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Abstract

We consider the Spectral Projected Gradient method for solving
constrained optimization problems with the objective function in the
form of mathematical expectation. It is assumed that the feasible set
is convex, closed and easy to project on. The objective function is
approximated by a sequence of different Sample Average Approxima-
tion functions with different sample sizes. The sample size update is
based on two error estimates - SAA error and approximate solution
error. The Spectral Projected Gradient method combined with a non-
monotone line search is used. The almost sure convergence results are
achieved without imposing explicit sample growth condition. Prelim-
inary numerical results show the efficiency of the proposed method.

Key words: spectral projected gradient, constrained stochastic
problems, sample average approximation, variable sample size

1 Introduction

The problem that we consider is a constrained optimization problem of the
form

min f(x) = E[F (x, ξ)] subject to x ∈ Ω, (1)

∗Department of Mathematics and Informatics, Faculty of Science, Univer-
sity of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail:
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where Ω ⊂ Rn is a convex and compact set, ξ : A → Rm is a random vector
from a probability space (A,F ,P) and F (·, ξ) ∈ C2(Ωe) with Ω ⊂ Ωe ⊂ Rn.
The mathematical expectation that defines the objective function makes this
problem difficult asf is rarely available analytically and, even when it is avail-
able, it usually includes multiple integrals. Thus, the common approach is
to approximate the objective function with Sample Average Approximation,
SAA. The quality of approximation depends on the sample size and taking
a large sample ensures good matching between the original problem (1) and
the approximate problem. There are many possibilities for the sample choice,
depending on properties of the underlying random variable ξ and availability
of data, see Byrd et al. [10], Fu [14], Polak and Royset [28], Shapiro et al.
[30], Spall [32].

The Sample Average Approximation is defined as

fN (x) =
1

N

N∑
i=1

F (x, ξi)

for a given sample set N := {ξ1, . . . , ξN} ⊂ A. In general the quality of
approximation depends heavily on the sample size N and taking N as large as
computationally feasible is desirable in applications. Ultimately, letting the
sample size N → ∞ should result in some kind of asymptotic convergence,
for example almost sure convergence or convergence in probability. On the
other hand large N makes the evaluation of fN and its derivatives expensive.
Assuming that the sample size N is chosen appropriately, one can derive
bounds on the difference between the solution of (1) and the approximate
problem

min fN (x) subject to x ∈ Ω. (2)

Several results of this kind are available in Shapiro et al. [30], Spall [32].
The problem (2) is a reasonable approximation of the original one under a
set of standard assumptions that we will state precisely later on. In general,
one can be interested in solving the SAA problem for some finite, possibly
very large N, as well as obtaining asymptotic results, that is, the results that
cover the case N → ∞, even if in practical applications one deals with a
finite value of N. A naive application of an optimization solver to (2) is very
often prohibitively costly if N is large due to the cost of calculating fN (x)
and its gradient. Thus, there is a vast literature dealing with variable sample
scheme.
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Two main approaches can be distinguished. In the first approach the
objective function fN is replaced with fNk

(x) at each iteration k and the
iterative procedure is essentially a two step procedure of the following form.
Given the current approximation xk and the sample size Nk, one has to
find sk such that the value of fNk

(xk + sk) is decreased. After that we set
xk+1 = xk + sk and choose a new sample size Nk+1. The key ingredient
of this procedure is the choice of Nk+1. The schedule of sample sizes {Nk}
should be defined in such way that either Nk = N for k large enough or
Nk →∞ if one is interested in asymptotic properties. Keeping in mind that
min fNk

is just an approximation of the original problem and that the cost of
each iteration depends on Nk, it is rather intuitive to start the optimization
procedure with smaller samples and gradually increase the sample size Nk as
the solution is approached. Thus, the most common schedule sequence would
be an increasing sequence N0, N1, . . . . In the case of solving the approximate
problem for a finite N one can also consider a (possibly oscillating) scheduling
sequence that takes into account the cost of each iteration and the progress
made in function decrease. Such procedure results in a more efficient method
than the corresponding procedure with strictly increasing schedule sequence,
Bastin [2], Bastin et al. [3], Krejić and Krklec [20], Krejić and Krklec Jerinkić
[21], Krejić and Mart́ınez [22]. The results presented in Friedlander and
Schmidt [13] are also closely related.

Regarding the almost sure convergence and considering the case N →∞,
a strictly increasing scheduling sequence that goes to infinity is first consid-
ered in Wardi [33]. An Armijo type line search method is combined with SAA
approach. The convergence is proved with upper zero density. An extension
of [33] for the unconstrained case is presented in Yan and Mukai [35], where
the adaptive precision is proposed, that is, the sequence {Nk}k∈N is not deter-
mined in advance as in [33] but it is adapted during the iterative procedure.
Nevertheless the sample size has to satisfy Nk → ∞. The convergence re-
sult, again for the unconstrained case, is slightly stronger as the convergence
with probability 1 is proved under the set of appropriate assumptions. The
more general result that applies to both gradient and subgradient methods
is obtained in Shapiro and Wardi [31]. The convergence with probability 1
is proved for the SAA gradient and subgradient methods assuming that the
sample size tends to infinity and that the iterative sequence posses some ad-
ditional properties. In this paper we are proposing a sample scheduling that
ensures almost sure convergence of the SPG method for solving (1).

The second approach, often called the Surface Response Method, is again
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a two step procedure. It consists of a sequence of different SAA problems
with different sample sizes that are approximately solved. After solving one
SAA problem, the sample size is increased and the following SAA problem is
again approximately solved. The main questions which crucially determine
the efficiency of this procedure is the number of stages (that is, the number of
different SAA problems to be solved) and the precision of each approximate
solution. For further details one can see Pasupathy [27], Polak and Royset
[28], Royset [29].

In this paper we are considering the constrained problem (1) assuming
that the feasible set Ω is easy to project on. Typical case would be a box or
polyhedron. The Spectral Projected Gradient method (Birgin et al. [7, 8])
is a well known for its efficiency and simplicity. The SPG method is applied
to the sequence of different SAA approximate problems (2) coupled with
a suitable sample scheduling scheme that yields almost sure convergence.
Thus, the principal aims of this paper are: a) to derive an efficient sample
scheduling that will yield an iterative sequence with almost sure convergence
to a stationary point of the original problem through SAA approximation
with N → ∞, through efficient and computationally feasible optimization
procedure for solving (2), and b) to prove the almost sure convergence of
the SPG method with an appropriate sample scheduling. It is important to
notice that although the logic behind the sample scheduling is similar to the
corresponding one in Krejić and Krklec [20], Krejić and Krklec Jerinkić [21],
the conceptual change from a finite sample size in the SAA approximation
in [20, 21] to an infinite sample introduces nontrivial changes in the sam-
ple scheduling. The same is true for theoretical consideration. Additional
changes are due to the difference between unconstrained and constrained
problems.

