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Abstract

A new method is introduced for minimizing a function that can be
computed only inexactly, with different levels of accuracy. The chal-
lenge is to evaluate the (potentially very expensive) objective function
with low accuracy as far as this does not interfere with the goal of get-
ting high accuracy minimization at the end. For achieving this goal
the problem is reformulated in terms of constrained optimization and
handled with an Inexact Restoration technique. Convergence is proved
and numerical experiments motivated by Electronic Structure Calcu-
lations are presented, which indicate that the new method overcomes
current approaches for solving large-scale problems.
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1 Introduction

We wish to minimize a function f(x) that can be computed with different
levels of accuracy {1, 2, . . . , N}. The N -th level corresponds to the maximal
accuracy that we are able to achieve, although we do not have an error bound
for the inexact evaluation at each level. For all J = 1, 2, . . . , N we denote
by fJ(x) the function value when f is computed at the J-th accuracy level.
Accuracy levels admit different interpretations. If ξ is a random variable and
f(x) is the mathematical expectation E[F (x, ξ)], we may define

fJ(x) =
1

J

J∑
i=1

F (x, ξi),

where ξ1, . . . , ξN is a sample of ξ. Typically F is a result of some simulation
or measurement performed in a noisy environment. Another typical example
comes from data fitting problems, where one seeks for the values of x ∈ Rn

which minimize the function

fN(x) =
N∑
i=1

F (x, yi)

for a given data set y1, . . . , yN .
In some problems involving Electronic Structure Calculations [5, 21] the

objective function can be computed only by means of an iterative procedure.
In this case fJ(x) represents the inexact function value when one employs a
maximum of J iterations for computing f(x).

The problem of minimizing f(x) is, for all practical effects, equivalent to

Minimize fN(x). (1)

Therefore, Problem (1) could be handled as an ordinary optimization problem
but, since approximating f(x) with high accuracy may be very expensive, the
challenge is to solve (1) employing cheaper evaluations fJ(x), with J < N .

For all k = 0, 1, 2, . . ., we define Nk ∈ {1, . . . , N} as the accuracy level
employed at iteration k. The sequence {N0, N1, N2, . . .} is said to be the
schedule sequence associated with the method.

The dynamics of the schedule sequence is the topic of many studies dealing
with the minimization of the expected value within the framework of Sample
Average Approximation (SAA) [28, 30]. The main idea is to use a variable

2



sample size strategy, starting with a small sample and increasing the sample
size during the iterative process. The case of N large but finite, as well as
the case in which the sample size tends to infinity, are considered in several
papers. The almost sure convergence towards a minimizer of the objective
function defined as the mathematical expectation is attainable if the growth
of the schedule sequence is fast enough, for example Nk ≥

√
k, where the

schedule sequence is predetermined and tends to infinity [14]. Asymptotic
convergence results for gradient methods with increasing schedule sequence
and for the case in which the function is nonsmooth may be found in [29].
A refinement of SAA methods based on a careful analysis of the schedule
sequence and the error tolerance of the optimization method was given in [24].
An approach that offers a quantitative measure of SAA solutions is presented
in [26], where optimality functions for general stochastic programs (expected
value objective and constraint functions) are considered. A method presented
in [25] states an auxiliary problem that is solved before the optimization
process is started. The solution of the auxiliary problem provides an efficient
and strictly increasing schedule sequence.

The objective function considered in [3] and [4] comes from the SAA
method assuming that N is large and finite. The problem is solved by means
of a trust–region approach including a variable schedule strategy that makes
it possible to decrease the schedule sequence as well as to increase it during
the optimization process. The idea is to use a measure of decrease of the
function value and a measure of the width of confidence interval to determine
the change in the schedule sequence. These ideas were adapted to the line
search framework in [19] and [20], resulting in a schedule sequence strategy
that balances the precision and the decrease of the approximate objective
function fNk

.
In the context of data fitting problems, the dynamics of the schedule se-

quence is considered in [9]. Approximate gradients of the form ∇fNk
are

employed to solve the problem with several different dynamics for the sched-
ule sequence. Nevertheless, all considered dynamics involve strict increase
of the schedule sequence. In [7] the inexactness of the functional evaluation
considered in this paper is not necessarily related to sampling strategies. In
[7] (Section 10.6) a basic trust-region method is adapted to unconstrained
minimization problems in which a bound on the accuracy level is available.

The idea developed in the present paper is originated in a trivial obser-
vation: The problem

Minimize f(x) (2)
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is equivalent to the constrained optimization problem

Minimize z subject to z = f(x). (3)

As a consequence, minimizing f(x) with inexact evaluations of f corresponds
to solving (3) through a sequence of non-feasible iterates. Most constrained
optimization methods employ infeasible iterates and achieve feasibility at
the end of the process. However, the naive application of a constrained op-
timization method to (3) is not admissible because the exact evaluation of
f(x) would not be avoided at all. Fortunately, Inexact Restoration (IR) ideas
allow us to exploit the equivalence (2)–(3) without exact evaluations of f and
producing, in a natural way, a non-monotone schedule sequence. Roughly
speaking, the idea is to use the accuracy levels as infeasibility measures as-
sociated with the constrained problem (3).

