procedure is sensitive to k. We tried k = 20, 40, 60;
the best results are almost always obtained with k = 40. For Vodafone, the
number of outliers is always less than 1% with γ equal to half of tick size
and k = 40, which is consistent with the results in [11]. Also, we concluded
that two �lter iterations were su�cient in the vast majority of cases.

Since there might be several transactions reported at the same time that
were executed at di�erent price levels, we applied some form of aggregation
which is consistent with liquidity analysis and Hasbrouck's VAR model. The
trades that occur at the same time, with same price and in the same direction
are treated as one trade. The volume of such trade is then simply a sum
of the volumes corresponding to individual trades. After such aggregations
procedure the number of observation for each stock decreased in average
more than two times. The information about the number of transactions
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after the aggregation procedure and average midquote for each stock are
given in Table 2. Midquote is a much better price variable than the actual
transaction price because it limits the bid-ask bounce problem. The bid ask
bounce occurs when there is no news in some observable period, but the buy
and sell orders come successively, which makes an impression that the prices
changed more than they actually did.

symbol company number of average
name transactions midquote

ABF Associated British Foods 27384 800.68
AZN Astra Zenaca 88232 2878.9
BARC Barclays 75709 655.28
CPI Capita Group 33198 462.61
GSK Glaxosmithkline 86972 1515.4
HBOS Hbos 71450 961.46
HSBA Hsbc Hldgs-Uk 87085 963.23
IAP Icap 22854 493.3
KAZ Kazakhmys 29439 1107.6
LLOY Lloyds Tsb 66833 533.46
PRU Prudential 63535 642.6
RB Reckit Bencksr 54738 2008
RIO Rio Tinto 125383 2943.3
SHP Shile 41806 862.57
SLOU Slough Estates 23189 625.65
VOD Vodafone 85138 124.63
WPP Wpp Group 40899 677.89
XTA Xstata 85921 1994.2

Table 2. The basic information of stocks after the aggregations procedure.

5.3 Variables and estimation
Although a large number of liquidity measures is presented in Chapter 2,
there is no need to consider all of them. Many of the presented measures are
just modi�cations of some other measures and they carry the same informa-
tion. We chose the following ten measures which can be calculated trade-by-
trade to examine di�erent liquidity aspects of eighteen chosen stocks.
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1. Volume per trade

2. Turnover per trade

3. Volume depth available immediately before trade

4. Duration between two successive trades

5. Flow ratio between two successive trades

6. Absolute spread

7. Proportional spread

8. Quote Slope

9. Price impact for the ask side per trade

10. Price impact for the bid side per trade

symbol tick size tick size
at the base points

ABF 0.5 6.24
AZN 1 3.47
BARC 0.5 7.63
CPI 0.25 5.40
GSK 1 6.60
HBOS 0.5 5.20
HSBA 0.5 5.19
IAP 0.25 5.07
KAZ 0.5 4.51
LLOY 0.25 4.69
PRU 0.5 7.78
RB 1 4.98
RIO 1 3.40
SHP 0.5 5.80
SLOU 0.5 7.99
VOD 0.25 20.06
WPP 0.5 7.38
XTA 1 5.01

Table 3. The tick size for each stock in absolute values and in the base
points values.
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To compare proportional spreads of di�erent stocks we modify the for-
mula (2.1) by

Sproptick
t =

Sprop
t

tick

where tick is a tick size for the corresponding stock with respect to average
midquote. In such way the proportional spread of eighteen analyzed stocks
is expressed in the tick size. The tick size for each stock calculated for the
observation period of 62 days in absolute values and relatively to average
midquote multiplied by 104, i.e. in the base points values are given in Table
3.

Price impact for the ask and the bid side per trade is given by

PIa
t = ln(

pt

mt−1
) (5.2)

PIb
t = −ln(

pt

mt−1
). (5.3)

Since the formulas (5.2) and (5.3) are modi�cations of the formulas (2.3) and
(2.4) for the case when the volume is excluded, they represent the immediate
impact of the last transaction, where mt−1 is the pre-trade midquote. To
see the real e�ect of price impact for the ask and the bid side, and to make
them comparable for di�erent stocks, we scaled them by average proportional
spread, that is we modi�ed the formulas (5.2) and (5.3) into

PIa
t =

1
S̄prop

· ln(
pt

mt−1
),

P Ib
t = − 1

S̄prop
· ln(

pt

mt−1
).

The average proportional spread S̄prop is calculated over the period of 62
observation days.

The �ow ratio between two successive trades is given by

FRt =
TOt−1

Durt

where Durt is time between a transaction at the time point t and a trans-
action before that, and TOt−1 is turnover of the �rst transaction realized
before the time point t. It measures the ability of stock to absorb large
volumes between two successive trades. If duration between two successive
trades is zero, the �ow ratio is set to be zero.
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The variables of interest for Hasbrouck's VAR model are the sign trade
xt and quote revision rt, as it described in Chapter 4. Under assumptions
of Hasbrouck's VAR model given in Chapter 4, it can be estimated consis-
tently and e�ciently by the least squares method. Hasbrouck's empirical
�ndings show that due to the least squares estimation coe�cients of sign
trade variables are positive, but of highly variable magnitude in the quote
revision equation. That is the reason why Hasbrouck suggested a better
behaved model resulting from replacing the sign trade variable xt with the
trade indicator variable x0

t , de�ned by (2.2). In the text to follow the "trade
variable" will denote the trade indicator variable x0

t . As a quote revision
variable he used the change in the natural logarithm of the midquote that
follows the current trade at time t,

rt = ln(mt+1)− ln(mt)

or midquote return of current trade at time t. For simplicity sake we say
"return" instead of "quote return" and we will call the equation (4.2) the
return equation. For the same reasons as for price impact for the ask and the
bid side, we expressed the return variable as a part of average proportional
spread by

rt =
ln(mt+1)− ln(mt)

S̄prop
. (5.4)

All described variables was calculated and analyzed using the Matlab soft-
ware. In computing autoregressions the sign trade and quote revision prior
to the �rst observation of the day are assumed to be zero. The proportion
in percents of buyer initiated, seller initiated and undeterminate trades for
each of eighteen analyzed stocks are given in Table 4.

Following Hasbrouck [39], [40], and Engle et al. [21], we assumed that
the model given by equations (4.2) and (4.3) can be truncated at �ve lags
i.e.

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t, (5.5)

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t. (5.6)

We will make some remarks about the sign trade variable. It is a dummy
variable and it is quite unusual to have such variable in vector autoregression.
Dummy variable presents no econometric di�culties when it is an explana-
tory variable which is case for the return equation, but in the case of the
trade equation the linear speci�cation is potentially inappropriate. The least
squares estimation yields to an ine�cient estimation of the trade coe�cients
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and standard errors are biased. To avoid this problem, we will correct the
standard errors by using the White's heteroskedasticity consistent covariance
estimator (1.8) to correct the Wald and t-statistics.

symbol buyer seller undeterminate
initiated initiated

ABF 45.52 47.90 6.58
AZN 45.09 48.75 6.17
BARC 44.81 46.20 8.99
CPI 45.92 47.50 6.58
GSK 44.40 48.98 6.62
HBOS 46.40 50.00 3.60
HSBA 45.88 48.61 5.51
IAP 44.81 51.37 3.82
KAZ 48.15 49.61 2.25
LLOY 46.19 45.59 8.22
PRU 44.86 47.10 8.03
RB 45.21 47.76 7.04
RIO 47.00 47.26 5.73
SHP 46.03 46.97 6.99
SLOU 48.01 46.86 5.13
VOD 42.69 54.89 2.42
WPP 45.45 45.62 8.93
XTA 47.17 48.43 4.39

Table 4. The proportion of the buyer initiated, seller initiated and
undeterminate trades for each of eighteen analyzed stocks.

5.4 Results
5.4.1 Liquidity measures

Summary statistics for ten liquidity measures are given in Appendix 1. The
proportional spread is given in tick size. The price impact for the ask and
the bid side are scaled by average proportional spread. Since for each stock
the liquidity measures have very high standard deviations, liquidity measures
for all stocks show high variability. All measures for all eighteen stocks are
positively skew. All measures for all eighteen stocks have kurtosis larger than
three, hence the distribution of calculated measures are elongated. No one of
the measures is normally distributed. For each liquidity measure we ranked
stocks from the most liquid to the most unliquid in Table 5. The last column
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in Table 5 represents the average ranks for each stock. Therefore, the stock
with the smallest average rank is the most liquid stock. The list of stocks
ranking from the most liquid to the most unliquid according to ten calculated
measures is: VOD, HSBA, BARC, LLOY, GSK, HBOS, PRU, WPP, AZN,
CPI, RIO, SHP, RB, ABF, XTA, SLOU, IAP and KAZ. Vodafone is the most
liquid stock according to almost all of ten liquidity measures. An exception
is the duration which indicates trading intensity.

symbol V TO D D$ Dur FR S QS Sprop PIa PIb average
ABF 14 16 12 14 16 16 10 10 8 9 13 12.5
AZN 12 3 14 7 2 2 14 14 10 11 12 9.2
BARC 4 6 4 5 7 6 5 5 4 3 2 4.6
CPI 8 15 9 15 14 14 2 2 13 12 11 10.5
GSK 9 4 6 3 4 5 13 13 3 4 4 6.2
HBOS 7 8 8 8 8 8 7 7 6 7 8 7.5
HSBA 3 2 2 2 3 3 4 4 2 2 5 2.9
IAP 10 17 11 18 17 17 9 9 17 17 17 14.5
KAZ 15 13 18 17 15 15 17 17 18 18 18 16.5
LLOY 2 7 3 4 9 9 3 3 15 5 3 5.7
PRU 5 10 5 6 10 10 8 8 7 8 7 7.6
RB 18 12 15 11 11 12 15 15 9 10 9 12.5
RIO 17 5 17 10 1 4 16 16 14 15 15 11.8
SHP 11 14 13 13 12 13 12 12 12 13 10 12.3
SLOU 13 18 10 16 18 18 11 11 11 14 14 14.0
VOD 1 1 1 1 6 1 1 1 1 1 1 1.5
WPP 6 11 7 9 13 11 6 6 5 6 6 7.8
XTA 16 9 16 12 5 7 18 18 16 16 16 13.5

Table 5. The stocks ranked from the most liquid to the most unliquid for
each liquidity measure with average rank.