The paper is organized as follows. Some preliminaries are given in Section
2. The SPG algorithm and the appropriate scheduling algorithm are stated
in Section 3, while the convergence results are presented in Section 4. Section
5 contains numerical experiments that confirm the theoretical results. Some
conclusions are drawn in Section 6. The almost sure convergence will be
abbreviated with a.s. in the rest of the paper.
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2 Preliminaries

We will assume that the samples used for calculating the Sample Average
Approximation at each iteration are available and taken cumulatively. So,
for two positive integers N and M with N < M we define the sample sets

N := {ξ1, . . . , ξN} ⊂ {ξ1, . . . , ξN , . . . , ξM} =:M

and the corresponding approximation of the objective function is

fN (x) =
1

N

N∑
i=1

F (x, ξi).

Clearly, N ∈ N defines the sample set N and vice versa. We will use both
notations in the sequel.

The following set of assumptions makes the problem well defined and
allows us to work with the function fN and its gradient.

Assumption A1. The set Ω ⊂ Rn is compact and convex.
Assumption A2. For any ξ from (A,F ,P) there holds F (·, ξ) ∈ C2(Ωe),

where Ω ⊂ Ωe ⊂ Rn and Ωe is open and bounded. Furthermore, F and ∇F
are dominated by an integrable functions and E[∇F (x, ξ)] = ∇E[F (x, ξ)]
holds.

Assumption A3. The sample set {ξ1, ξ2, . . .} is i.i.d.
The assumptions A1-A2 imply that F (x, ξ) and ∇F (x, ξ) are bounded on

Ω since they are continuous and the feasible set is bounded. The assumption
A2 states that F and ∇F are dominated by integrable functions. In other
words we assume that there exist functions K1(ξ) and K2(ξ) such that for
x ∈ Ω

F (x, ξ) ≤ K1(ξ), ∇F (x, ξ) ≤ K2(ξ),

and such that E(K1) < ∞, E(K2) < ∞. Moreover, the second part of the
assumption A2 together with A3 implies that f is finite valued and continuous
on any compact set (Shapiro et al. [30], Theorem 7.48) which implies that
f is bounded on Ω. The same is true for the gradient, (Shapiro et al. [30],
Theorem 7.52)

∇fN (x) =
1

N

N∑
i=1

∇F (x, ξi).

Both fN (x) and ∇fN (x) are bounded and uniformly continuous on the com-
pact set Ω under the stated assumptions. The assumptions A1-A3 together
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also imply that the SAA gradients uniformly converge to the true gradient
value with probability 1, that is,

lim
N→∞

sup
x∈Ω
‖∇fN (x)−∇f(x)‖ = 0 a.s. (3)

Let us now define the following two functions that will be used later on to
define the sample update. Roughly speaking, the first one measures the qual-
ity of approximation fN (x) ≈ f(x). This function is used in the Algorithms
and does not necessarily represent the true (theoretically sound) error of the
approximation. For example, it can be defined trivially as ν(x,N) = 1/N .

Assumption A4. Assume that ν : Rn × N → R+ is such that for any
finite valued N there exists νN such that

ν(x,N) ≥ νN > 0 for every x ∈ Ω. (4)

The error function ν(xk, Nk) is used to define the new sample size Nk+1

such that the approximation error is well balanced with the decrease of fNk
.

The decrease is denoted by dmk and it approximates the difference fNk
(xk)−

fNk
(xk+1).
Assumption A5. Assume that γ : N→ (0, 1) is such that γ is increasing

function of N and
lim
N→∞

γ(N) = 1. (5)

One obvious possibility is to define γ(N) = exp(−1/N).
Notation: For a given sample set Nk and xk ∈ Rn we denote gk =

∇fNk
(xk). The orthogonal projection on Ω is denoted by PΩ(·), that is,

PΩ(x) = arg minz∈Ω‖z − x‖,

where the norm is assumed to be Euclidean.

3 Algorithms

The iterative method we consider is defined by Algorithm 1-2 below. The
main algorithm is Algorithm 1 which defines a new iteration using the spec-
tral projected gradient method with nonmonotone line search, for a given
sample size Nk. The sample size is updated through Algorithm 2. Two se-
quences, {Nk} and {Nmin

k } are defined, with Nk being the actual sample size
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and Nmin
k the lower bound of the sample size. The nonmonotone line search

is defined by a sequence {εk} such that

∞∑
k=0

εk ≤ ε <∞ and εk > 0 for every k.

Algorithm 1

Given N0 = Nmin
0 , x0 ∈ Ω, 0 < αmin < αmax, α0 ∈ [αmin, αmax], β, η ∈

(0, 1), {εk}. Set k = 0.

Step 1. Test for stationarity. If

‖PΩ(xk − gk)− xk‖ = 0

increase Nk = Nk + 1 until ‖PΩ(xk − gk)− xk‖ 6= 0. Set Nmin
k = Nk.

Step 2. Compute the search direction

pk = PΩ(xk − αkgk)− xk.

Step 3. Find the smallest nonnegative integer j such that λk = βj satisfies

fNk
(xk + λkpk) ≤ fNk

(xk) + ηλkp
T
k gk + εk.

Define sk = λkpk and set xk+1 = xk + sk.

Step 4. Update Nk+1 within Algorithm 2. Set Ik = Nk+1 ∩ Nk and yk =
∇fIk(xk+1)−∇fIk(xk).

Step 5. Compute bk = sTk yk and ak = sTk sk and set

αk+1 = min{αmax,max{αmin, ak/bk}}.

Step 6. Set k = k + 1 and go to Step 1.

Before we state Algorithm 2, let us comment on the algorithm above.
First, notice that the sequence of iterates {xk}k∈N remains in the feasible set
Ω. This is a consequence of Ω being convex and compact and of definition of
a search direction - the projection is performed only once at each iteration
and the line search is performed within Ω.
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As we already mentioned, the progress made in each iteration is measured
by the decrease measure dmk. Let us define

dmk = −λkpTk gk.

Notice that Step 1 of the previously stated algorithm ensures that dmk used
in Step 4 of Algorithm 2, is strictly positive assuming that there is no infinite
loop in Step 1. The possibility of an infinite loop is discussed below Lemma
3.1. In all other cases the strictly positive dmk comes from the fact that
pTk gk = 0 implies ‖PΩ(xk − gk) − xk‖ = 0 according to Lemma 3.1 from
Birgin et al. [7]. For the sake of completeness we state this important result
below.

Lemma 3.1. [7] Define gt(x) = PΩ(x − t∇f(x)) − x. For all x ∈ Ω, t ∈
(0, αmax],

(i) ∇Tf(x)gt(x) ≤ −1
t
‖gt(x)‖2 ≤ − 1

αmax
‖gt(x)‖2

(ii) The vector gt(x
∗) vanishes if and only if x∗ is a stationary point for

(1).