Modern Inexact Restoration methods are developed for constrained prob-
lems and are particularly useful for problems where the objective function
and/or constraints are computationally expensive and one can take advan-
tage from separate evaluation of function and constraints. See, among oth-
ers, [1, 2, 6, 11, 17, 18, 22], and [23]. A typical Inexact Restoration includes
two phases - the restoration phase and the optimization phase. Within the
restoration phase a new point with improved feasibility is obtained without
evaluations of the objective function. During the optimality phase the ob-
jective function value at a trial point is improved with respect to the point
obtained in the restoration phase. The trial point is then accepted or rejected
according to a specific rule. If the trial point is rejected, a new trial point
is taken closer to the restored point obtained at the end of the restoration
phase. The specific rule for acceptance of the trial point couples the restora-
tion and the optimization phases and can be formulated within line search
[8], trust–region ([22], [23]) or filter methods [12, 15, 16]. In this paper we
use as merit function a convex combination of the objective function and
the infeasibility. The measure of infeasibility is defined taking into account
specific properties of the problem and including the schedule sequence and
the problem variables z and x.

This paper is organized as follows. In Section 2 we state the general Inex-
act Restoration Method for minimizing inexact expensive functions. Section
3 is devoted to large scale Electronic Structure Calculations involving huge
nonlinear eigenvalue problems. A set of numerical examples that demonstrate
the efficiency of the algorithm stated in Section 3 is presented in Section 4.
Some conclusions are drawn in Section 5.
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2 Inexact Restoration algorithm

In order to address problem (3) using constrained optimization tools we need
to define a measure of infeasibility. The natural infeasibility measure would
be |z − f(x)| which, in general, cannot be computed. It is not admissible
to use |z − fN(x)| either, because we do not want to compute the expensive
approximation fN at every iteration. The solution adopted in this work is to
consider that the accuracy level is an additional variable of the problem and
to define infeasibility with respect to a triplet (z, x,M) (instead of (z, x)) in
the following way:

h(z, x,M) = |z − fM(x)|+ g(M), (4)

where g is a strictly decreasing function with g(M) > 0 for M < N and
g(N) = 0. In this way, feasible points (z, x,M) are such that M = N and
z = fN(x). On the other hand, the merit function employed in the algorithm
will combine optimality and feasibility measures in a classical way: For all
θ ∈ [0, 1] this function is defined by:

φ(z, x,M, θ) = θz + (1− θ)h(z, x,M). (5)

The Inexact Restoration algorithm described below will produce iterates
(zk, xk, Nk) ∈ R × Rn × N that approximate the solution of problem (3).
Throughout the rest of this paper ‖ · ‖ will denote an arbitrary norm.

Algorithm 2.1 Given z0 ∈ R, x0 ∈ Rn, N0 ∈ {1, 2, . . . , N}, r ∈ (0, 1), τ, θ0 ∈
(0, 1), and β, γ, γ̄ > 0, set k ← 0.

Step 1. (Restoration phase)

If Nk < N find Ñk+1 > Nk and (uk, yk) ∈ Rn+1 such that

Ñk+1 ≤ N, h(uk, yk, Ñk+1) ≤ rh(zk, xk, Nk), (6)

and
‖(uk, yk)− (zk, xk)‖ ≤ βh(zk, xk, Nk). (7)

If Nk = N set Ñk+1 = N and find (uk, yk) such that (6) and (7) hold.

Step 2. (Updating the penalty parameter)
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If

φ(uk, yk, Ñk+1, θk)−φ(zk, xk, Nk, θk) ≤
1− r

2

(
h(uk, yk, Ñk+1)− h(zk, xk, Nk)

)
(8)

set θk+1 = θk.

Else compute

θk+1 =
(1 + r)

(
h(zk, xk, Nk)− h(uk, yk, Ñk+1

)
2
[
uk − zk + h(zk, xk, Nk)− h(uk, yk, Ñk+1)

] (9)

Step 3 (Optimization Phase)

Step 3.1 Choose pk ∈ Rn and an integer valued function Nk+1(α) such that,
for all α ∈ (0, τ ], we have that Nk+1(α) ≤ Ñk+1,

fNk+1(α)(yk + αpk)− fÑk+1
(yk) ≤ −γα‖pk‖2, (10)

and

h(uk + dk(α), yk + αpk, Nk+1(α)) ≤ h(uk, yk, Ñk+1) + γ̄α2‖pk‖2,
(11)

where
dk(α) = [−fÑk+1

(yk) + fNk+1(α)(yk + αpk)]. (12)

Step 3.2. Find αk ∈ (0, 1] as large as possible such that (10) and (11) hold
for α = αk and, in addition,

φ(uk + dk(αk), yk + αkpk, Nk+1(αk), θk+1)

≤ φ(zk, xk, Nk, θk+1) +
1− r

2

(
h(uk, yk, Ñk+1)− h(zk, xk, Nk)

)
.