The stocks which are traded more frequently than Vodafone are RIO,
AZN, HSBA, GSK and XTA by order. On the other hand the average trade
volume and average turnover for Vodafone is several times bigger than the
average trade volume and average turnover for these �ve stocks. This ability
of Vodafone to absorb large trades in a short time interval can be seen by
the �ow ratio.
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5.4.2 Hasbrouck's VAR

For each day from the sample of 62 observation days, we calculated the
return vector given by (5.4) and the trade vector given by Lee and Ready
rule (2.2). The return and trade prior to the �rst observation of each day
is set to be zero. Adding the return vector of day i + 1 at the and of the
return vector of day i, i = 1, ..., 61, we obtained the n × 1 return vector
r, where n is the sample size. In the same way, the n × 1 trade vector x0

is obtained from the trade vectors of each day. For estimating Hasbrouck's
VAR(5) given by (5.5) and (5.6) we made vectors rt and x0

t by cutting the
�rst �ve entries of return vector r and trade vector x0. The lagged vectors
rt−k and x0

t−k, k = 1, 2, ..., 5 are obtained by cutting the �rst 5− k, and the
last k entries of return and trade vector by order. Therefore, to obtain the
least squares coe�cients of the return equation we regressed vector rt on the
matrix

[rt−1, rt−2, rt−3, rt−4, rt−5, x
0
t , x

0
t−1, x

0
t−2, x

0
t−3, x

0
t−4, x

0
t−5]. (5.7)

To obtain the least squares coe�cients of the trade equation, we regressed
vector xt on the matrix

[rt−1, rt−2, rt−3, rt−4, rt−5, x
0
t−1, x

0
t−2, x

0
t−3, x

0
t−4, x

0
t−5]. (5.8)

Matlab function

[b, bint, r, rint, stats] = regress(y, X),

gives the least squares coe�cients of the equation (1.4). This function returns
b, the least squares estimation of β with its 95% con�dence interval bint; the
vector of residuals r with its 95% con�dence interval rint; a 1 × 3 vector
stats which contains the coe�cient of multiple determination R2 along with
F -statistics and P -value for the regression. The estimated least squares co-
e�cients for the return and trade equation together with their corresponding
t-statistics for all eighteen stocks calculated by Matlab function regress are
given in Appendix 2. The t-statistics given by (1.5) in the trade equation
are corrected by using the White's heteroskedastcity consistent covariance
estimator given by (1.7). The stars above t-statistics denote signi�cance at
the 5% level. For each equation, the coe�cient of multiple determination
R2 is given. For the return equation, the variance of innovation term σ2

1 is
calculated as well as the variance of innovation term of trade equation Λ.
We proceed with the Wald test (1.6) for the following hypothesis.
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1. Coe�cients of trade variables in the return equation are jointly equal
to zero i.e.

H0 : bi = 0, i = 0, 1, ..., 5.

To calculate the Wald statistics (1.6) for this test, a matrix B has to
consist of two blocks

B = [Z I]

where Z is the 6×5 zero matrix, and I is the the 6×6 identity matrix.
Vector b has to be 6× 1 zero vector, and matrix X is matrix (5.7).

2. Sum of the coe�cients of the trade variables in the return equation is
equal to zero, i.e.

H0 :
5∑

i=0

bi = 0.

For this test the return equation (5.5) is transformed into

rt = a1rt−1 + ... + a5rt−5 +
5∑

i=1
bix

0
t +

+b1(x0
t−1−x0

t )+ ...+b5(x0
t−5−x0

t )+ν1,t.

Then, after calculating new variables x0
t−k − x0

t , k = 1, 2, ..., 5 we
regressed vector rt on the matrix

[rt−1, ... , rt−5, (x0
t−1 − x0

t ), ... , (x0
t−5 − x0

t )], (5.9)

and tested hypothesis

H0 : ξ = 0, ξ =
5∑

i=1

bi.

For such test, B is the 1 × 11 vector with all entries zero, except the
sixth which is one. The matrix X is matrix (5.9), and b = 0.

3. Coe�cients of return variables in the trade equation are jointly equal
to zero i.e.

H0 : ci = 0, i = 1, ..., 5.

Because of heteroskedasticity problem caused by the presence of dummy
variable in trade equation, the Wald statistics (1.6) has to be corrected
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by the White's consistent covariance estimator (1.8). Writing the Wald
satistics (1.6) as

(Bβ − b)T [BT s2(XT X)−1B]−1(Bβ − b) ∼ χ2
n,

it can be seen from the subsection (1.4.2) that

s2(XT X)−1 = V ar(β̂)

where s is the sample error variance estimator given by

s2 =
ε̂T ε̂

n
,

and ε̂ is the estimated vector of residuals. It is clear now, that V ar(β̂) =
s2(XT X)−1 in the Wald test has to be replaced by the White's esti-
mator of covariance matrix V (β̂) given by (1.9). After such correction
the Wald test becomes

(Bβ − b)T [BT (XT X)−1Ŝ(XT X)−1B]−1(Bβ − b)
n

,

where Ŝ is the White heteroskedasticity consistent covariance estimator
given by

Ŝ =
1
n

∑

i

ε2
i xix

T
i .

To calculate the corrected Wald statistics for this test matrix B has to
consist of two blocks

B = [I Z]

where I is the 5 × 5 identity matrix and Z is the 5 × 5 zero matrix.
Vector b has to be the 5× 1 zero vector. Matrix X is given by (5.8).

The algorithm for calculating the VMA(q) of Hasbrouck's VAR(p) de-
scribed in Chapter 4 is as follows.

Step 1. Using obtained the least squares coe�cients of equations (5.5) and
(5.4) forme matrices

Ai =
[

ai + b0ci bi + b0di

ci di

]
, i = 1, 2, ..., p
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Step 2. Construct the 2q × 2 matrix given by

ϕ = [A1 A2 A3 A4 A5 Z]T

where Z is the 2(q − p)× 2 zero matrix.
Step 3. Construct the 2× 2q matrix

Ψ = [I Z]

where I is the 2× 2 identity matrix, and Z is the 2(q − 1)× 2 zero matrix.
Step 3. For i = 1, ..., q

1. Calculate
Ψ′ = Ψi · ϕ

2. Construct a matrix Ψ′′ by putting matrix Ψ′ at begin of the matrix Ψ
and by cutting the 2× 2 zero matrix at the end of Ψ.

3. Ψ′ = Ψ′′

After the described algorithm the resulting 2× 2q matrix is
[

a′q b′q ... a′2 b′2 a′1 b′1
c′q d′q ... c′2 d′2 c′1 d′1

]
,

where coe�cients ai, bi, ci, di, i = 1, 2, ..., q are impulse responses given in
(4.6). The e�ect of a unit trade innovation on the return at a i period horizon
is calculated by

b∗i = a′ib0 + b′i, i = 1, 2, ..., q

as it is described in Section 4.
Following the described algorithm we calculated the the moving-average

representation of VAR (4.6), (4.7) truncated at 40 lags. The price impact
function is calculated as a cumulative impulse b∗i responses of return to the
innovation in the trade equation. The graphs of price impact functions are
given for each stock. The total price impact is calculated as well as the
number of transaction needed for its realization. At the end, the variance
decomposition coe�cient R2

ω given by (4.9) is calculated.
The most important coe�cients are coe�cients of trade variables in the

return equation and in the trade equation. The coe�cient b0 in the re-
turn equation for each of eighteen stocks measures an average rise of return
relative to the proportional spread immediately after the buy order. The



5.4. RESULTS 79

coe�cients bi, i = 1, 2, ..., 5 in the return equation for all eighteen stocks
tend to be positive, meaning that the buys tend to increase and sells tend
to decrease the return. According to the Wald test the hypothesis that the
coe�cients bi, i = 1, 2, ..., 5 are jointly equal to zero is rejected. The sum of
them is positive, and according to the Wald test, signi�cantly di�erent from
zero at the 1% level, indicating that the order �ow has a positive in�uence
on the return.

The coe�cients of lagged trade variables in the return equation for each
of eighteen stocks are positive, re�ecting a positive autocorrelation in trades,
which indicates that a purchase tends to follow a purchase, and a sell tends
to follow a sell. They are also signi�cantly di�erent from zero, even at the
1% level.

symbol liquidity permanent R2
ω

price impact
ABF 12 8 12
AZN 9 9 5
BARC 3 15 3
CPI 10 5 8
GSK 4 14 7
HBOS 5 7 2
HSBA 2 17 10
IAP 17 1 17
KAZ 18 2 16
LLOY 7 16 9
PRU 6 11 14
RB 14 6 4
RIO 11 4 6
SHP 13 10 13
SLOU 16 13 18
VOD 1 18 15
WPP 8 12 11
XTA 15 3 1

Table 6. The stocks ranked from the highest to the lowest liquidity, total
permanent price impact calculated by Hasbrouck's VAR, and variance

decomposition coe�cient R2
ω.

The negative coe�cients of lagged return variables in the trade equation
indicate negative autocorrelation in the returns. This negative autocorre-
lation is predominant for stocks with the symbols ABF, CPI, KAZ, SHP,
SLOU, and VOD. For other stocks, this behavior is weaker.
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The Wald test of the hypothesis that the coe�cients of return variables
in the trade equation are jointly zero is rejected at the 1%, level indicating
Granger's casuality running from returns to trades.