Notice that the parameter αmax stated in the previous lemma coincides
with the upper bound of the spectral coefficient. Parameters αmin and αmax
represent safeguard parameters which ensure that the spectral coefficient
remains uniformly bounded away from zero as well as from infinity. One
common choice is to set αmin to 10−4, 10−8 or even 10−30. On the other
hand, the upper bound is usually set on 104, 108 or even 1030. Now, if we
assume αmax ≥ 1 (which is usually true), this lemma implies that x∗ is a
stationary point for (1) if

PΩ(x∗ −∇f(x∗))− x∗ = 0.

Algorithm 1 implies that either there exists xk such that

‖PΩ(xk −∇fN (xk))− xk‖ = 0, N ≥ Nk, (6)

i.e., Step 1 is performed infinitely many times, or the algorithm generates an
infinite sequence {xk}. If xk is such that (6) holds, then (3) implies

lim
N→∞

∇fN (xk) = ∇f(xk)
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and therefore, ‖P (xk−∇f(xk))−xk‖ = 0, that is, xk is a stationary point for
(1). Given that in actual implementation the algorithm will eventually stop
at some finite N, the stationary point xk which satisfies (6) will be detected.
So, from now on we assume that (6) does not occur.

As εk > 0, Step 3 necessarily terminates with a finite j for any search
direction. So this step is well defined. Nevertheless, the search direction pk
calculated at Step 3 is descent direction for fNk

at xk, as stated in Lemma
3.1 above. The additional term εk allows more freedom in the choice of step
length and allows the nonmonotonicity that ensures that the good properties
of spectral projected gradient method are preserved, see Birgin et al. [7,
8], Li and Fukushima [26] . It is important to state here that any other
nonmonotone rule like the rules considered in [7], Grippo et al. [15, 16],
Krejić and Krklec Jerinkić [21], Zhang and Hager [34] could be applied here,
but the analysis would be a bit more cumbersome technically than with the
rule we employ at Step 3.

The spectral coefficient αk is calculated using the intersection of two con-
secutive samples. It is easy to notice that Ik = min{Nk, Nk+1} so both
gradient values, ∇fIk(xk+1) and ∇fIk(xk), are available and no additional
gradient values are needed for the calculation of the spectral coefficient. One
could easily state

yk = ∇fNk+1
(xk+1)−∇fNk

(xk)

instead of yk defined in Step 4 of the algorithm. In fact, the question of
the best sample for calculation of yk is still unsolved and there are many
discussions in the literature, see Mokhtari and Ribeiro [24], Byrd et al. [9,
10, 11], Krejić et al. [19]. In the deterministic case yk satisfies

yk =

(∫ 1

0

∇2f(xk + tsk)dt

)
sk.

As we are dealing with the expectation with respect to ξ, the variance of ξ
and the corresponding variances of f and its derivatives, play an important
role in the last equation. Furthermore, yk defines the spectral coefficient
ak/bk, which is the Rayleigh quotient relative to the average Hessian matrix∫ 1

0
∇2f(xk + tsk)dt, see Birgin et al. [8]. The eigenset of ∇2fN is clearly

influenced by the sample set N , so the definition of yk should reflect this fact
as well. The choice we made here is a consequence of empirical experience
that yielded a strong preference towards the definition of yk stated in Step
4.

9



Recall that dmk = −λkpTk gk and dmk > 0. The algorithm for the sample
size update is as follows.
Algorithm 2

Given dmk, Nk, N
min
k , xk, xk+1.

Step 1. Candidate N+
k .

Set N = max{Nk, N
min
k }

Step 1.1 If dmk = ν(xk, Nk) set N+
k = N.

Step 1.2 If dmk > ν(xk, Nk)

While dmk > ν(xk, N) and N > Nmin
k set

N = N − 1.

End(While).

Set N+
k = N.

Step 1.3 If dmk < ν(xk, Nk)

While dmk < ν(xk, N) set

N = N + 1.

End(While).

Set N+
k = N.

Step 2. Update of Nk+1.

If N+
k < Nk and

ρk =

∣∣∣∣∣fN+
k

(xk)− fN+
k

(xk+1)

fNk
(xk)− fNk

(xk+1)
− 1

∣∣∣∣∣ ≥ Nk −N+
k

Nk

, (7)

set Nk+1 = Nk. Otherwise set Nk+1 = N+
k .

Step 3. Update of Nmin
k .

3.1 If Nk+1 = Nk set Nmin
k+1 = Nmin

k .
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3.2 If Nk+1 6= Nk update Nmin
k by the following rule.

If Nk+1 has been used in some of the previous iterations and

fNk+1
(xh(k))− fNk+1

(xk+1)

k + 1− h(k)
≤ γ(Nk+1)ν(xk+1, Nk+1), (8)

where h(k) is the iteration in which we started to use Nk+1 for the
last time, set Nmin

k+1 > Nmin
k .

Otherwise set Nmin
k+1 = Nmin

k .

A few words on Algorithm 2 are due as well. The main objective of the
variable sample scheme is to ensure some balance between the computational
costs and precision of the Sample Average Approximation. The principal idea
is to increase or decrease the sample size according to the progress made in
decreasing the objective function. Such approach ensures that we work with
low precision whenever possible, saving the computational effort if possible.
At the same time the presented scheme ensures that the sample size increases
to infinity and allows us to prove the almost sure convergence, as we will
demonstrate later on.

The main ingredients of Algorithm 2 are the decrease in the objective
function measured by dmk and the precision of the sample average approx-
imation measured by ν(xk, Nk). The sample size is increased or decreased
in such a way that these two measures trail each other. To achieve a bal-
ance between dmk and ν(xk, N) we are in fact constructing two sample size
sequences, Nk and Nmin

k . The sample size is defined within Step 1-2. In
Step 1 the candidate N+

k is determined to preserve the balance between dmk

and ν(xk, N). Notice that the candidate N+
k is constructed in such way that

provides that the lower bound restriction, N+
k ≥ Nmin

k holds. This follows
from the fact that the starting trial sample size is N = max{Nk, N

min
k } and,

according to Step 1.2, it is decreased only if the lower bound allows the de-
crease. If N+

k < Nk, that is, if a decrease of the sample size is proposed, we
perform an additional check stated in Step 2 to avoid possibly unproductive
decreases. The parameter ρk is calculated only if we have a possible sample
decrease as it measures similarity between the two models, represented by
fN+

k
and fN+

k
, through the decrease obtained at the current iteration. If these

two model functions are close to each other, the parameter ρk is relatively
small (close to zero) and we chose to work with the cheaper model function,
that is, we set Nk+1 = N+

k . Otherwise, we do not allow the decrease in the
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sample size since the model functions are too different and taking the smaller
sample size may lead us in a wrong direction. In that case, we chose the larger
sample size, that is, we chose the objective function estimate which we be-
lieve is closer to the final objective f . The quantity on the right hand side of
(7) is motivated by our previous numerical testings. Basically, it encourages
larger decreases of the sample size since they were usually beneficial for the
overall performance of the algorithm. Moreover, notice that Nk+1 ≥ Nmin

k .
If Nk+1 = N+

k , this is obvious since we saw that N+
k ≥ Nmin

k . On the other
hand, Nk+1 = Nk, but this may happen only if Nk > N+

k . Therefore, the
lower bound condition is satisfied.