(13)

Step 4. Set xk+1 = yk + αkpk, zk+1 = uk + dk(αk), Nk+1 = Nk+1(αk), k ← k + 1
and go to Step 1.
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Before proving the theoretical properties of Algorithm 2.1 we wish to
give some hints on the reasons why we believe that the IR aproach repre-
sents a suitable way of handling the schedule sequence {Nk}. A key point
is formula (13) where we find the new iterate (zk+1, xk+1, Nk+1) in such a
way that the merit function combining feasibility and optimality decreases.
Recall that feasibility, in this case, corresponds to accuracy in the evalua-
tion of the objective function f(x). A lower objective function with better
accuracy is all we need but both objectives may not be achieved simultane-
ously, so that a merit function, which gives different weights to the goals,
must be employed. We will see that the penalty parameter weighs the ac-
curacy and the optimality objectives in a fair way, since it is non-increasing
and bounded away from zero. The way in which the penalty parameter is
modified is endogenous to the algorithm and depends on quantities inter-
nally computed, not relying on arbitrarily chosen parameters. Note that at
Step 1 of the algorithm one increases accuracy (feasibility) and, at Step 2,
one computes the penalty parameter as the maximal value for which the
intermediate iterate with improved accuracy (yk) is better than the current
iterate in terms of the merit function. This would be obviously true in the
case of a null penalty parameter but, fortunately, we will be able to prove
that the property will remain to be true for a sequence {θk} well separated
from zero. After obtaining a more accurate evaluation at Step 1 and deciding
the penalty parameter at Step 2, the IR approach decreases the approximate
objective function trying first less expensive function evaluations. In fact,
note that the requirement Nk+1(α) ≤ Ñk+1 must hold for α small enough
(smaller than τ) but at Step 3.2 we try first αk = 1 so we aim to accelerate
the whole process getting enough decrease of the merit function without in-
creasing evaluation work. (We may take Nk+1(α) << Ñk+1 when α ∈ (τ, 1].)
As a whole, the algorithm increases the precision at Step 1 and tries to save
computer evaluation time at Step 3.2 when α is not very small. This process
represents a cautious and conservative way of increasing precision with occa-
sional savings of computer time by means of less expensive evaluations. Of
course, one needs to end up with the maximal allowable precision in order
to guarantee minimization of the best approximation to f . The description
of Algorithm 2.1, in principle, does not guarantee that the precision N is
achieved. However, we will prove that, with proper assumptions, in spite of
the cheaper trial function evaluations, the algorithm eventually arrives to the
maximal precision. Theoretical results will lead us to that conclusion.
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The inexact Restoration method assumes that the feasibility step can al-
ways be performed and thus the following assumption is necessary.

Assumption A1 For all k = 0, 1, 2, . . ., it is possible to compute sequences
{Nk} and {(uk, yk)} such that (6) and (7) are satisfied.

Let us discuss the plausibility of Assumption A1. To show that satisfying
(6) and (7) is possible note that (6) could be satisfied trivially taking Ñk+1 =
N , yk = xk, and uk = fN(xk), since, in that case, we would have that
h(uk, ykÑk+1) = 0 and ‖(uk, yk) − (zk, xk)‖∞ = |zk − fN(xk)|. So, by the
equivalence of norms, there exists c > 0 such that ‖(uk, yk) − (zk, xk)‖ ≤
c|zk − fN(xk)|. Therefore, (7) will hold if

|zk − fN(xk)| ≤ (β/c)[|zk − fNk
(xk)|+ g(Nk)].

This inequality is satisfied if

|fNk
(xk)− fN(xk)| ≤ (β/c− 1)[|zk − fNk

(xk)|+ g(Nk)],

and, thus, with zk = fNk
(xk), the following is a sufficient condition for the

fulfillment of (7):

|fNk
(xk)− fN(xk)| ≤ (β/c− 1)g(Nk),

The last inequality essentially says that the error in the Nk-approximation
of the function f should be bounded by a (possibly big) multiple of g(Nk).
This property is generally satisfied if the function g is a reasonable measure
of accuracy, as expected in applications

The penalty parameter is updated at Step 2. The next Lemma states
that the sequence of penalty parameters {θk} is non-increasing and bounded
away from zero.

Lemma 2.1. Assume that A1 is satisfied. Then Steps 1 and 2 are well
defined. Moreover, the sequence {θk} is positive and non-increasing, the in-
equality

φ(uk, yk, Ñk+1, θk+1)−φ(zk, xk, Nk, θk+1) ≤
1− r

2

(
h(uk, yk, Ñk+1)−h(zk, xk, Nk)

)
holds and there exists θ∗ > 0 such that

lim
k→∞

θk = θ∗.
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Proof. The proof is similar to the one of Lemma 4.1 in [6]. If (8) is satisfied
then θk+1 = θk. Otherwise, since (8) does not hold, we have that

θk(uk−zk)+(1−θk)[h(uk, yk, Ñk+1)−h(zk, xk, Nk)] >
1− r

2
[h(uk, yk, Ñk+1)−h(zk, xk, Nk)].

Moreover, by (6),

h(uk, yk, Ñk+1)− h(zk, xk, Nk) < 0.