In Table 6, eighteen observed stocks are ranked from the highest to the
lowest liquidity, total permanent price impact calculated by Hasbrouck's
VAR, and variance decomposition coe�cient R2

ω.
To test the null hypothesis

H0: There is no relationship between the di�erent liquidity measures,
permanent price impact PIhas and variance decomposition coe�cient R2

ω,

against the alternative hypothesis

H1: There is a relationship between the di�erent liquidity measures,
permanent price impact PIhas and variance decomposition coe�cient R2

ω,

we use the Sperman rank correlation test, whose results with related P -values
in the brackets are given in Table 7. To have correlation between sets of data,
the null hypothesis has to be rejected. For this test all measures were ranked
as in Table 5, from the highest to the lowest liquidity. That means that
for example, stocks are ranked from the lowest to the highest duration, and
from the highest to the lowest trade volume. Therefore, stocks are ranked
from the lowest to the highest Hasbrouck's price impact. We ranked stocks
from the highest to the lowest variance decomposition coe�cient. Signi�cant
correlations (at the 1% or 5% level) between di�erent liquidity measures are
mostly under 50%. Correlations signi�cant at the 10% level are between
40% and 50%. As it was expected, those correlations positive, implying
that more liquid stocks according to one liquidity measure, are also more
liquid according to some other liquidity measure. From all calculated corre-
lations we were the most interested in correlations between the Hasbruck's
price impact PIhas and all liquidity measures, and between the variance de-
composition coe�cient R2

ω and all liquidity measures. Correlations between
the Hasbrouck's price impact and almost all considered liquidity measures
are positive and signi�cant. Exceptions are the duration and the �ow ratio
which are positively, but not signi�cantly correlated with the Hasbrouck's
price impact. Such results imply that more liquid stocks according to some
liquidity measure have lower Hasbrouck's price impact, as it was expected.
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V TO D D$ Dur FR

V 0.4262 0.9443 0.6677 0.1496 0.3560
(0.0789) (0.0001) (0.0059) (0.5372) (0.1421)

TO 0.4262 0.4159 0.8885 0.9195 0.9814
(0.0789) (0.0864) (0.0002) (0.0001) (0.0001)

D 0.9443 0.4159 0.7193 0.1496 0.3437
(0.0001) (0.0864) (0.0030) (0.5372) (0.1565)

D$ 0.6677 0.8885 0.7193 0.7337 0.8431
(0.0059) (0.0002) (0.0030) (0.0025) (0.0005)

Dur 0.1496 0.9195 0.1496 0.7337 0.9525
(0.5372) (0.0001) (0.5372) (0.0025) (0.0001)

FR 0.3560 0.9814 0.3437 0.8431 0.9525
(0.1421) (0.0001) (0.1565) (0.0005) (0.0001)

S 0.8885 0.1723 0.8658 0.4345 -0.0857 0.1249
(0.0002) (0.4773) (0.0004) (0.0732) (0.7240) (0.6067)

QS 0.8885 0.1723 0.8658 0.4345 -0.0857 0.1249
(0.0002) (0.4773) (0.0004) (0.0732) (0.7240) (0.6067)

Sprop 0.5562 0.5335 0.6945 0.7358 0.3498 0.5129
(0.0218) (0.0278) (0.0042) (0.0024) (0.1492) (0.0345)

PIa 0.7750 0.6285 0.8679 0.8782 0.3911 0.5645
(0.0014) (0.0096) (0.0003) (0.0003) (0.1068) (0.0199)

PIb 0.7750 0.6285 0.8679 0.8782 0.3911 0.5645
(0.0014) (0.0096) (0.0003) (0.0003) 0.1068) (0.0199)

PIhas 0.7399 0.5170 0.8369 0.7833 0.2817 0.4489
(0.0023) (0.0330) (0.0006) (0.0012) (0.2454) (0.0642)

R2
w -0.1393 0.4407 -0.1187 0.3209 0.6244 0.5088

(0.5657) (0.0692) (0.6246) (0.1857) (0.0100) (0.0359)
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S QS Sprop PIa PIb PIhas R2
w

V 0.8885 0.8885 0.5562 0.7750 0.7750 0.7399 -0.1393
(0.0002) (0.0002) (0.0218) (0.0014) (0.0014) (0.0023) (0.5657)

TO 0.1723 0.1723 0.5335 0.6285 0.6285 0.5170 0.4407
(0.4773) (0.4773) (0.0278) (0.0096) (0.0096) (0.0330) (0.0692)

D 0.8658 0.8658 0.6945 0.8679 0.8679 0.8369 -0.1187
(0.0004) (0.0004) (0.0042) (0.0003) (0.0003) (0.0006) (0.6246)

D$ 0.4345 0.4345 0.7358 0.8782 0.8782 0.7833 0.3209
(0.0732) (0.0732) (0.0024) (0.0003) (0.0003) (0.0012) (0.1857)

Dur -0.0857 -0.0857 0.3498 0.3911 0.3911 0.2817 0.6244
(0.7240) (0.7240) (0.1492) (0.1068) (0.1068) (0.2454) (0.0100)

FR 0.1249 0.1249 0.5129 0.5645 0.5645 0.4489 0.5088
(0.6067) (0.6067) (0.0345) (0.0199) (0.0199) (0.0642) (0.0359)

S 1.0000 0.4819 0.6821 0.6821 0.6078 -0.1765
(0.0000) (0.0469) (0.0049) (0.0049) (0.0122) (0.4669)

QS 1.0000 0.4819 0.6821 0.6821 0.6078 -0.1765
(0.0000) (0.0469) (0.0049) (0.0049) (0.0122) (0.4669)

Sprop 0.4819 0.4819 0.8762 0.8762 0.7399 0.1249
(0.0469) (0.0469) (0.0003) (0.0003) (0.0023) (0.6067)

PIa 0.6821 0.6821 0.8762 1.0000 0.8638 0.1806
(0.0049 ) (0.0049) (0.0003) (0.0000) (0.0004) (0.4565)

PIb 0.6821 0.6821 0.8762 1.0000 0.8638 0.1806
(0.0049) (0.0049) (0.0003) (0.0000) (0.0004 (0.4565)

PIhas 0.6078 0.6078 0.7399 0.8638 0.8638 -0.0980
(0.0122) (0.0122) (0.0023) (0.0004) (0.0004) (0.6860)

R2
w -0.1765 -0.1765 0.1249 0.1806 0.1806 -0.0980

(0.4669) (0.4669) (0.6067) (0.4565) (0.4565) (0.6860)

Table 7. The Sperman rank correlation test for di�erent liquidity measures,
the Hasbruck's price impact and variance decomposition coe�cient R2

ω.
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On the other hand, correlations between the variance decomposition coef-
�cient R2

ω and di�erent liquidity measures are mostly insigni�cant. It is
interesting that there is no signi�cant correlation between the Hasbruck's
price impact and the variance decomposition coe�cient. The duration and
the �ow ratio are only two measures that signi�cantly correlated to R2

ω.
These correlations are positive, implying that intensively traded stocks show
larger contribution of unexpected trade in variation of e�cient price. Also,
the turnover is positively correlated to the variance decomposition coe�cient
at the 10% level.

Hasbrouck formally suggested that the variance decomposition coe�cient
R2

ω indicates the proportion of volatility in the e�cient price caused by the
presence of informed traders represented in the unexpected component of the
trade. Following such suggestion we would expect that more liquid stocks
have a lower variance decomposition coe�cient R2

ω. However, our results are
not consistent with such suggestion. For example, the most unliquid stocks
according to Table 5, IAP, KAZ, and SLOU have the lowest coe�cient R2

ω.
They also take 17, 15 and 18 rank by order according to the duration and
the �ow ratio. Excluding these three stocks, Vodafone has the smallest R2

ω.
According to the Spearman rank correlation test it seems that for intensively
traded stocks, the coe�cient R2

ω is highly overestimated.
Our �ndings indicate that the variance decomposition coe�cient strongly

depends on the predictability of the return equation and trade equation. Ac-
cording to the coe�cients of multiple determination R2

r and R2
x, the return

equation shows a higher predictability than the trade equation for each stock
except for Vodafone. Such results are reasonable, since in the trade equation
the trade variable x0

t as a dummy variable takes only three values, −1, 0, 1.
It can be seen from Appendix 2 that the stocks with higher predictability
of the return equation compared to the predictability of the trade equation
have a higher R2

ω. The predictability of the return equation strongly depends
on the volatility in return. The proportions of positive returns, zero returns,
and negative returns for each of eighteen analyzed stocks are given in Table
8. Vodafone has the extremely large proportion of zero returns of all eighteen
stocks. This can explain the low predictability of its return equation com-
pared to the predictability of the trade equation. The Pearson correlation
coe�cient between R2

r/R2
x and proportion of zero returns is −0.7211 with a

P -value of 0.0007, which indicates the signi�cance at the 1% level.
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symbol positive zero negative
return return return

% % %
ABF 25.34 49.99 24.67
AZN 28.95 41.84 29.21
BARC 21.31 56.87 21.82
CPI 27.51 44.73 27.77
GSK 19.44 61.08 19.48
HBOS 25.16 49.49 25.35
HSBA 16.33 67.45 16.22
IAP 30.72 38.02 31.26
KAZ 33.39 32.73 33.87
LLOY 20.48 58.83 20.69
PRU 25.35 48.56 26.09
RB 27.77 44.14 28.09
RIO 32.75 34.43 32.81
SHP 27.70 43.58 28.72
SLOU 24.90 49.80 25.30
VOD 6.81 86.25 6.94
WPP 23.24 53.59 23.17
XTA 32.91 33.87 33.22

Table 8. The proportions of positive returns, zero returns, and negative
returns for each stock.