The second sequence Nmin
k is updated in Step 3 and it is clearly nonde-

creasing. It represents the smallest precision allowed at each stage of the
optimization process and its role is to eventually push Nk towards infinity,
even with the oscillations of Nk that are permitted by the algorithm. Al-
gorithm 2 is essentially inspired by the variable sample scheme for solving
the so called SAA problem with finite N, as presented in Krejić and Krklec
Jerinkić [20, 21] for unconstrained problems. The first idea of this kind is
developed in Bastin [2], Bastin et al. [3, 4] for the trust region approach
and SAA methods. Although this Step is crucial for the convergence analy-
sis, the lower bound increase is rarely activated according to our experience.
The main idea in Step 3 is to track the progress related to various precision
levels, that is, to various sample sizes in our case. The left hand side in the
inequality (8) represents the average decrease between the last iteration at
which we used the sample size and the new iteration with the same sample
size. If this decrease is relatively modest, we assume that the oscillations
were not that beneficial and increase the lower bound for the sample size,
that is, the minimal allowed precision. The right hand side of the inequality
(8) depends on the sample size as we do not want to treat all precision levels
equally - we want to be more rigorous when the final objective function is
approached. This Algorithm is conceptually based on [20] but, as we are now
interested in pushing the sample size to the infinity, the steps are adjusted
to allow an infinite increase of the sample size.

4 Convergence theory

The convergence results developed in this section show that the proposed
method generates an iterative sequence that converges a.s. towards a so-
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lution of (1). Under the assumptions stated in Section 2 the first theorem
states that the sample size generated by Algorithm 2 goes to infinity. After
that, we prove a.s. convergence with an additional, but standard assumption
regarding the error of the SAA approximation.
Remark 1. The sequence generated by Algorithm 1 is obviously random
and thus all the relevant quantities such as Nk depend on the particular
sample realization ω. However, the subsequent result shows that the sample
size tends to infinity for any given ω. Thus, the result holds surely and not
just almost surely. In order to avoid cumbersome notation, we will omit ω
in the sequel and write, for example, {Nk}k∈N instead of {Nk(ω)}k∈N and
subsequence K1 instead of subsequence K1(ω).

Theorem 4.1. Assume that A1-A5 hold. Then limk→∞Nk =∞.

Proof. First, let us show that the sequence {Nk}k∈N can not become
stationary. Assume that there are N̄0 and k̄0 such that

Nk = N̄0 for every k ≥ k̄0. (9)

Then, for each k ≥ k̄0 we have

fN̄0
(xk+1) ≤ fN̄0

(xk)− ηdmk + εk

by Step 3 of Algorithm 1. Thus

fN̄0
(xk̄0+m) ≤ fN̄0

(xk̄0)− η
m−1∑
j=0

dmk̄0+j +
m−1∑
j=1

εk̄0+j

for arbitrary m ∈ N. Recall that the sequence of iterates remains in Ω and
therefore fN̄0

(xk̄0+m) is bounded from below for every m. Moreover, as 0 <∑∞
k=0 εk < ∞ and by rearranging the previous inequality we conclude that∑∞
j=0 dmk̄0+j is finite. Therefore, using the fact that dmk is nonnegative, we

obtain
lim
k→∞

dmk = 0.

On the other hand, as a consequence of the Assumption A4, for each k ≥ k̄0

we have
ν(xk, Nk) = ν(xk, N̄0) ≥ νN̄0

> 0,

so there exists k̄1 > k̄0 such that

ν(xk̄1 , Nk̄1) > dmk̄1 .
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However, Step 1.3 of Algorithm 2 implies that Nk̄1+1 > Nk̄1 = N̄0, which is a
contradiction with (9).

Algorithm 2 ensures that Nk+1 ≥ Nmin
k . So if limk→∞N

min
k = ∞ we

obviously have the statement. Thus, in the sequel we consider the opposite
case and show that the statement is true in that case as well.

Let us now assume that Nmin
k = Nmax for k ≥ k̄2. Notice that the lower

bound Nmin
k is nondecreasing and it can be increased only throughout Step

1 of Algorithm 1 or in Step 3.2 of Algorithm 2. Since Nmin
k is assumed to

be bounded, i.e., Nmin
k ≤ Nmax, Step 1 of Algorithm 1 can happen only a

finitely many times. Therefore, without loss of generality we may exclude
this scenario. On the other hand, in general, there are two possible outcomes
of Step 3 of Algorithm 2, Nmin

k+1 = Nmin
k or Nmin

k+1 > Nmin
k . The second outcome

is obviously not possible for k ≥ k̄2, so we must have Nmin
k+1 = Nmin

k , k ≥ k̄2.
This further implies that we have one of the following three possibilities for
each k ≥ k̄2.

M1 Nk+1 = Nk

M2 Nk+1 6= Nk and Nk+1 has not been used before

M3 Nk+1 6= Nk, Nk+1 has been used before and

fNk+1
(xh(k))− fNk+1

(xk+1)

k + 1− h(k)
≥ γ(Nk+1)ν(xk+1, Nk+1)

Assume that the statement of this theorem is not true so there exists an
infinite subsequence of {Nk}k∈N such that its elements are bounded. Then
there must exist a finite sample size N̄1 which is visited infinitely many times,
that is, there exists an infinite subsequence K0 = {k ≥ k̄2 : Nk+1 = N̄1},
for some N̄1 < ∞. Since we proved that the sequence {Nk} can not be
stationary, there exists an infinite subsequence K1 ⊂ K0 such that M1 does
not hold for k ∈ K1. More precisely, there must exist an infinite subsequence
of iterations in which the sample size is changed on N̄1, that is, there exists
K1 = {k ≥ k̄2 : Nk 6= Nk+1 = N̄1}. Moreover, by excluding the first member
of the sequence K1 we obtain an infinite subsequence K2 ⊂ K1 that makes
the scenario M2 impossible as well since the sample size N̄1 is obviously used
before during the optimization process. Therefore, for every k ∈ K2

fN̄1
(xh(k))− fN̄1

(xk+1)

k + 1− h(k)
≥ γ(N̄1)ν(xk+1, N̄1).
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Let K3 = {k + 1, k ∈ K2}. Notice that this corresponds to the subsequence
of iterations in which the sample size N̄1 is revisited. Therefore, iterates
xh(k) and xk+1 from the previous inequality must be a neighboring iterates
of the sequence {xk}k∈K3 . Also, notice that k + 1 − h(k) > 1. Denoting
{xk}k∈K3 := {xkj}j∈N we obtain that the following holds for every j ∈ N

fN̄1
(xkj) ≥ fN̄1

(xkj+1
) + γ(N̄1)e(xkj+1

, N̄1) (10)

Given that, according to assumptions A4-A5,

γ(N̄1)ν(xkj+1
, N̄1) ≥ γ(N̄1)νN̄1

= c > 0,

(10) implies that fN̄1
is unbounded on Ω which is clearly wrong. Thus the

statement is proved. 2

Let us now proceed to prove the almost sure convergence results for
Spectral Projected Gradient method defined in Algorithm 1. Recall that
gk = ∇fNk

(xk) and pk is a search direction.