Therefore,

θk >
(1 + r)

(
h(zk, xk, Nk)− h(uk, yk, Ñk+1

)
2
[
uk − zk + h(zk, xk, Nk)− h(uk, yk, Ñk+1)

] := θk+1,

and thus θk is a non-increasing sequence. Let us now prove that θk+1 given by
(9) is bounded away from zero. Let cnorm > 0 be such that |a| ≤ cnorm‖(a, b)‖
for all a, b ∈ R. Then, by (6) and (7),

1

θk+1

=
2
[
uk − zk + h(zk, xk, Nk)− h(uk, yk, Ñk+1)

]
(1 + r)

(
h(zk, xk, Nk)− h(uk, yk, Ñk+1)

)
≤ 2

1 + r

[
|uk − zk|

h(zk, xk, Nk)− h(uk, yk, Ñk+1)
+ 1

]
≤ 2

1 + r

[
cnormβ

1− r
+ 1

]
.

This completes the proof. 2

The fact that the penalty parameter is bounded away from zero is crucial
for algorithmic efficiency. In that case the merit function is guaranteed to give
a positive weight to optimality with respect to feasibility, making it possible,
in practice, to find feasible and optimal points and not merely feasible ones.

The optimality step consists of two parts. Step 3.1 is always well defined
as the choice pk = 0 and Nk+1(α) = Ñk+1 ensures that (11) holds for an
arbitrary τ. Let us now show that the second part of Step 3 is also well
defined.

Lemma 2.2. Assume that A1 holds, (zk, xk, Nk) and (yk, uk, Ñk+1) are gen-
erated through steps 1 - 3.1. Then there exists α∗ > 0 such that for all
k = 0, 1, 2, . . ., (13) is fulfilled with αk ≥ α∗.
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Proof. By (12), (10)-(11), and Lemma 2.1,

φ(uk + dk(α), yk + αkpk, Nk+1(α), θk+1)− φ(zk, xk, Nk, θk+1)

= φ(uk + dk(α), yk + αkpk, Nk+1(α), θk+1)− φ(uk, yk, Ñk+1, θk+1)

+ φ(uk, yk, Ñk+1, θk+1)− φ(zk, xk, Nk, θk+1)

≤ −θk+1γα‖pk‖2 + (1− θk+1)γ̄α
2‖pk‖2 +

1− r
2

(
h(uk, yk, Ñk+1)− h(zk, xk, Nk)

)
for all α ∈ (0, τ ]. Thus, in order to get (13), we need to establish the condi-
tions for αk under which

−θk+1γαk + (1− θk+1)γ̄α
2
k ≤ 0, (14)

which is equivalent to

αk ≤
θk+1γ

γ̄(1− θk+1)
.

Now, as θk+1 ≥ θ∗ > 0, the inequality (13) is fulfilled for

αk ≤ ᾱ := min{τ, θ∗γ

γ̄(1− θ∗)
}.

So, the statement is true for

α∗ =
1

2
ᾱ.

2

The following theorem states that the schedule sequence eventually be-
comes stationary and, thus, we solve the problem with full precision at the
final stages of the iterative procedure. The proof is conceptually similar to
the proof of Theorem 4.1 in [6].

Theorem 2.1. Assume that A1 is satisfied, fN is Lipschitz continuous, the
functions fM are continuous for M ≤ N , and the sequences {zk} ⊂ R, {xk} ⊂
Rn generated by Algorithm 2.1 are bounded. Then, there exists k0 ∈ N such
that Nk = Ñk+1 = N for k ≥ k0. Furthermore, limk→∞ ‖pk‖ = 0.

Proof. The boundedness of {zk}, {xk}, and Nk, and the continuity of fM
imply that h(zk, xk, Nk) is bounded.

Let us define the sequence ρk = (1− θk)/θk. As θk ≥ θ∗ and θk is nonin-
creasing, we have that ρk is nondecreasing and ρk ≤ 1/θ∗ − 1. Therefore

∞∑
k=0

(ρk+1 − ρk) = lim
k→∞

ρk+1 − ρ0 <∞. (15)
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As h(zk, xk, Nk) is bounded, (15) yields

∞∑
k=0

(ρk+1 − ρk)h(zk, xk, Nk) <∞.

By condition (13) we have

φ(zk+1, xk+1, Nk+1, θk+1) ≤ φ(zk, xk, Nk, θk+1)+
1− r

2
(h(uk, yk, Ñk+1)−h(zk, xk, Nk))

and, taking (6) into account,

φ(zk+1, xk+1, Nk+1, θk+1) ≤ φ(zk, xk, Nk, θk+1)−
(1− r)2

2
h(zk, xk, Nk).

The last inequality can be stated as

zk+1+ρk+1h(zk+1, xk+1, Nk+1) ≤ zk+ρk+1h(zk, xk, Nk)−
(1− r)2

2θk+1

h(zk, xk, Nk).

Since θk+1 < 1, adding and subtracting ρkh(zk, xk, Nk), we obtain:

zk+1 + ρk+1h(zk+1, xk+1, Nk+1) (16)

≤ zk + ρkh(zk, xk, Nk) + (ρk+1 − ρk)h(zk, xk, Nk)−
(1− r)2

2
h(zk, xk, Nk).