All presented results show that the variance decomposition coe�cient R2
ω

cannot be interpreted as a proportion of volatility in the e�cient price caused
by the presence of informed traders. Also, the predictability of the return
equation for all eighteen stocks shows strong dependence of the contempo-
raneous trade x0

t . The coe�cients of multiple determination for the return
equation R2

r for all eighteen stocks when the contemporaneous trade x0
t is

included and when it is excluded are given in Table 9. Such results imply
that the last trade carries the most important information in prediction of
the future price.

The results obtained by applying Hasbrouck's [39], [40] model of total
price impact and contribution of private information to the volatility in e�-
cient price reveals some di�erences from Hasbrouck's results [39], [40]. The
most important di�erences are those concerning the variance decomposition
coe�cient R2

ω. It is expected that the stocks which have higher total perma-
nent price impact have a lager the variance decomposition coe�cient R2

ω.
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symbol with without
% %

ABF 17.90 3.90
AZN 27.28 4.41
BARC 24.64 5.30
CPI 20.76 4.18
GSK 22.89 5.33
HBOS 26.50 4.51
HSBA 20.92 5.89
IAP 15.92 2.96
KAZ 17.16 9.39
LLOY 22.02 5.22
PRU 21.71 5.59
RB 24.72 3.73
RIO 26.48 4.51
SHP 18.56 4.09
SLOU 15.19 4.58
VOD 11.69 6.41
WPP 22.98 4.27
XTA 25.66 4.94

Table 9. The coe�cients of multiple determination for the return equation
R2

r each stock with and without contemporaneous trade x0
t .

Figure 5.1 shows the variance decomposition coe�cient versus total per-
manent price impact across 18 analyzed stocks. Some kind of stock clustering
can be noticed. The most isolated stocks are the three the most unliquid
stocks according to Table 5, IAP, KAZ and SLOU, and they have the lowest
R2

ω. The rest, the more liquid ones have higher R2
ω. The Vodafone is quite

separated from this group showing its own behavior. It seems that Has-
brouck's �ndings are more appropriate for less liquid than for more liquid
stocks.

Some explanations can be found in the characteristics of an order driven
market, i.e. electronic trading. Hasbrouck's model assumes quite simply
trading mechanism between market participants. It assumes the presence of
market makers who post bid and ask quotes after the realized transaction at
time t, and according to the information contained in the recent order �ow.
With such mechanism, every trade that model cannot predict is taken as a
unexpected trading activity caused by the presence of traders with private
information. In an order driven market interaction between market partici-
pants is much more complicated. First, there are no classical market makers.
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Figure 5.1: Variance decomposition R2
ω(%) coe�cient vs. total permanent

price impact with respect to the average proportional spread PIhas.

The transactions are realized by matching price and amount of di�erent or-
ders putted in the central computer system by di�erent participants. The
large number of transaction can be realized in a short time interval, or even
more, in the same time. Also, electronic system enables recording almost
every trading activity, which signi�cantly enlarges the information set avail-
able to market participants. The possibility to record every price movement
produces a higher predictability for the return equation. It is also expected
that price of very liquid stocks cannot dramatically vary in a small time
interval. That explains a higher predictability of the return equation for
the more liquid stocks than for the less liquid. The exception is Vodafone,
because of large proportion of zero returns. An electronic trading providing
very frequent trading, requires fast reaction on any trading activity. It is
possible that traders make fast decisions according to the recent information
and for the short time horizon, which can explain the extreme decrease of
the predictability of the return equation after excluding contemporaneous
trade from the return equation.

In the last ten years trading becomes much more sophisticated because
of development of so called algorithmic trading. Algorithmic trading usu-
ally refers to employment of computer algorithms for breaking up large order
into sequence of smaller orders and engagement of automated trading strate-
gies for their execution with respect to a numerous user-de�ned parameters
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such as time horizon, liquidity constraints, depth of market, volatility, etc.
Moreover, the big trend in the recent years is creating unique trading algo-
rithms. They have to be created, tested and applied in the market as quickly
as possible, because market changes fast. In 2006 at the London Stock Ex-
change, over 40% of all orders were entered by algorithmic traders, with 60%
predicted for 2007.

The larger variance decomposition coe�cient of the intensive traded socks
can be explained by the algorithmic trading. Such trading can be viewed as
a superior trading which will behave as an unexpected trade, i.e. as a trade
caused by the superior information in the Hasbrouck's V AR model. Clearly,
the proportion of algorithmic trading has to be larger for intensively traded
stocks.

The total price impact is de�ned as a response of the return to the trade
innovation. Such innovation is viewed as a trade initiated by the private in-
formation. As it was expected, our results show that for more liquid stocks
this impact is lower. However, our results show that the bivariate system
(4.2) i (4.3) cannot isolate trades which are truly initiated by private informa-
tion. Signi�cant at the 5% level Spearman rank correlations of the variance
decomposition coe�cient R2

ω to the duration and the �ow ratio require an ex-
tra research. The same is with the 10% level signi�cant correlation between
the variance decomposition coe�cient R2

ω and the turnover.
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Table A.1.1
The summary statistics of ten liquidity measures for ABF

ABF
mean med max min st.dev sqewness kurtoses

V 14801 6960 9.30·105 1 26831 8.2 142.76
TO 1.17·107 5.54·106 7.01·108 800.5 2.11·107 7.9375 130.64
D 14538 11961 208670 104 11074 2.6637 17.981
D$ 57.61·105 47.99·105 79.45·106 45423 42.82·105 2.5683 17.185
Dur 0.0163 0.0058 0.4358 0 0.027 3.6892 24.439
FR 8.50·109 6.96·108 1.56·1012 0 2.99·1010 12.54 361.51
S 0.7816 0.5 44 0.5 0.6577 19.081 910.35
QS 0.0473 0.0322 2.8523 0.0227 0.0425 21.309 1007.9
Sprop 1.5681 1.0617 78.829 0.9062 1.2739 15.955 678.5
PIa 0.5425 0.4999 24.175 0.0117 0.4558 21.143 871.79
PIb 0.5675 0.5001 60.308 0.0249 0.7507 48.094 3412.4

Table A.1.2
The summary statistics of ten liquidity measures for AZN

AZN
mean med max min st.dev sqewness kurtoses

V 16209 6477 4.14·106 1 37769 25.882 2064.2
TO 4.67·107 1.86·107 1.09·1010 2791 1.08·108 23.238 1654.8
D 12675 9529 352610 29 12016 3.4798 29.09
D$ 18.29·106 13.69 ·106 50.41·107 42180 17.43·106 3.4696 28.571
Dur 0.0054 0.0019 0.1497 0 0.0089 3.7665 24.843
FR 4.60·1010 6.59·109 4.92·1012 0 1.48·1011 11.026 201.15
S 1.6544 1 53 1 1.0776 4.1679 87.283
QS 0.1034 0.0698 3.2074 0.0442 0.0685 4.0244 74.22
Sprop 1.659 1.0287 55.09 0.9386 1.0863 4.259 94.474
PIa 0.5515 0.5 23.597 0.0277 0.4601 16.714 619.25
PIb 0.5636 0.5 20.434 0.0385 0.46 13.756 411.2
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Table A.1.3
The summary statistics of ten liquidity measures for BARC

BARC
mean med max min st.dev sqewness kurtoses

V 44970 19998 3.25·106 1 87771 9.0223 174.73
TO 2.93·107 1.30·107 2.26·109 597.5 5.72·107 9.0989 179.22
D 72360 61657 752020 235 50039 1.8929 10.547
D$ 23.74·106 20.21·106 23·107 76970 16.42 ·106 1.8143 9.6202
Dur 0.0063 0.0028 0.1719 0 0.0097 3.7215 25.909
FR 2.62·1010 3.74·109 7.17·1012 0 9.07·1010 20.166 988.15
S 0.62582 0.5 4 0.5 0.26065 2.4132 11.209
QS 0.0316 0.0259 0.2407 0.0203 0.0131 2.6177 14.681
Sprop 1.2566 1.0032 7.67 0.9351 0.5349 2.4446 11.4750
PIa 0.5144 0.4999 21.685 0.0716 0.3140 23.3260 1082
PIb 0.5106 0.5001 27.213 0.0713 0.3033 32.051 2198.3

Table A.1.4
The summary statistics of ten liquidity measures for CPI

CPI
mean med max min st.dev sqewness kurtoses

V 25994 11522 2.56·106 1 52436 12.534 379.17
TO 1.20·107 5.32·106 1.15·109 465.5 2.42·107 12.249 358.05
D 23659 18126 338050 146 20276 2.9221 23.432
D$ 54.75·105 41.97·105 80.29·106 33682 46.95·105 2.9821 25.037
Dur 0.0137 0.0044 0.5561 0 0.0243 4.4613 39.923
FR 9.13·109 8.02·108 1.26·1012 0 3.47·1010 13.115 282.64
S 0.45823 0.25 13 0.25 0.38901 5.6076 89.485
QS 0.0265 0.0161 0.7494 0.0110 0.0228 5.8447 90.133
Sprop 1.8365 1.0279 51.8 0.9412 1.5586 5.5582 89.231
PIa 0.5601 0.4999 16.004 0.0314 0.4504 7.7028 149.54
PIb 0.5598 0.5001 26.803 0.0206 0.4982 18.821 781.64
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Table A.1.5
The summary statistics of ten liquidity measures for GSK