Lemma 4.1. Assume that A1-A5 hold and let K ⊂ N be a subset of iterations
such that

lim
k∈K

xk = x∗, lim
k∈K

pk = 0.

Then x∗ is a stationary point for (1) a.s.

Proof. Given that the search directions pk converge to zero through K,
we have

0 = lim
k∈K

pk = lim
k∈K

[PΩ(xk − αkgk)− xk]

= lim
k∈K

PΩ(xk − αkgk)− lim
k∈K

xk

= PΩ(x∗ − lim
k∈K

αkgk)− x∗.

The sequence of spectral coefficients αk is bounded and thus there exists
K1 ⊂ K such that limk∈K1 αk = α∗ ∈ [αmin, αmax].

As Nk →∞ we have

lim
k∈K1

gk = lim
k∈K1

∇fNk
(xk) = ∇f(x∗) a.s.

Thus
0 = PΩ(x∗ − lim

k∈K1

αkgk)− x∗ = PΩ(x∗ − α∗∇f(x∗))− x∗.
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Now, the statement follows by Lemma 3.1. 2

In order to prove the main results, we make an additional assumption.
Assumption A6. Let ω be an arbitrary sample path generated by Al-

gorithm 1. Assume that e : Rn × N → R+ is a function with the following
properties

lim
N→∞

sup
x∈Ω

e(x,N) = 0, (11)

|f(x)− fN (x)| ≤ e(x,N) a.s. x ∈ Ω, N ∈ N, N ≥ N0(w). (12)

Notice that (12) is assumed with probability 1 while (11) is without any
random elements and thus holds surely. The function e is deterministic and
the only property that holds with probability (one) is that it bounds the
error that depends on stochastic quantity fN (x). Although this assumption
seems restrictive, the results presented in Homem-de-Mello [17] show that
such functions exist provided, for example, that the variance of F (x, ξ) is
uniformly bounded on Ω. This is true for the class of problems where the
Gaussian noise is added to some smooth deterministic function to obtain
F (x, ξ), or, more generally, if F (x, ξ) = h1(x) + h2(x)ξ where h1 and h2 are
smooth functions and the variance of ξ is bounded. In that case, one possible
choice is

e(x,N) = C(x)

√
ln(ln(N))

N
, (13)

where C(x) is related to the variance of F (x, ξ). It is important to notice that
in general, as pointed out by one of the Reviewers, C(x) might be infinite
and thus the condition (11) might be violated.

Given that Theorem 4.1 states that Nk grows to infinity, it follows that
the error bound (13) derived in Proposition 3.5 [17] for cumulative samples
remains a relevant choice, at least for theoretical purposes. However, the log
bound is considered as too conservative from the practical point of view and
it is often approximated with a bound of sample variance type (Bastin [2]).

More precisely, the bound that is frequently used is z σ̂(xk,Nk)√
Nk

where z is a

suitable quantile and σ̂2(xk, Nk) is a sample variance of F , that is,

σ̂2(xk, Nk) =
1

Nk − 1

∑
i∈Nk

(
F (xk, ξ

i)− fNk
(xk)

)2
.

We use this bound in implementation in order to get numerical results. We
also set ν(x,N) = e(x,N).
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The main convergence results are given in Theorem 4.2 and Theorem
4.3 below. The first theorem claims that there exists an accumulation point
which is stationary. In the second theorem we prove a stronger result, that
each strictly strong accumulation point is stationary. Both of the results hold
a.s. To the best of our knowledge, a stronger result (that each accumulation
point is stationary a.s.) can not be attained under this setup. However,
according to the analysis presented in this paper, one can achieve the result of
every accumulation point being stationary a.s. if the sample size is increased
fast enough. We state this result in Theorem 4.4 for completeness.

Theorem 4.2. Assume that A1-A6 hold. For almost every sequence {xk}k∈N
generated by Algorithm 1, there exists an accumulation point of {xk}k∈N
which is stationary for (1).

Proof. Let us demonstrate that there exists at least one subsequence of
{pk} which converges to zero.

Suppose that there exists p > 0 such that for every k ∈ N

‖pk‖2 ≥ p > 0. (14)

Then, Lemma 3.1 implies the following inequalities

pTk∇fNk
(xk) ≤ −

1

αmax

‖pk‖2 ≤ − 1

αmax

p := −p̄ < 0, k ∈ N (15)

and
dmk = −λkpTk∇fNk

(xk) ≥ λkp̄, k ∈ N. (16)

Suppose that λk ≥ λ̄ > 0, k ∈ N. In that case

dmk ≥ λ̄p̄ := d̄ > 0, k ∈ N. (17)

Define
ẽN = sup

x∈Ω
e(x,N).

Moreover, given that {xk}k∈N ⊂ Ω and Nk → ∞, according to assumption
A6 we have that for all k large enough (more precisely, for k ≥ k̄1 = k̄1(ω)
where k̄1 is such that Nk ≥ N0(ω) for every k ≥ k1) there holds

|f(xk)− fNk
(xk)| ≤ e(xk, Nk) ≤ ẽNk

a.s.
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and (11) implies
lim
k→∞

ẽNk
= 0. (18)

Thus, for every k ≥ k̄1 we have a.s.

f(xk+1) ≤ fNk
(xk+1) + ẽNk

≤ fNk
(xk) + εk − ηdmk + ẽNk

≤ f(xk) + 2ẽNk
+ εk − ηd̄.

Let q ∈ (0, ηd̄) be an arbitrary constant. Then, (18) implies that ẽNk
<

(ηd̄−q)/2 for every k large enough, that is, there exists k̄2 = k̄2(ω) such that

2ẽNk
< ηd̄− q for every k ∈ N, k ≥ k̄2(ω) (19)

and for every k ≥ k̄(ω) = max{k̄1, k̄2}

f(xk+1) ≤ f(xk) + εk − q a.s,

which furthermore implies that a.s.

f(xk̄+s) ≤ f(xk̄) +
s−1∑
j=0

εj − sq ≤ f(xk̄) + ε− sq, s ∈ N.

Letting s tend to infinity we obtain that f is unbounded which is not possible.
Now, suppose that there is a subsequence K1(ω) ⊆ {k̄+ 1, k̄+ 2, ...} such

that
lim
k∈K1

λk = 0.