Therefore,

k∑
j=0

(1− r)2

2
h(zj, xj, Nj)

≤ z0 + ρ0h(z0, x0, N0)− zk+1 + ρk+1h(zk+1, xk+1, Nk+1) +
k∑
j=0

(ρj+1 − ρj)h(zj, xj, Nj).

Now, by (15) and the boundedness of zk, ρk+1, and h(zk+1, xk+1, Nk+1), we
have that

lim
k→∞

k∑
j=0

(1− r)2

2
h(zj, xj, Nj) <∞

and
lim
k→∞

h(zk, xk, Nk) = 0.
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Thus, by (7)
lim
k→∞

uk − zk = 0 and lim
k→∞

yk − xk = 0,

and, by (6),
lim
k→∞

h(uk, yk, Ñk+1) = 0.

The definition of h implies

lim
k→∞

g(Nk) = lim
k→∞

g(Ñk+1) = 0.

Then, eventually the schedule sequences Nk and Ñk+1 become stationary i.e.

Nk = Ñk+1 = N, k ≥ k0.

To prove the rest of the statement let us denote by L the Lipschitz con-
stant of fN . Then,

fN(xk+1)− fN(xk) ≤ fN(xk+1)− fN(yk) + fN(yk)− fN(xk),

and for k ≥ k0, by (10) and (7), we have:

fN(xk+1)− fN(xk) ≤ −γαk‖pk‖2 + L‖yk − xk‖
≤ −γαk‖pk‖2 + Lβh(zk, xk, Nk).

Therefore

fN(xk+1) ≤ fN(xk0)− γ
k∑

j=k0

αj‖pj‖2 + Lβ
k∑

j=k0

h(zj, xj, Nj).

Since
∑k

j=k0
h(zj, xj, Nj) < ∞ we obtain γ

∑k
j=k0

αj‖pj‖2 < ∞ for an arbi-
trary k ≥ k0.Thus

lim
k→∞

αk‖pk‖2 = 0.

But (13) is satisfied for αk ≥ α∗ and thus

lim
k→∞
‖pk‖ = 0.

2

Remark
Theorem 2.1 confirms that, eventually, the algorithm addresses the most

accurate approximation of f(x). The fact that, in addition, the algorithm
minimizes this approximation depends on the choice of pk. A gradient-related
choice such that ‖pk‖ ≥ c‖∇fN(xk)‖ for some c > 0 and k large enough
obviously garantees that ‖∇fN(xk)‖ tends to zero, and, thus, that every
limit point of {xk} is stationary.
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3 Application to Electronic Structure Calcu-

lations

Given fixed nuclei coordinates, an electronic structure calculation consists of
finding the wave functions from which the spatial electronic distribution of
the system can be derived. These wave functions are the solutions of the
Schrödinger equation [13, 21].

The practical solution of the Schrödinger equation is computationally
very demanding. Therefore, simplifications are made leading to more tractable
mathematical problems. The best-known approach leads to the “Hartree-
Fock” formulation, where one needs to minimize an energy function Ē(C) ≡
E(CCT ) in which, due to Pauli’s Exclusion Principle, the columns of the
K × nocc matrix C must be orthonormal:

Minimize E(CCT ) subject to CTC = Inocc×nocc, C ∈ RK×nocc. (17)

In (17), C is said to be the “coefficients matrix”, nocc is the number of
occupied orbitals (pairs of electrons) and the basis has K elements. Thus,
defining the “density matrix” P by P = CCT , problem (17) can be written
as:

Minimize E(P ) subject to P = P T , P 2 = P, Trace(P ) = nocc, P ∈ RK×K .
(18)

The most popular approach for solving (18) is the Fixed Point Self-
Consistent Field (SCF) Method. This is an iterative algorithm that, at each
iteration, given the current Pc, minimizes the linear approximation of E(P ):

Minimize Trace(∇E(Pc)P )

subject to P = P T , P 2 = P, Trace(P ) = nocc, P ∈ RK×K . (19)

The solution Pnew of (19) is the projection matrix on the subspace gen-
erated by the eigenvectors associated with the nocc smallest eigenvalues of
∇E(Pc). Unfortunately, the spectral decomposition of ∇E(Pc) cannot be
computed if nocc and K are very large, even in the case that ∇E(Pc) is
sparse. However, Pnew has, approximately, the same sparsity structure as
∇E(Pc) if the gap between the eigenvalues nocc and nocc + 1 of ∇E(Pc) is
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big enough. This is the case of many relevant molecular systems. This prop-
erty allows one to address problem (19) by means of the following conceptual
algorithm [5]:

Algorithm 3.1
Let x0 ∈ R be an educated guess for the Fermi level (λnocc + λnocc+1)/2,

where λ1 ≤ λnocc ≤ λnocc+1 ≤ . . . λK are the eigenvalues of A ≡ ∇E(Pc).
Initialize k ← 0.