GSK
mean med max min st.dev sqewness kurtoses

V 24610 10728 3.30·106 1 49964 13.555 478.87
TO 3.73·107 1.62·107 5.08·109 1471 7.57·107 13.738 495.68
D 46470 38567 520500 103 34625 2.6127 17.717
D$ 35.24·106 29.20·106 40.85 ·106 77862 26.34 ·106 2.6385 18.109
Dur 0.0055 0.0025 0.1089 0 0.008 3.3206 19.87
FR 3.44·1010 5.20·109 7.13·1012 0 1.11·1011 13.666 411.83
S 1.2321 1 11 1 0.5285 3.131 20.026
QS 0.0655 0.0537 0.6275 0.0402 0.0289 3.3989 25.114
Sprop 1.2328 1.0118 10.868 0.9532 0.5307 3.115 19.707
PIa 0.5179 0.4999 17.092 0.0627 0.3068 18.047 641.17
PIb 0.5183 0.5001 17.404 0.0623 0.2657 18.854 819.25

Table A.1.6
The summary statistics of ten liquidity measures for HBOS

HBOS
mean med max min st.dev sqewness kurtoses

V 28913 13399 2.57·106 1 55840 10.646 262.07
TO 2.77·107 1.29·107 2.63·109 937.5 5.35·107 10.796 269.85
D 35543 29208 521310 20 26853 2.1437 13.825
D$ 17.10·106 14.01·106 24.32 ·107 9420.8 12.95·106 2.1342 13.427
Dur 0.0066 0.0028 0.1606 0 0.0103 3.4467 20.687
FR 2.37·1010 3.60·109 3.73·1012 0 7.62·1010 12.825 311.34
S 0.7016 0.5 10 0.5 0.3752 2.8851 20.509
QS 0.0385 0.0287 0.5331 0.0214 0.0210 3.127 23.542
Sprop 1.4055 1.0183 18.844 0.9365 0.7518 2.8238 18.869
PIa 0.5292 0.4999 24.06 0.0557 0.3797 21.89 974.7
PIb 0.5387 0.5001 36.154 0.0499 0.5025 35.989 2015.5
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Table A.1.7
The summary statistics of ten liquidity measures for HSBA

HSBA
mean med max min st.dev sqewness kurtoses

V 49367 18386 6.32·106 1 114470 12.648 344.38
TO 4.75·107 1.77·107 6.13·109 957 1.11·108 12.794 352.11
D 128200 108090 17.46·105 223 92905 2.2165 14.574
D$ 61.92·106 52·106 85.80·107 102860 45.25·106 2.2395 14.854
Dur 0.0055 0.0025 0.1603 0 0.0079 3.4392 22.449
FR 4.23·1010 5.65·109 8.29·1012 0 1.49·1011 14.6 401.98
S 0.5715 0.5 6.5 0.5 0.203 4.0814 38.75
QS 0.0275 0.0241 0.3763 0.0188 0.0102 4.6948 56.379
Sprop 1.1445 1.0007 12.7120 0.9665 0.4086 4.0389 37.389
PIa 0.5138 0.4999 30.732 0.1 0.3467 49.396 3651.5
PIb 0.5183 0.5 40.075 0.0624 0.4402 52.94 3924.5

Table A.1.8
The summary statistics of ten liquidity measures for IAP

IAP
mean med max min st.dev sqewness kurtoses

V 20619 7984.5 3.29·106 1 55762 17.83 686.46
TO 1.01·107 3.91·106 1.50·109 474.25 2.73·107 16.463 565.1
D 14563 11421 973720 125 17774 29.275 1455.6
D$ 35.89·105 27.97·105 24.59·107 28995 44.48·105 30.032 1510.2
Dur 0.0188 0.0061 0.6714 0 0.0341 4.5605 38.23
FR 6.47·109 3.80·108 1.44·1012 0 3.17·1010 17.999 534.39
S 0.77291 0.5 30.25 0.25 0.8222 7.1893 154.9
QS 0.0472 0.0306 1.6353 0.0109 0.0498 6.1567 112.7
Sprop 3.1079 2.061 119.06 0.8577 3.3098 7.0399 145.85
PIa 0.6675 0.4999 58.878 0.0168 1.2352 23.832 867.05
PIb 0.6552 0.5001 30.765 0.0154 0.9238 13.5 312.9
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Table A.1.9
The summary statistics of ten liquidity measures for KAZ

KAZ
mean med max min st.dev sqewness kurtoses

V 14508 5764 2.76·106 1 40389 23.274 1067.7
TO 1.60·107 6.36·106 3.21·109 1044 4.50·107 24.7 1201.9
D 7886 6355 108550 97 6396.3 3.1084 22.526
D$ 43.56·105 35.15 ·105 62.86·106 41108 35.43·105 3.0903 22.702
Dur 0.0153 0.0044 1.5778 0 0.031 9.4172 279.44
FR 8.89·109 7.61·108 3.45·1012 0 4.21·1010 35.293 2196.6
S 2.1605 1.5 309.5 0.5 3.0297 38.346 3625.9
QS 0.1412 0.0954 22.238 0.0243 0.2074 43.828 4403.1
Sprop 4.3141 2.9349 122.05 0.7722 4.9444 6.1194 82.579
PIa 0.7197 0.4999 93.592 0.0043 1.6115 28.022 1202
PIb 0.7015 0.5001 38.054 0.0095 1.1309 15.179 400.65

Table A.1.10
The summary statistics of ten liquidity measures for LLOY

LLOY
mean med max min st.dev sqewness kurtoses

V 52411 22270 6.96·106 1 116860 14.52 476.45
TO 2.78·107 1.19·107 3.75·109 541.5 6.19·107 14.545 482.42
D 102570 77960 19.38·105 270 91543 2.9379 20.595
D$ 27.30·106 20.74·106 50.96·107 68983 24.32·106 2.9127 20.162
Dur 0.0071 0.0031 0.1922 0 0.0107 3.4099 21.934
FR 2.14·1010 2.92·109 4.32·1012 0 7.74·1010 16.444 505.8
S 0.5454 0.5 3.5 0.25 0.2551 1.9329 9.3727
QS 0.0268 0.0241 0.1766 0.0102 0.0124 2.1183 11.494
Sprop 2.1893 2.0049 13.839 0.9572 1.0347 1.8845 8.9693
PIa 0.519 0.4999 15.559 0.0626 0.3234 17.013 568.33
PIb 0.5159 0.5001 22.485 0.0555 0.3328 27.355 1414.4
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Table A.1.11
The summary statistics of ten liquidity measures for PRU

PRU
mean med max min st.dev sqewness kurtoses

V 36252 16363 3.25·106 1 69341 9.077 187.45
TO 2.34·107 1.05·107 1.89·109 592.5 4.49·107 8.5219 153.08
D 67383 38024 60·107 158 33.66·105 178.19 31756
D$ 21.48·106 12.09·106 18.23·1010 53573 10.23·108 178.18 31754
Dur 0.0074 0.0028 0.2217 0 0.0121 3.8373 26.852
FR 2.09·1010 2.57·109 4.37·1012 0 7.16·1010 15.062 504.12
S 0.75444 0.5 34 0.5 0.5655 14.828 581.82
QS 0.0401 0.0284 2.0558 0.0175 0.0311 16.717 713.38
Sprop 1.5139 1.0707 64.032 0.8426 1.1007 13.306 498.3
PIa 0.539 0.4999 37.533 0.018 0.504 30.347 1607.7
PIb 0.5308 0.5001 24.706 0.0314 0.401 22.465 1031.5

Table A.1.12
The summary statistics of ten liquidity measures for RB

RB
mean med max min st.dev sqewness kurtoses

V 9686.8 4569 1.01·106 1 17977 11.18 329.32
TO 1.95·107 9.18·106 2.07·109 1925 3.62·107 11.325 341.24
D 9104 7445 79360 38 6664.9 1.9751 10.039
D$ 91.49·105 74.74·105 79.95 ·106 39008 67.21·105 1.9934 10.196
Dur 0.0086 0.0031 0.2686 0 0.0146 4.0318 29.328
FR 1.67·1010 2.08·109 2.56·1012 0 5.33·1010 12.817 342.08
S 1.6549 1 42 1 1.1332 5.5351 104.28
QS 0.1059 0.0713 2.9563 0.0482 0.0751 6.254 128.61
Sprop 1.6563 1.0237 41.261 0.94119 1.1334 5.3731 98.165
PIa 0.5432 0.4999 22.131 0.0294 0.4641 17.049 577.76
PIb 0.5476 0.5001 40.55 0.0311 0.4562 31.602 2389.3
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Table A.1.13
The summary statistics of ten liquidity measures for RIO

RIO
mean med max min st.dev sqewness kurtoses

V 11704 5214 1.58·106 1 25437 14.972 483.02
TO 3.45·107 1.54·107 4.75·109 2955 7.50·107 15.016 487.19
D 8522.4 6489 20. ·106 33 80141 247.62 61769
D$ 12.55·106 95.24·105 32.16·109 49997 12.88·107 248.09 61926
Dur 0.0038 0.0014 0.1431 0 0.0067 4.3738 33.444
FR 3.78·1010 6.63·109 9.22·1012 0 1.22·1011 17.9 727.1
S 2.0864 2 60 1 1.5922 3.7533 47.696
QS 0.1363 0.1137 3.7016 0.0473 0.1061 3.7731 43.161
Sprop 2.0959 1.844 57.482 0.8685 1.6193 3.8583 49.219
PIa 0.5908 0.5 112.74 0.0179 1.0568 65.231 5730.4
PIb 0.5891 0.5 176.19 0.0138 0.9449 116.99 20582