Since the initial step size in the line search is 1 at every iteration and the
backtracking with parameter β is employed, for every k ∈ K1 large enough
there must be at least one unsuccessful trial in Step 3 of Algorithm 1. Let us
denote by λ′k the trial preceding the successful trial λk, that is, let λk = βλ′k.
In that case the line search rule implies that for every k ∈ K1 there exists
λ′k = λk/β such that limk∈K1 λ

′
k = 0 and

fNk
(xk + λ′kpk) > fNk

(xk) + ηλ′kp
T
k gk + εk.

As εk > 0 we have

fNk
(xk + λ′kpk) > fNk

(xk) + ηλ′kp
T
k gk.
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The Mean Value Theorem implies the existence of tk ∈ (0, 1) such that

pTk∇fNk
(xk + tkλ

′
kpk) ≥ ηpTk∇fNk

(xk). (20)

Given that {pk} and {xk} are bounded, there exists K2(ω) ⊆ K1 such that
limk∈K2(xk, pk) = (x∗, p∗) and

lim
k∈K2

xk + tkλ
′
kpk = x∗.

Therefore, taking limits on both sides of (20) we get

(p∗)T∇f(x∗) ≥ η(p∗)T∇f(x∗) a.s. (21)

The condition η ∈ (0, 1) and (21) together yield

(p∗)T∇f(x∗) ≥ 0 a.s. (22)

On the other hand, taking limit for k ∈ K2 in (15) we obtain

0 ≤ (p∗)T∇f(x∗) ≤ −p̄ < 0 a.s. (23)

which is clearly in contradiction with (22). Therefore, we conclude that (14)
is wrong and there exists a subsequence of {pk}k∈N that converges to zero,
that is, there exists K3(ω) ⊆ N such that limk∈K3 pk = 0. Again, {xk} is
bounded and there must exist K4(ω) ⊆ K3 such that

lim
k∈K4

pk = 0 and lim
k∈K4

xk = x̃.

Finally, Lemma 4.1 implies that x̃ is a stationary point for (1) a.s. and the
statement follows.2

In order to show the stronger result, we state the following definition of
strictly strong accumulation point, Yan and Mukai [35].

Definition 4.1. [35] A point x∗ is called strictly strong accumulation point
of the sequence {xk}k∈N if there exists a subsequence K ⊆ N and a constant
b ∈ N such that limki∈K xki = x∗ and ki+1 − ki ≤ b for any two consecutive
elements ki, ki+1 ∈ K.

Theorem 4.3. Assume that A1-A6 hold. For almost every sequence {xk}k∈N
generated by Algorithm 1, every strictly strong accumulation point of the
sequence {xk}k∈N is stationary for (1).
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Proof. Let x∗ be an arbitrary strictly strong accumulation point of the
sequence {xk}k∈N. That means that there is a subsequence K ⊆ N and a
positive constant b such that limk∈K xk = x∗ and ki+1−ki ≤ b for every i ∈ N
where {xk}k∈K := {xki}i∈N.

Suppose that dmk ≥ d̄ > 0 for every k ∈ K. As shown in the proof of
Theorem 4.2, for every k ≥ k̄(ω) we have

f(xk+1) ≤ f(xk) + 2ẽNk
+ εk − ηdmk a.s. (24)

Without loss of generality, we can assume that K ⊆ {k̄+1, k̄+2, ...}. Define
si := ki+1 − ki. Then it holds for every i ∈ N that

f(xki+1
) ≤ f(xki) +

si−1∑
j=0

(2ẽNki+j
+ εki+j)− η

si−1∑
j=0

dmki+j a.s.

Since dmk ≥ 0 for every k, dmki ≥ d̄ and si ≤ b, we obtain that that for
every i ∈ N

f(xki+1
) ≤ f(xki) +

b−1∑
j=0

(2ẽNki+j
+ εki+j)− ηd̄ a.s.

Now, letting i tend to infinity and using the fact that

lim
i→∞

b−1∑
j=0

(2ẽNki+j
+ εki+j) = 0,

we obtain
f(x∗) ≤ f(x∗)− ηd̄ < f(x∗) a.s.

So, we conclude that a.s. there exists K1 ⊆ K such that

0 = lim
k∈K1

dmk = lim
k∈K1

λk∇fTNk
(xk)pk.

Moreover, Lemma 3.1 implies the descent property of pk

pTk∇fNk
(xk) ≤ −

1

αmax

‖pk‖2 < 0, k ∈ N.

Therefore, if λk ≥ λ̄ > 0 for all k ∈ K1 we obtain limk∈K1 pk = 0 and the
statement follows by Lemma 4.1. Else, suppose that there exists K2 ⊆ K1

such that
lim
k∈K2

λk = 0.
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Using the Mean Value Theorem together with the descent property of the
search direction and following the proof of Theorem 4.2, we obtain the ex-
istence of K3 ⊆ K2 such that limk∈K3 pk = 0, which completes the proof.
2

Remark 2. A few words are due here in order to relate the result of the above
theorem with the existing ones. Clearly, the definition of strictly strong accu-
mulation point is not common in the deterministic optimization. However it
appears to be necessary in the context of almost sure convergence if one wants
to avoid conditions on growth of the sample sizes. The result we obtained
here is analogous to the results for unconstrained case presented in Yan and
Mukai [35]. Comparing with the results presented in Wardi [33] there is a
clear trade-off, either one obtains weaker convergence, in upper mid density,
or imposes the assumption of strictly strong accumulation points. Proving
the convergence in upper density for the method we consider here seems to
be possible although technically demanding. Another possibility would be
to assume that limk→∞ λkpk = 0 as in Shapiro et al. [30]. In that case the
corresponding result, convergence w.p.1, follows along the same ideas as in
[33]. Given that imposing the growth condition might cause very rapid in-
crease in Nk and thus make the optimization procedure more expensive we
believe that the conditions of Theorem 4.3 represent a good balance between
theoretical and practical issues. Nevertheless, we state the following analysis
for completeness.

Theorem 4.4. Assume that A1-A6 hold. For almost every sequence {xk}k∈N
generated by Algorithm 1, every accumulation point of the sequence {xk}k∈N
is stationary for (1) if the following holds

∞∑
k=0

ẽNk
<∞, (25)

where ẽNk
= supx∈Ω e(x,Nk).

Proof. As in Theorem 4.3 we obtain that (24) holds and thus the following
holds for every k ≥ k̄(ω)

f(xk) ≤ f(xk̄) +
k−1∑
j=k̄

(2ẽNj
+ εj)− η

k−1∑
j=k̄

dmj a.s.
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As f is bounded and 2ẽNj
+ εj is summable, we obtain that

lim
k→∞

dmk = 0 a.s.