Step 1 Using Gershgorin bounds [10], compute γ > 0 such that all the
eigenvalues of γ(−A − xkI) are between −1/2 and 1/2. Compute Bstart =
γ(−A−xkI)+ 1

2
IK×K . Then, all the eigenvalues of Bstart are between 0 and 1.

Step 2 Starting with the initial approximation Bstart, and employing the pro-
jected gradient method of [5], obtain Bk as the solution of the optimization
problem

Minimize ‖B2 −B‖2F subject to B = BT , (20)

with the additional constraint that the sparsity pattern of B coincides with
the sparsity pattern of ∇E(Pc).

Step 3 If Trace(Bk) = nocc, stop the execution of Algorithm 3.1, define
Pnew = Bk, and stop. Otherwise, obtain a new guess xk+1, set k ← k+ 1 and
go to Step 1. (In [5] problem (20) is solved with high precision and xk+1 is
computed by means of a root-finding bisection procedure.)

The properties of Algorithm 3.1 have been analyzed in [5], where it was
shown that, suitably implemented, it is useful for practical large-scale elec-
tronic calculations. Writing f(xk) = (Trace(Bk) − nocc)2, we note that the
objective of Algorithm 3.1 is to minimize f and the evaluation of this function
is expensive, because it is based on the application of an iterative (projected
gradient) method to solve (20). In practice, each time we want to solve (20)
we prescribe a maximum number of iterations Nk for the projected gradient
method. In [5] a constant (with respect to k) and rather large Nk (gener-
ally Nk = 1000) was used at each call of the projected gradient method. If
xk ∈ (λnocc, λnocc+1) the projected gradient method finds, under mild ass-
sumptions, a matrix Bk such that Trace(Bk) ≈ nocc. However, if an iterate
xk does not belong to (λnocc, λnocc+1), a lot of projected gradient iterations
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may be spent before convergence to a solution of (20) occurs, perhaps com-
pleting the maximum Nk. This motivates the employment of algorithms that,
like the one presented in this paper, avoid to compute many iterations to ob-
tain the solution of (20) when xk is not close to the solution. Although many
heuristic procedures could be suggested, the Inexact Restoration approach
provides a natural way to choose the schedule sequence Nk, as explained in
Section 2.

Summing up, problem (19) consists of minimizing f(x), defined by

f(x) = (Trace[B(x)]− nocc)2,

where the approximate value of f(x), as well as the approximate density
matrix B(x), with level of accuracy Nk ∈ {1, . . . , N} is obtained by means
of the following algorithm:

Algorithm 3.2
Assume that ε > 0 and Nk ∈ {1, . . . , N}.

Step 1 Compute Bstart = c(−A − xI) + 1
2
IK×K in such a way that all the

eigenvalues of Bstart are between 0 and 1.

Step 2 Consider Problem (20) (with the sparsity pattern constraint) and
obtain an approximate solution B(x) as the result of applying the Projected
Gradient method with convergence stopping criterion ε on the ∞-norm of
the projected gradient and a maximum of Nk projected gradient iterations.

Step 3 Define fNk
(x) = (Trace[B(x)]− nocc)2.

Here we propose to compute the approximate solution of (19) (with fNk
(x)

given by Algorithm 3.2) by means of Algorithm 2.1 with the following spec-
ifications:

1. We used N = 1000.

2. The accuracy measure g(M) is given by

g(M) =
N −M
M

.
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3. As in [5], x0 is computed in the following way:

x0 =
[K − (nocc+ 0.5)]a+ (nocc+ 0.5)b

K

where a and b are lower and upper bounds for the eigenvalues of∇E(Pc)
computed using the Gershgorin Theorem [10].

4. We choose N0 = 10 and z0 = fN0(x0).

5. We choose r = 0.5, β = 103, γ = 10−4, γ̄ = 100, θ0 = 0.9, and τ = 10−2.

6. At Step 1 we choose Ñk+1 = 2Nk, yk = xk, and uk = fÑk+1
(yk).

7. We choose z0 = fN0(x0).

8. Using the fact that Trace[B(x)] is non-decreasing as a function of x
and that we wish to find x such that Trace[B(x)] = nocc, we keep
approximate upper and lower bounds of the solution (recall that the
function is computed only approximately) and choose a first trial for
pk based on safeguarded regula-falsi and bisection. If this direction
satisfies (10) and (11) for α = 1 we adopt this choice for pk and set
Nk+1(1) = Ñk+1/2

1. Otherwise we choose pk = −∇fÑk+1
(xk) and

Nk+1(1) = Ñk+1.

9. The value of αk that satisfies (13) is obtained by backtracking (with
factor 0.5) using α = 1 as first trial. If α < 1 we define Nk+1(α) = Ñk+1.

10. The algorithm was stopped declaring success when the matrix B(x)
computed at some call of Algorithm 3.2 satisfies

‖B(x)2 −B(x)‖ ≤ 10−8 and |Trace[B(x)]− nocc| ≤ 0.4 (21)

or when the iteration index k exceeds 1000.