Table A.1.14
The summary statistics of ten liquidity measures for SHP

SHP
mean med max min st.dev sqewness kurtoses

V 17374 7634 1.45·106 1 33504 9.7114 218.12
TO 1.50·107 6.58·106 1.33·109 815.5 2.92·107 10.156 243.05
D 14527 11531 156950 125 11775 2.6716 15.587
D$ 62.85·105 49.43·105 70.90·106 55566 51.50·105 2.6792 15.554
Dur 0.011 0.0036 0.2714 0 0.0191 3.7688 24.244
FR 1.20·1010 1.24·109 2.04·1012 0 4.17·1010 12.527 302.34
S 0.86047 0.5 57.5 0.5 0.78415 22.836 1367.7
QS 0.0521 0.0336 4.2083 0.0227 0.0508 28.781 1977.4
Sprop 1.7268 1.062 127.06 0.8992 1.6053 26.649 1812.5
PIa 0.5622 0.4999 44.042 0.0293 0.6494 35.828 2032.3
PIb 0.5588 0.5001 32.209 0.0121 0.5504 22.214 932.15
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Table A.1.15
The summary statistics of ten liquidity measures for SLOU

SLOU
mean med max min st.dev sqewness kurtoses

V 14982 7004 1.21·106 1 28598 10.179 231.47
TO 9.39·106 4.39·106 7.90·108 614.5 1.81·107 10.716 258.21
D 15469 13259 128190 93 10472 1.9969 11.743
D$ 48.38·105 41.49·105 41.60·106 27666 32.83·105 2.0203 12.017
Dur 0.019 0.0069 0.5639 0 0.0313 3.8003 26.831
FR 6.07·109 4.35·108 1.57·1012 0 2.63·1010 19.529 753.54
S 0.85512 0.5 42 0.5 0.89155 16.716 529.62
QS 0.051 0.0326 2.3891 0.0233 0.0546 16.773 496.82
Sprop 1.7135 1.0434 77.645 0.8918 1.7571 15.344 442.88
PIa 0.578 0.4999 46.371 0.0137 0.7858 34.665 1791.4
PIb 0.5756 0.5001 43.73 0.0141 0.778 33.331 1556.4

Table A.1.16
The summary statistics of ten liquidity measures for VOD

VOD
mean med max min st.dev sqewness kurtoses

V 448390 128300 7.90·107 1 1.22·106 14.955 481.04
TO 5.58·107 1.60·107 9.95·109 112.5 1.53·108 15.171 498.98
D 39.01·105 33.89·105 30.02·106 11952 23.61·105 2.1147 11.685
D$ 24.21 ·107 21.22·107 17.28 ·108 706290 14.30·107 1.9325 10.191
Dur 0.0056 0.0025 0.1278 0 0.0079 3.2357 19.502
FR 5.60·1010 5.16·109 2.09·1013 0 2.47·1011 27.879 1563.8
S 0.25961 0.25 1.5 0.25 0.0511 6.3137 60.421
QS 0.0093 0.0089 0.0718 0.0077 0.0019 6.5241 81.627
Sprop 1.0397 0.9940 6.2969 0.9155 0.2092 6.1979 62.429
PIa 0.5027 0.4998 21.99 0.0993 0.2265 56.684 4312
PIb 0.5017 0.5003 7.4499 0.1247 0.1079 24.908 1199.9
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Table A.1.17
The summary statistics of ten liquidity measures for WPP

WPP
mean med max min st.dev sqewness kurtoses

V 31490 13600 1.80·106 1 61476 7.909 117.66
TO 2.13·107 9.21·106 1.22·109 675 4.17·107 7.9527 119.35
D 41067 33009 578480 18 32546 2.7199 18.134
D$ 13.94·106 11.19·106 19.71·107 5932.3 11.09·106 2.7149 18.046
Dur 0.0114 0.0044 0.2861 0 0.018 3.4896 22.329
FR 1.74·1010 1.58·109 4.40·1012 0 6.69·1010 16.902 637.38
S 0.6987 0.5 21.5 0.5 0.4055 7.3697 221.38
QS 0.0377 0.0282 1.4912 0.0205 0.0228 11.319 497.89
Sprop 1.3985 1.0048 43.891 0.9566 0.8163 7.4834 231.27
PIa 0.5241 0.4999 25.76 0.0555 0.4108 28.955 1460.6
PIb 0.521 0.5001 16.538 0.0523 0.3419 18.864 708.25

Table A.1.18
The summary statistics of ten liquidity measures for XTA

XTA
mean med max min st.dev sqewness kurtoses

V 12868 5752.5 3.98·106 1 34242 39.825 3386.3
TO 2.56·107 1.13·107 6.76·109 1632 6.70·107 34.139 2458
D 8955.8 7067 196860 14 7616.3 3.8527 44.179
D$ 88.91·105 69.92·105 20.33·107 13714 76.49·105 4.0116 47.904
Dur 0.0055 0.0019 0.1956 0 0.0103 4.7774 39.009
FR 2.43·1010 3.59·109 7.74·1012 0 8.94·1010 25.659 1384.7
S 2.4139 2 73 1 1.9192 3.5268 44.191
QS 0.1561 0.1223 3.8089 0.0451 0.1266 3.4362 32.865
Sprop 2.4304 1.9655 79.168 0.7903 1.9316 3.8115 55.604
PIa 0.6078 0.4999 52.149 0.0174 0.792 26.144 1212.8
PIb 0.6007 0.5001 23.887 0.0207 0.5656 8.7799 212.98
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Table A.2.1
Estimation of the Hasbrouck's VAR model for ABF

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for ABF based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

ABF
return equation trade equation

t− value t− value

a1 -0.0789 -12.84* c1 -0.3281 -8.79*
a2 -0.0077 -1.26 c2 -0.0202 -0.92
a3 -0.0109 -1.76 c3 -0.0187 -1.35
a4 0.0209 3.39* c4 -0.0209 -2.03*
a5 -0.0421 -6.85* c5 -0.0119 -0.93
b0 0.2423 68.32* d1 0.2618 23.67*
b1 0.0339 8.59* d2 0.1008 12.15*
b2 0.0124 3.13* d3 0.0739 10.31*
b3 0.0009 0.22 d4 0.0442 6.47*
b4 -0.0172 -4.34* d5 0.0386 5.55*
b5 -0.0028 -0.72

5∑
i=0

bi = 0.2695

R2
r = 17.90% R2

x = 10.57%
σ2

1 = 0.2876 Λ = 0.8354
R2

ω = 47.72%
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Table A.2.1′
Hypothesis tests for estimated Hasbrouck's VAR

model for ABF

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 5670.3 1808.8 83.8
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Figure 5.2: Price impact function for ABF.
The total impact is 0.4175 of average proportional spread. It is fully

realized after 27 transactions.
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Table A.2.2
Estimation of the Hasbrouck's VAR model for AZN

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for AZN based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

AZN
return equation trade equation

t− value t− value

a1 -0.0807 -23.22* c1 -0.4847 -55.23*
a2 -0.008 -2.31* c2 -0.0379 -5.12*
a3 0.0168 4.83* c3 -0.004 -0.55
a4 0.0228 6.55* c4 -0.0027 -0.4
a5 0.0122 3.51* c5 -0.0081 -1.21
b0 0.2961 166.53* d1 0.2609 59.95*
b1 0.0272 13.01* d2 0.0754 18.72*
b2 0.0082 3.93* d3 0.0415 10.25*
b3 -0.0048 -2.30* d4 0.0275 6.91*
b4 -0.0097 -4.61* d5 0.0268 6.86*
b5 -0.0082 -3.97*

5∑
i=0

bi = 0.3089

R2
r = 27.28% R2

x = 8.64%
σ2

1 = 0.2391 Λ = 0.8572
R2

ω = 51.48%
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Table A.2.2′
Hypothesis tests for estimated Hasbrouck's VAR

model for AZN

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 31065 6911.2 3171
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Figure 5.3: Price impact function for AZN
The total impact is 0.4092 of average proportional spread. It is fully

realized after 18 transactions.
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Table A.2.3
Estimation of the Hasbrouck's VAR model for BARC

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for BARC based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

BARC
return equation trade equation

t− value t− value

a1 -0.0915 -24.21* c1 -0.6537 -75.09*
a2 -0.0074 -1.94 c2 -0.04 -4.55*
a3 0.0076 2.00* c3 -0.0236 -2.67*
a4 0.0143 3.78* c4 -0.0222 -2.54*
a5 0.0136 3.61* c5 -0.0083 -0.96
b0 0.2222 139.37* d1 0.2914 69.26*
b1 0.0305 16.55* d2 0.0667 15.71*
b2 0.0074 4.02* d3 0.0494 11.56*
b3 -0.0033 -1.76 d4 0.038 8.95*
b4 -0.0062 -3.35* d5 0.0265 6.40*
b5 -0.0107 -5.90*

5∑
i=0

bi = 0.2401

R2
r = 24.64% R2

x = 10.84%
σ2

1 = 0.1562 Λ = 0.8115
R2

ω = 51.79%
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Table A.2.3′
Hypothesis tests for estimated Hasbrouck's VAR

model for BARC

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 22984 6139.4 5660.8
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Figure 5.4: Price impact function for BARC
The total impact is 0.3240 of average proportional spread. It is fully

realized after 18 transactions.