Let x∗ be an arbitrary accumulation point of the sequence {xk}k∈N, that is
let K0 be a set of positive integers such that limk∈K0 xk = x∗. Following
the steps from the proof of Theorem 4.2 we conclude that the existence of
K1 ⊆ K0 such that pk ≥ p > 0 for every k ∈ K1 is impossible. Therefore,
limk∈K0 pk = 0 a.s. which together with Lemma 4.1 implies that x∗ is a
stationary point a.s. This completes the proof. 2

If we consider the bound (13), the assumption (25) is true if we take
Nk ≥ ek for instance. So, in order to obtain the stronger convergence result,
one can use Algorithm 1 for finitely many iterations and then switch to
exponential growth of the sample size. This kind of hybrid approach would
combine adaptive sample update and the conservative exponential update
which provides better theoretical results. It would be interesting to find out
an optimal switching point i.e. an iteration k0 or the sample size Nk0 after
which the sample size should grow exponentially.

5 Numerical results

In this section we report preliminary numerical results. The test collection
consists of 5 academic problems and the M/M/1 problem. The experiments
are designed to investigate the efficiency of the variable sample size (VSS)
scheme proposed in Algorithm 2 as well as the properties of Spectral Pro-
jected Gradient method in stochastic environment. Thus the VSS is com-
pared with four other sample size schemes combined with the SPG method.

The setup for testing is defined as follows.

‖PΩ(xk − gk)− xk‖ ≤ ε1 and
e(xk, Nk)

max{|fNk
(xk)|, 1}

≤ ε2 (26)

are satisfied for some k within at most 107 function evaluations. In other
words, xk is an approximate stationary point of minx∈Ω fNk

(x) with the
tolerance ε1 and the relative/absolute error estimate of an approximation
fNk

(xk) ≈ f(xk) is at most ε2. The counting of function evaluations includes
counting each gradient ∇F evaluation as n evaluations of f . Since the error
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bound (13) is considered as too conservative for practical implementations
(Bastin [2]), we employ the sample variance

σ̂2(xk, Nk) =
1

Nk − 1

∑
i∈Nk

(
F (xk, ξ

i)− fNk
(xk)

)2

and set

ν(xk, Nk) = e(xk, Nk) = 1.96
σ̂(xk, Nk)√

Nk

as the precision measure. Function γ defined in Assumption A5 is set to
γ(Nk) = exp(−1/Nk). The sequence {εk}k∈N is defined as

ε0 = max{1, |fN0(x0)|}, εk+1 = ε0k
−1.1.

The rest of the parameters needed in Algorithm 1 are β = 0.5, η = 10−4,
αmin = 10−8 and αmax = 108.

The proposed method terminates either because the number of function
evaluations reaches 107 or because (26) is satisfied for some finite Nk and xk.
Either way, it terminates with some finite sample size. Let us denote this sam-
ple size byNmax. VSS method is compared with four other sample size update
schemes referred to as HEUR1, HEUR2, HEUR3 and SAA. HEUR1 uses up-
date Nk+1 = min{[1.1Nk] , Nmax}, HEUR2 takes Nk+1 = min{

[
ek
]
, Nmax},

HEUR3 approximately solves the sequence of problems (2) where the sample
size |N | is increased by 10% until it reaches Nmax and SAA takes Nk = Nmax

for all k. The initial sample size is N0 = 3 for all tested problems and Nmax

heavily depends on the problem and the variance level. In order to make the
comparison fair, the sample generated within VSS runs is used for the other
tested schemes as well. The same is true for the starting point. We performed
10 independent runs for each tested problem. The question of suitable Nmax

is far from simple and there is a number of paper that deals with this issues,
for example Bayraksan and Morton [5], Homem-de-Mello and Bayraksan [6].
Given that the principal goal of this paper is not the quality of solution for
a finite Nmax but the almost sure convergence for unbounded sample, we
adopted this simple rule for Nmax in our tests.

The tested schemes HEUR1 and SAA have been used in our previous work
where the sample size was finite and unconstrained optimization problems
were considered. HEUR1 was motivated by Friedlander and Schmidt [13],
although this is not the only paper that suggests this kind of scheduling
sequence. Since the SPG method is linearly convergent, Pasupathy [27] also
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suggests the 10% growth of the sample size. However, [27] uses the so called
diagonalization where a sequence of optimization problems is solved with
the precision qk = K/

√
Nk. We implemented this scheme (HEUR3) as

well, with K = ε1
√
Nmax to attain the same final precision, but the results

were not good since it did not converge within 107 function evaluations in
a vast majority of the tested problems. The remaining scheme HEUR2 was
motivated by the result given in Theorem 4.4 and some other related results
([6] for instance) where the minimal growth rate for the sample size is given
in order to provide stronger convergence result. Moreover, notice that VSS
may exceed the final sample size within the optimization process which gives
an advantage to the other tested schemes. Finally, one can always find a
heuristic which will perform better on a particular problem than the scheme
proposed in this paper. But the main advantage of VSS is its adaptive
nature and inner mechanism which works for an arbitrary problem. Tuning
the parameters is clearly problem dependent and a generic approach is tested
here.

The test examples are defined as

F (x, ξ) = h(ξx), ξ : N (1, σ2),

where h : Rn → R. Two levels of variance are tested, σ2 = 0.1 and σ2 =
1. Regarding the constraints, two cases are considered with respect to the
solution - if constraints are active at the solution then we denote the feasible
set is denoted by Ωa, and if the constraints are inactive, the feasible set is Ωia.
The dimension of all examples is n = 10 and the feasible set is n-dimensional
box of the form [l, u]n. Starting points are chosen randomly within a feasible
set and the stopping criterion parameters are ε1 = 10−2 and ε2 = 0.05.

Functions h are originally taken from Montaz Ali et al. [25]. We list
the problems together with active/inactive case constraints, the range of the
sample size Nmax and the mean values N̄max in all the runs.

P1 Exponential problem

F (x, ξ) = e−0.5‖ξx‖2 ,

Ωa = [0.3, 0.5]10, Ωia = [−1, 1]10, Nmax ∈ [3, 208], N̄max = 97.

P2 Griewank problem

F (x, ξ) = 1 +
1

4000
‖ξx‖2 −

10∏
i=1

cos

(
ξxi√
i

)
,
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Ωa = [100, 200]10, Ωia = [−600, 600]10, Nmax ∈ [3, 25731], N̄max = 2800.

P3 Neumaier 3 problem

F (x, ξ) =
10∑
i=1

(ξxi − 1)2 −
10∑
i=2

ξxiξxi−1,

Ωa = [0, 10]10, Ωia = [−100, 100]10, Nmax ∈ [3, 3274], N̄max = 1301.

P4 Salomon problem

F (x, ξ) = 1− cos(2π‖ξx‖2) + 0.1‖ξx‖2,

Ωa = [10, 50]10, Ωia = [−100, 100]10, Nmax ∈ [3, 3651], N̄max = 1312.

P5 Sinusoidal problem

F (x, ξ) = −2.5
10∏
i=1

sin(ξxi − 30)−
10∏
i=1

sin(5(ξxi − 30)),

Ωa = [0, 2]10, Ωia = [0, 180]10, Nmax ∈ [3, 1440], N̄max = 205.