The properties of Algorithm 2.1 were discussed in Section 2 assuming
that Assumption 1 is satisfied. Let us show that this assumption is fulfilled

1The alternative choice Nk+1(1) = Ñk+1/2.5 was also tested with similar computational
results.
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with the specifications given above. As the projected gradient method is
convergent for problem (20) we can assume that there exists C > 0 such that

|fM(x)| ≤ C, M ∈ {1, 2, . . . , n}. (22)

The function g(M) is decreasing and the choice Ñk+1 = 2Nk implies

g(Ñk+1) ≤ rg(Nk),

for Ñk+1 < N while for Ñk+1 = N we have g(Ñk+1) = 0. So (6) is fulfilled
with the special choice uk = fÑk+1

(xk), zk = fNk
(xk) and yk = xk. Let us now

show that (7) is also valid. If Nk = N then Ñk+1 = N and

‖(uk, yk)− (zk, xk)‖ = |uk − zk| = |fN(xk)− fN(xk)| = 0

and (7) holds. For Nk ≤ N − 1 we have

‖(uk, yk)− (zk, xk)‖ = |uk − zk| = |fÑk+1
(xk)− fNk

(xk)| ≤ 2C,

due to (22). Then (7) holds for

β ≥ 2C

N − 1

as g(Nk) ≤ (N − 1)−1 for Nk ≤ N − 1.

4 Experiments

The objective of this section is to show the plausibility of Algorithm 2.1
for solving problem (19), by means of the minimization of f(x), whose ap-
proximate computation is described in Algorithm 3.2. Algorithm 2.1 was
implemented with the specifications given at the end of Section 3.

The codes were written in Fortran, employing double precision and the fol-
lowing computer environment: Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
with 4GB of RAM memory.

For all the problems we report the number of occupied states nocc, the
number of the elements of the basis K, the “pseudo-gap” between the eigen-
values nocc and nocc + 1 of ∇E(Pc), the accuracy on the idempotency re-
quirement ‖B2 − B‖, the number of iterations performed by Algorithm 2.1,
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and the CPU time. We ran Algorithm 2.1 as described above against a ver-
sion of this algorithm in which Nk = N = 1000 for all k, which corresponds
essentially to the algorithm introduced in [5]. The numbers corresponding
to the two algorithms are separated by a vertical bar “|”. For example, by
writing ” 3 | 5” under the caption “Iterations” we mean that Algorithm 2.1
(with schedule sequence Nk computed by the IR strategy) employed 3 iter-
ations to solve the problem, whereas the algorithm with constant Nk ≡ N
employed 5 iterations.

In the set of problems identified as “Family A” the matrix ∇E(Pc) is
diagonal and its elements have been randomly generated between 0 and 1.
This is a trivial problem whose objective is to compare the algorithms in the
case that the solution has exactly the sparsity pattern of ∇E(Pc) and, so, no
error is introduced when we project the gradient of ‖P 2−P‖2F onto the sub-
space of matrices with the sparse structure of ∇E(Pc). The analytic solution
of problem (19) in this case is the diagonal matrix with 1’s in the places in
which ∇E(Pc) has its smallest (diagonal) elements, and 0’s otherwise.

The pseudo-gap is defined in the following way: In the case of Family A
it is the gap between eigenvalues nocc and nocc + 1. In the other families
it is a number that we add to the first N diagonal entries of the (random)
matrix under consideration. In these families we do not know the value of
the true gap but we roughly know that the true gap is larger, the larger is
the pseudo-gap.

In the set of problems identified as “Family B” the matrix ∇E(Pc) is
tridiagonal, its elements are randomly generated between 0 and 1 and then
modified by the pseudo-gap. In the case of this family and Family C we do not
know the sparsity pattern of the projection matrix on the subspace generated
by the eigenvectors associated with the nocc smallest eigenvalues. However,
we know that when the pseudo-gap is big enough the sparsity pattern of the
projection matrix is similar to the sparsity pattern of ∇E(Pc) [5]. .

In “Family C” the matrix ∇E(Pc) has band structure with “diag” diago-
nals. Inside the diagonal band 80 % of the elements are null. For computing
matrix products we consider that the matrix elements inside the band are
non-zeros. The dimensions K and nocc considered in Family C correspond
to a molecular structure with 6,000 molecules of water under semiempirical
handling of electrons [5].

The numerical results are given in Table 1. The trace of the final matrix
B(x) has not been reported in this table because it coincided with the value
of nocc (as desired) up to a very high precision (better than 10−8) in all the
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cases.
In Family A we observe that even for extremely small gaps the numerical

solution is very accurate for very large values of K and nocc and the computer
time employed by Algorithm 2.1 is consistently smaller than the one employed
by the competitor. In Family B the same tendency is maintained, except in
Problem 7, in which the algorithm with constant schedule sequence was faster
than the IR algorithm. In this case the initial x was a solution, the winner
algorithm recognized it after allowing a maximum of 1000 iterations, but
the IR algorithm did not because it allowed ony 10 iterations in the first
restoration phase.

In Families B and C both algorithms failed for values of the pseudo-gap
smaller than 0.95pg, where pg is the pseudo-gap reported in Table 1. This
is not unexpected because in the cases of small pseudo-gap the solution of
the true Density matrix does not exhibit the sparsity pattern of the data
matrix ∇E(Pc). As a consequence, both algorithms tend to converge to
local mimimizers of ‖P 2 − P‖2F with the sparsity pattern of the data, but
this local minimizer is not an idempotent matrix as desired. Problems with
these characteristics should be solved by different methods than the ones
analyzed here and, many times, are unsolvable with the present technology.