112 APPENDIX 2

Table A.2.4
Estimation of the Hasbrouck's VAR model for CPI

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for CPI based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

CPI
return equation trade equation

t− value t− value

a1 -0.0864 -15.40* c1 -0.3585 -28.95*
a2 0.0028 0.5 c2 -0.0052 -0.49
a3 0.0202 3.58* c3 -0.0223 -2.26*
a4 -0.0203 -3.61* c4 -0.0236 -2.39*
a5 -0.0014 -0.24 c5 -0.0237 -2.42*
b0 0.2695 83.32* d1 0.2611 40.92*
b1 0.0407 11.13* d2 0.08 12.64*
b2 0.0089 2.42* d3 0.0637 10.17*
b3 -0.0092 -2.52* d4 0.0437 6.94*
b4 -0.0019 -0.53 d5 0.0283 4.60*
b5 -0.0032 -0.89

5∑
i=0

bi = 0.3047

R2
r = 20.76% R2

x = 9.17%
σ2

1 = 0.2946 Λ = 0.8485
R2

ω = 49.42%
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Table A.2.4′
Hypothesis tests for estimated Hasbrouck's VAR

model for CPI

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 8243.5 2395.3 860.5
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Figure 5.5: Price impact function for CPI
The total impact is 0.4355 of average proportional spread. It is fully

realized after 23 transactions.
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Table A.2.5
Estimation of the Hasbrouck's VAR model for GSK

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for GSK based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

GSK
return equation trade equation

t− value t− value

a1 -0.0972 -27.70* c1 -0.6173 -74.42*
a2 0.0059 1.67 c2 -0.0347 -4.18*
a3 0.024 6.82* c3 0.0058 0.69
a4 0.0124 3.53* c4 0.0111 1.34
a5 0.0113 3.22* c5 0.0198 2.40*
b0 0.2051 140.70* d1 0.286 74.03*
b1 0.0338 20.26* d2 0.0689 17.56*
b2 0.0079 4.70* d3 0.0552 14.04*
b3 -0.0028 -1.68 d4 0.0331 8.46*
b4 -0.0045 -2.67* d5 0.0255 6.65*
b5 -0.0065 -3.96*

5∑
i=0

bi = 0.2330

R2
r = 22.89% R2

x = 10.49%
σ2

1 = 0.1544 Λ = 0.8357
R2

ω = 50.99%
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Table A.2.5′
Hypothesis tests for estimated Hasbrouck's VAR

model for GSK

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 23947 7276.6 5545.9
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Figure 5.6: Price impact function for GSK
The total impact is 0.3339 of average proportional spread. It is fully

realized after 21 transactions.
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Table A.2.6
Estimation of the Hasbrouck's VAR model for HBOS

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for HBOS based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

HBOS
return equation trade equation

t− value t− value

a1 -0.0666 -17.32* c1 -0.4957 -57.14*
a2 0.0163 4.23* c2 0.0138 1.62
a3 0.024 6.23* c3 0.0074 0.9
a4 0.0132 3.43* c4 0.0042 0.51
a5 0.0057 1.5 c5 -0.0043 -0.53
b0 0.2631 146.20* d1 0.2992 67.63*
b1 0.0287 13.54* d2 0.0645 14.34*
b2 0.0054 2.54* d3 0.0448 9.97*
b3 -0.0035 -1.67 d4 0.0312 7.01*
b4 -0.0068 -3.20* d5 0.0276 6.35*
b5 -0.007 -3.37*

5∑
i=0

bi = 0.2799

R2
r = 26.50% R2

x = 9.65%
σ2

1 = 0.1934 Λ = 0.8358
R2

ω = 54.40%
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Table A.2.6′
Hypothesis tests for estimated Hasbrouck's VAR

model for HBOS

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 24744 5828.9 3273.4
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Figure 5.7: Price impact function for HBOS
The total impact is 0.4181 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.7
Estimation of the Hasbrouck's VAR model for HSBA

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for HSBA based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

HSBA
return equation trade equation

t− value t− value

a1 -0.1208 -34.20* c1 -0.6958 -70.95*
a2 -0.0217 -6.09* c2 -0.1113 -12.49*
a3 0.0053 1.48 c3 -0.0543 -6.27*
a4 0.004 1.13 c4 -0.0217 -2.57*
a5 0.0028 0.78 c5 -0.0135 -1.57
b0 0.1838 128.61* d1 0.2852 72.57*
b1 0.0291 18.09* d2 0.0797 20.41*
b2 0.0102 6.31* d3 0.0688 17.71*
b3 -0.0051 -3.18* d4 0.0353 9.10*
b4 -0.0052 -3.19* d5 0.0378 10.03*
b5 -0.01 -6.32*

5∑
i=0

bi = 0.2028

R2
r = 20.92% R2

x = 12.23%
σ2

1 = 0.14745 Λ = 0.8293
R2

ω = 48.75%
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Table A.2.7′
Hypothesis tests for estimated Hasbrouck's VAR

model for HSBA

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 20286 7338.8 5037.9
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Figure 5.8: Price impact function for HSBA
The total impact is 0.2743 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.8
Estimation of the Hasbrouck's VAR model for IAP

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for IAP based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

IAP
return equation trade equation

t− value t− value

a1 -0.0603 -8.91* c1 -0.3031 -19.99*
a2 0.0013 0.19 c2 -0.0348 -3.44*
a3 0.0037 0.54 c3 -0.0262 -2.51*
a4 0.0149 2.20* c4 -0.0051 -0.47
a5 -0.0025 -0.37 c5 -0.0068 -0.72
b0 0.2748 59.34* d1 0.238 31.03*
b1 0.0371 7.28* d2 0.0837 11.28*
b2 0.0106 2.08* d3 0.0661 8.91*
b3 0.0058 1.14 d4 0.0345 4.61*
b4 -0.0154 -3.02* d5 0.0427 5.97*
b5 -0.0074 -6.32*

5∑
i=0

bi = 0.3056

R2
r = 15.92% R2

x = 9.03%
σ2

1 = 0.4286 Λ = 0.8744
R2

ω = 39.95%
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Table A.2.8′
Hypothesis tests for estimated Hasbrouck's VAR

model for IAP

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 4143 1153.1 405.3
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Figure 5.9: Price impact function for IAP
The total impact is 0.4541 of average proportional spread. It is fully

realized after 23 transactions.
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Table A.2.9
Estimation of the Hasbrouck's VAR model for KAZ

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for KAZ based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

KAZ
return equation trade equation

t− value t− value

a1 -0.2677 -45.20* c1 -0.2031 -5.45*
a2 -0.0996 -16.24* c2 -0.0596 -2.32*
a3 -0.0468 -7.60* c3 -0.0322 -2.93*
a4 -0.0142 -2.32* c4 -0.0196 -2.47*
a5 0.011 1.86 c5 -0.0084 -1.07
b0 0.2713 52.53* d1 0.1992 14.68*
b1 0.0877 15.95* d2 0.106 11.30*
b2 0.0315 5.69* d3 0.07 10.43*
b3 0.0063 1.13 d4 0.0465 7.10*
b4 0.0131 2.37* d5 0.0368 5.78*
b5 -0.0157 -2.87*

5∑
i=0

bi = 0.3942

R2
r = 17.16% R2

x = 8.00%
σ2

1 = 0.7062 Λ = 0.8994
R2

ω = 40.30%
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Table A.2.9′
Hypothesis tests for estimated Hasbrouck's VAR

model for KAZ

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 3856.5 2366 43.9
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Figure 5.10: Price impact function for KAZ
The total impact is 0.4406 of average proportional spread. It is fully

realized after 22 transactions.
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Table A.2.10
Estimation of the Hasbrouck's VAR model for LLOY

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for LLOY based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

LLOY
return equation trade equation

t− value t− value

a1 -0.0967 -24.05* c1 -0.6585 -72.17*
a2 -0.0063 -1.56 c2 -0.0414 -4.40*
a3 -0.0021 -0.52 c3 -0.0409 -4.34*
a4 0.0095 2.35* c4 -0.0241 -2.56*
a5 0.0039 0.98 c5 -0.0013 -0.14
b0 0.1999 119.99* d1 0.2814 64.23*
b1 0.0334 17.65* d2 0.0538 12.12*
b2 0.0068 3.56* d3 0.0514 11.53*
b3 0.0018 0.96 d4 0.0432 9.73*
b4 -0.007 -3.68* d5 0.0233 5.37*
b5 -0.0033 -1.78

5∑
i=0

bi = 0.2316

R2
r = 22.02% R2

x = 10.55%
σ2

1 = 0.1523 Λ = 0.8210
R2

ω = 49.17%
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Table A.2.10′
Hypothesis tests for estimated Hasbrouck's VAR

model for LLOY

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 17364 5392.1 5243.9
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Figure 5.11: Price impact function for LLOY
The total impact is 0.2991 of average proportional spread. It is fully

realized after 19 transactions.
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Table A.2.11
Estimation of the Hasbrouck's VAR model for PRU

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for PRU based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

PRU
return equation trade equation

t− value t− value

a1 -0.132 -32.39* c1 -0.4363 -10.93*
a2 -0.0508 -12.37* c2 -0.0372 -2.72*
a3 0.0086 2.09* c3 -0.0256 -1.93
a4 0.0488 11.89* c4 0.0095 0.66
a5 -0.0302 -7.42* c5 0.0225 1.8
b0 0.2465 114.41* d1 0.2531 21.63*
b1 0.033 13.62* d2 0.0661 13.30*
b2 0.0176 7.22* d3 0.0535 9.49*
b3 0.0032 1.3 d4 0.0334 5.76*
b4 -0.023 -9.47* d5 0.0241 4.83*
b5 0.0012 0.52

5∑
i=0

bi = 0.2784

R2
r = 21.71% R2

x = 8.75%
σ2

1 = 0.2474 Λ = 0.8392
R2

ω = 44.75%
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Table A.2.11′
Hypothesis tests for estimated Hasbrouck's VAR

model for PRU

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 15388 5105.3 446.7
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Figure 5.12: Price impact function for PRU
The total impact is 0.3531 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.12
Estimation of the Hasbrouck's VAR model for RB

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for RB based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

RB
return equation trade equation

t− value t− value

a1 -0.0492 -11.27* c1 -0.4174 -37.00*
a2 0.0258 5.89* c2 0.005 0.54
a3 0.0097 2.22* c3 0.0113 1.27
a4 0.0045 1.03 c4 -0.0045 -0.46
a5 0.0066 1.5 c5 -0.0139 -1.56
b0 0.2705 123.53* d1 0.2589 49.46*
b1 0.0331 13.02* d2 0.0835 16.56*
b2 0.0066 2.57* d3 0.0388 7.70*
b3 -0.0008 -0.32 d4 0.0344 6.67*
b4 -0.0073 -2.85* d5 0.0294 5.95*
b5 -0.0078 -3.13*