M/M/1 queueing problem is often used in stochastic optimization for
illustration of real world problems, [18, 1]. This is a parameter estimation
problem. It aims to estimate a distribution parameter that minimizes the ob-
jective function which takes into account the expected number of customers
in a queue and the expected service time given by the mean value of the
Exponential distribution. The goal is to minimize the expected time that
a client spends in a queue (waiting time and service time) taking into ac-
count the (nonzero) costs associated to (nonzero) waiting and service times
The solution mainly serves for finding the optimal service time in a sense
that it gives an information weather the service time should be improved.
In this approach it is important to notice that some balance between the
server cost with the above stated objective should exist. This problem can
be solved analytically and for that particular reason it makes a good example
for evaluating the stochastic procedures. The expected steady-state number
of customers in a queue with arrival rate 1 and mean service time x is de-
noted by L(x). More detailed description of queueing-type problems, as well
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as other possible approaches can be found in Andradottir [1] or Law [23] for
example.

We consider a special two dimensional case (two queues) where the cost
induced by the service improvement is addressed within the following objec-
tive function

min
x∈(0,1)×(0,1)

f(x) =
1

x1

+
1

x2

+
10

x1x2

+ L(x1) + L(x2),

where L(xi) is mathematical expectation of a random variable that follows
Geometrical distribution with parameter 1− xi, that is,

L(xi) = E (X(xi)) , P (X(xi) = k) = xki (1− xi), k = 0, 1, 2, . . . .

Therefore, L(xi) = xi/(1 − xi) and the analytical solution of the problem
is known: x∗ = (0.787, 0.787)T with f(x∗) = 26.0764. Geometrically dis-
tributed random variable can be generated with Uniform distribution as

X(xi) =

⌈∣∣∣∣ ln ξ

lnxi

∣∣∣∣− 1

⌉
, ξ : U(0, 1).

We define function F from (1) by

F (x, ξ) =
1

x1

+
1

x2

+
10

x1x2

+

⌈∣∣∣∣ ln ξ

lnx1

∣∣∣∣− 1

⌉
+

⌈∣∣∣∣ ln ξ

lnx2

∣∣∣∣− 1

⌉
.

As suggested in Kao et al. [18], finite differences (Fu [14]) are employed to
approximate the gradient. More precisely g(x, ξ) ≈ ∇F (x, ξ) with g(x, ξ) =
(g1(x, ξ), g2(x, ξ))T and

g1(x, ξ) = − 1

x2
1

− 10

x2
1x2

+
1

h

(⌈∣∣∣∣ ln(ξ)

ln(x1 + h)

∣∣∣∣− 1

⌉
−
⌈∣∣∣∣ ln ξ

lnx1

∣∣∣∣− 1

⌉)
,

g2(x, ξ) = − 1

x2
2

− 10

x2
2x1

+
1

h

(⌈∣∣∣∣ ln(ξ)

ln(x2 + h)

∣∣∣∣− 1

⌉
−
⌈∣∣∣∣ ln ξ

lnx2

∣∣∣∣− 1

⌉)
.

In order to avoid singularities and obtain closed feasible set, we define Ω =
[0 + ε3, 1 − ε3]2 and use h = 10−2, ε3 = 0.05. The starting point is x0 =
(0.1, 0.1)T and the parameters from (26) are ε1 = 10−1 and ε2 = 10−2.

The results are mainly presented through performance profile graphs
(Dolan and Moré [12]) using the number of function evaluations as the cost
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function. Roughly speaking, performance profile states the probability that
the considered method close enough to the best method among all tested
methods, where closeness is measured by α presented on x-axes. Specifically,
α = 1 gives us information about the percentage of the tested problems in
which the considered method performance was the best one in the considered
metrics.

The results for the problems P1-P5 are presented in Figures 1 and 2.
Only the runs with at least one successful method are included, i.e. 82% of
all the runs performed on these problems. The rest of runs are considered
unsuccessful since none of the tested methods converged within 107 function
evaluations. However, the resulting average optimality measure is of order
10−1 and the failure is mainly due to budget constraint (107 FEVs).

Figure 1 shows that VSS outperforms all other methods if one considers
the overall results. It exhibits particularly good behavior for problems with
solutions on the boundary of feasible set. The worst performance of VSS
is observed for higher variance and inactive constraints as in these cases
it is outperformed by the exponential growth sample scheme. Clearly, the
behavior of the tested methods heavily depends on the problem - on its
structure as well as on the objective function form which determines the
variance of F . Heuristic approaches performed well when the solution is
inside the feasible set, but the overall results (Figure 2) show that the usage
of VSS is more efficient in terms of number of function evaluations than the
other tested schemes.

In Figure 3 we present the sample scheduling for a randomly chosen run,
showing the adaptive nature of the scheduling as the sequence of sample sizes
is clearly nonmonotone but eventually growing.

The analytical solution of the M/M/1 queueing problem is known. Figure
4 plots the relative error of the form (f(xk)−f(x∗))/f(x∗) against the number
of function evaluations FEV. The average values of all 10 runs are shown. The
figure shows that VSS is highly competitive with the other tested schemes in
the a budget framework. SAA and HEUR3 were too expensive and therefore
their graphics are not visible on this figure. All the tested runs were successful
for M/M/1 queueing problem. Average sample size N̄max for the queuing
problem is 3917 and N̄max ∈ [3782, 4108]. The mean value of the objective
function f(x) at the final iteration among these 10 runs is approximately
26.108 for all tested methods and the centered sample variance of f(x∗) is
of order 10−4. Therefore, all the methods yield solutions of practically the
same quality.
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Finally, Figure 5 presents common performance profile for P1-P5 prob-
lems and M/M/1 queueing problem and confirms that VSS remains the most
effective.

6 Conclusions

The method we propose and analyze in this paper consists of two compo-
nents. An efficient sample scheduling update based on the progress achieved
in the current iteration with the current SAA approximate function and the
precision of SAA approximation, is coupled with the SPG method. A non-
monotone line search is considered as the SPG behaves much better if some
nonmonotonicity is allowed. It is assumed that the feasible set is easy to
project on and therefore the principal advantages of the SPG method, ef-
ficiency and simplicity, yielded a fast and reliable method for solving the
constrained problems with the objective function in the form of mathemat-
ical expectation. The sample size is pushed to infinity and the almost sure
convergence is proved under a set of appropriate assumptions. No growth
condition on the sample sizes is assumed what is particularly important from
the practical point of view, as the fast increase in the sample size very often
yields an expensive method. The set of assumptions is compatible with the
corresponding results for the unconstrained case. The assumption of strictly
strong accumulation point yields almost sure convergence. Apparently this
assumption is necessary if one wants to avoid the growth condition.
Acknowledgment. We are grateful to the associate editor and two anony-
mous referees whose constructive remarks helped us to improve this paper.
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[21] N. Krejić, N. Krklec Jerinkić, Nonmonotone line search methods
with variable sample size, Numerical Algorithms 68 (2015), pp. 711-
739.
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