In Family C, the advantage of considering the IR algorithm instead of
the constant-schedule approach is quite evident. In this case the cost of
evaluating the objective function is very high and, so, savings of computer
time are dramatic when we employ the IR strategy. A peculiarity of these
problems is that it is much more expensive to evaluate f(x) when x is not
the solution than when it is. The reason is that, when x is far from the
solution a small gap appears that does not correspond to the true gap between
eigenvalues nocc and nocc+1. As a consequence, convergence of the projected
gradient method is painful in this case. For example, in Problem 12 the cost
of a typical projected gradient iterations is 7.6 seconds. The algorithm with
constant Nk = N = 1000 performs 1000 iterations (and takes 7600 seconds)
in the restoration phase without achieving convergence. However, the first
trial x in the optimization phase is found to be a solution of the problem
after a small number of projected gradient iterations. Algorithm 3.1 has a
similar behavior except that the restoration phase involves only 20 iterations.
It is clearly crucial to adopt an strategy that saves computer time at early
stages of the minimization process.

It is interesting to analyze the cases in which the IR algorithm converges
in less iterations than the constant-schedule approach (Problems 1 and 4).

19



In both cases, at some iteration, both algorithms arrive to the same value
of y. Moreover, both algorithms compute the same trial shift y + p. In the
case of the algorithm with constant schedule the objective function decreases
enough at y+p and, so, y+p is accepted as the new iterate. In the case of the
IR algorithm, the trace of B(y+ p) is computed with reduced accuracy and,
by Algorithm 2.1, this accuracy affects the acceptance of the trial point.
It turns out that y + p is rejected and backtracking is necessary. On the
other hand, the trace of B(y+p) overestimates the target nocc whereas both
the trace of B(y) and the trace at the backtracked point underestimate the
target. For example, in Problem 4, the target nocc is 2, 500, 000, at the
second iteration the trace of B(y) was 2, 499, 909, and the trace of B(y + p)
was 2, 500, 063. However, the trace at the backtracked trial was 2, 499, 996.
Thus, the backtracked point was better than y + p even from the point of
view of functional value, and this causes the slight difference in the number
of iterations that is observed in Table 1.

Family A: ∇E(Pc) Diagonal

Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time (seconds)
1 500,000 1,000,000 8.E-8 7.E-16 | 7.E-16 3 | 5 5.51 | 7.57
2 250,000 1,000,000 4.E-6 4.E-14 | 1.E-8 4 | 1 5.41 | 5.80
3 5,000,000 10,000,000 4.E-9 4.E-15 | 5.E-16 9 | 9 100.4 | 110.5
4 2,500,000 10,000,000 2.E-7 1.E-9 | 1.E-9 3 | 4 52.1 | 86.7

Family B: ∇E(Pc) Tridiagonal

Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time
5 500,000 1,000,000 3.25 9.E-7 | 9.E-7 4 | 4 22.0 | 172.2
6 250,000 1,000,000 3.25 5.E-7 | 9.E-7 7 | 7 38.0 | 154.0
7 5,000,000 10,000,000 3.35 9.E-7 | 9.E-11 1 | 0 51.9 | 6.89
8 2,500,000 10,000,000 3.35 6.E-8 | 6.E-8 4 | 4 121.1 | 1082.8

Family C: ∇E(Pc) Band Sparse

Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time
9. diags = 21 24,000 36,000 12.5 2.E-9 | 2.E-9 7 | 7 3.7 | 124.2
10, diags = 41 24,000 36,000 17.2 2.E-10 | 2.E-10 1 | 1 11.5 | 284.1
11, diags = 81 24,000 36,000 30.0 6.E-11 | 6.E-11 1 | 1 33.9 | 1057.6
12, diags = 161 24,000 36,000 60.0 2.E-9 | 2.E-9 1 | 1 231.6 | 7753.2

Table 1: Behavior of Algorithm 2.1 on Families A, B, and C.

5 Conclusions

We considered the problem of minimizing a function f(x) whose exact evalu-
ation is impossible or very expensive. The main idea is to reduce the original
(unconstrained) problem to a constrained problem in which inexactness in
the evaluation of f(x) corresponds to infeasibility of the approximation. The
Inexact Restoration approach is an attractive tool to deal with this situation
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since it allows us to control infeasibility without really evaluating the con-
straints. As a consequence of the application of Inexact Restoration we are
able to define a schedule sequence that defines different degrees of accuracy
in the evaluation of f . We have proved that the process is theoretically con-
sistent employing suitable adaptations of inexact restoration arguments. In
order to test the reliability of the ideas presented in this paper we applied
the new method to a problem motivated by electronic structure calculations,
in which the evaluation of the objective function comes from an iterative
minimization method. The numerical results indicate that the idea of com-
puting scheduling sequences by means of inexact restoration is promising.
Accordingly, future research will include the application of this technology
to problems in which lack of accuracy comes from different sources and the
consideration of the case in which the original problem is constrained.
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