5∑
i=0

bi = 0.2942

R2
r = 24.72% R2

x = 8.13%
σ2

1 = 0.2241 Λ = 0.8540
R2

ω = 51.71%
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Table A.2.12′
Hypothesis tests for estimated Hasbrouck's VAR

model for RB

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 17482 4114.3 1422.1
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Figure 5.13: Price impact function for RB
The total impact is 0.4327 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.13
Estimation of the Hasbrouck's VAR model for RIO

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for RIO based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

RIO
return equation trade equation

t− value t− value

a1 -0.095 -32.80* c1 -0.4303 -64.09*
a2 -0.0045 -1.55 c2 -0.0185 -3.13*
a3 0.0184 6.32* c3 0.0211 3.60*
a4 0.0233 8.01* c4 0.0226 3.93*
a5 0.0148 5.11* c5 0.0189 3.38*
b0 0.2921 193.56* d1 0.2187 62.49*
b1 0.0343 19.60* d2 0.0706 21.11*
b2 0.0128 7.31* d3 0.0385 11.52*
b3 0.0047 2.67* d4 0.0315 9.44*
b4 -0.003 -1.7 d5 0.0216 6.60*
b5 -0.0029 -1.68

5∑
i=0

bi = 0.3381

R2
r = 26.48% R2

x = 6.86%
σ2

1 = 0.2507 Λ = 0.8780
R2

ω = 51.09%
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Table A.2.13′
Hypothesis tests for estimated Hasbrouck's VAR

model for RIO

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 i = 0,

i = 0, 1, ..., 5 ci = 1, 2, ..., 5

Wald test 41816 10600 4152.7
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Figure 5.14: Price impact function for RIO
The total impact is 0.4355 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.14
Estimation of the Hasbrouck's VAR model for SHP

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for SHP based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

SHP
return equation trade equation

t− value t− value

a1 -0.1137 -22.89* c1 -0.2823 -8.00*
a2 -0.0743 -14.87* c2 -0.0364 -3.39*
a3 -0.0048 -0.967 c3 -0.0363 -1.59
a4 -0.0197 -3.949* c4 -0.0194 -2.17*
a5 -0.0005 -0.1 c5 -0.0332 -4.14*
b0 0.2649 86.18* d1 0.2004 19.22*
b1 0.0345 10.17* d2 0.0846 13.70*
b2 0.0244 7.18* d3 0.0617 7.92*
b3 0.0094 2.77* d4 0.0365 6.55*
b4 0.0057 1.67 d5 0.037 6.80*
b5 -0.0033 -0.97

5∑
i=0

bi = 0.3357

R2
r = 18.56% R2

x = 6.43%
σ2

1 = 0.3437 Λ = 0.8703
R2

ω = 45.91%
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Table A.2.14′
Hypothesis tests for estimated Hasbrouck's VAR

model for SHP

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 i = 0,

i = 0, 1, ..., 5 ci = 1, 2, ..., 5

Wald test 8682.8 3170.9 99.8
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Figure 5.15: Price impact function for SHP
The total impact is 0.3995 of average proportional spread. It is fully

realized after 23 transactions.
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Table A.2.15
Estimation of the Hasbrouck's VAR model for SLOU

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for SLOU based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

SLOU
return equation trade equation

t− value t− value

a1 -0.1294 -19.36* c1 -0.2831 -12.05*
a2 -0.0919 -13.63* c2 -0.045 -3.47*
a3 -0.0472 -6.98* c3 -0.037 -2.33*
a4 -0.0181 -2.69* c4 -0.0336 -3.08*
a5 -0.0291 -4.36* c5 -0.0076 -0.71
b0 0.2376 53.85* d1 0.2086 24.28*
b1 0.0386 8.09* d2 0.0662 8.76*
b2 0.0214 4.48* d3 0.0535 6.92*
b3 0.0162 3.38* d4 0.0295 4.09*
b4 -0.0015 -0.31 d5 0.0246 3.46*
b5 0.0018 0.38

5∑
i=0

bi = 0.3141

R2
r = 15.19% R2

x = 6.65%
σ2

1 = 0.3995 Λ = 0.8857
R2

ω = 36.44%
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Table A.2.15′
Hypothesis tests for estimated Hasbrouck's VAR

model for SLOU

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 i = 0,

i = 0, 1, ..., 5 ci = 1, 2, ..., 5

Wald test 3483.8 1555.3 169.1
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Figure 5.16: Price impact function for SLOU
The total impact is 0.3341 of average proportional spread. It is fully

realized after 20 transactions.
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Table A.2.16
Estimation of the Hasbrouck's VAR model for VOD

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for VOD based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

VOD
return equation trade equation

t− value t− value

a1 -0.1301 -36.26* c1 -0.9751 -65.47*
a2 -0.0598 -16.48* c2 -0.3274 -26.85*
a3 -0.0368 -10.12* c3 -0.1958 -16.80*
a4 -0.0034 -0.94 c4 -0.1168 -9.52*
a5 -0.0048 -1.35 c5 -0.064 -4.71*
b0 0.0775 71.33* d1 0.2816 74.40*
b1 0.0313 27.03* d2 0.0863 22.54*
b2 0.0122 10.46* d3 0.0772 20.29*
b3 0.0071 6.09* d4 0.0532 14.01*
b4 -0.001 -0.84 d5 0.0574 15.39*
b5 -0.0057 -5.01

5∑
i=0

bi = 0.1214

R2
r = 11.69% R2

x = 16.22%
σ2

1 = 0.0821 Λ = 0.8155
R2

ω = 42.60%
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Table A.2.16′
Hypothesis tests for estimated Hasbrouck's VAR

model for VOD

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 89148 10432 4578.9
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Figure 5.17: Price impact function for VOD
The total impact is 0.1613 of average proportional spread. It is fully

realized after 21 transactions.
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Table A.2.17
Estimation of the Hasbrouck's VAR model for WPP

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for WPP based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

WPP
return equation trade equation

t− value t− value

a1 -0.0698 -13.68* c1 -0.563 -33.22*
a2 0.0009 0.17 c2 -0.0267 -2.01*
a3 0.0214 4.18* c3 0.0102 0.79
a4 0.0153 2.99* c4 0.0177 1.54
a5 0.0021 0.4 c5 -0.0055 -0.49
b0 0.223 99.64* d1 0.2835 43.10*
b1 0.0245 9.51* d2 0.0799 13.65*
b2 0.0106 4.09* d3 0.0446 7.56*
b3 -0.0076 -2.94* d4 0.0298 5.19*
b4 -0.0039 -1.5 d5 0.0232 4.15*
b5 -0.0094 -3.75*

5∑
i=0

bi = 0.2371

R2
r = 22.98% R2

x = 10.08%
σ2

1 = 0.1677 Λ = 0.8189
R2

ω = 48.60%
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Table A.2.17′
Hypothesis tests for estimated Hasbrouck's VAR

model for WPP

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 11576 2971.3 1238.7
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Figure 5.18: Price impact function for WPP
The total impact is 0.3438 of average proportional spread. It is fully

realized after 19 transactions.
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Table A.2.18
Estimation of the Hasbrouck's VAR model for XTA

The coe�cient estimations and t-statistics for bivariate vector autoregres-
sion system of return and trade equation for XTA based on trade-by-trade
data from March 1, 2006 to May 31, 2006. The t-statistics of coe�cients
of trade equation are computed using White's heteroskedasticity consistent
covariance estimator. The equations are

rt = a1rt−1 + ... + a5rt−5 + b0x
0
t + b1x

0
t−1 + ... + b5x

0
t−5 + ν1,t

xt = c1rt−1 + ... + c5rt−5 + d1x
0
t−1 + ... + d5x

0
t−5 + ν2,t,

rt is the midquote return of current trade at time t scaled by average pro-
portional spread; x0

t is a trade indicator variable (+1 for buy order, -1 for
sell order and 0 for undeterminate); R2

r and R2
x are the coe�cients of multi-

ple determination for return and trade equation by order; σ2
1 and Λ are the

variances of innovation terms for return and trade equation by order; R2
ω is

the variance decomposition coe�cient.

XTA
return equation trade equation

t− value t− value

a1 -0.1015 -28.96* c1 -0.4282 -56.08*
a2 -0.0075 -2.14* c2 -0.0326 -4.78*
a3 0.0132 3.76* c3 0.003 0.44
a4 0.0014 0.39 c4 -0.0052 -0.79
a5 0.0086 2.46* c5 -0.0051 -0.77
b0 0.2888 154.72* d1 0.2521 61.18*
b1 0.0395 18.28* d2 0.0796 19.78*
b2 0.0136 6.26* d3 0.0457 11.39*
b3 0.0039 1.79 d4 0.0301 7.54*
b4 -0.0025 -1.16 d5 0.0262 6.62*
b5 -0.0036 -1.7

5∑
i=0

bi = 0.3397

R2
r = 25.66% R2

x = 8.06%
σ2

1 = 0.2631 Λ = 0.8790
R2

ω = 54.58%
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Table A.2.18′
Hypothesis tests for estimated Hasbrouck's VAR

model for XTA

The Wald test of three hypothesis of estimated coe�cients. The Wald statis-
tics of trade equation coe�cients are computed using White's heteroskedas-
ticity consistent covariance estimator.

H0 : bi = 0,
5∑

i=0

bi = 0 ci = 0,

i = 0, 1, ..., 5 i = 1, 2, ..., 5

Wald test 27776 7597.9 3190.6
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Figure 5.19: Price impact function for XTA
The total impact is 0.4389 of average proportional spread. It is fully

realized after 19 transactions.
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