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1. Introduction

Consider the Riemann problem for a pressureless gas dynamic model given by
the system

ut + (uv)x = 0

(uv)t + (uv2)x = 0,
(1)

and the initial data

u(x, 0) =
{

ul, x < 0
ur, x > 0 , v(x, 0) =

{
vl, x < 0
vr, x > 0 , (2)

where u and v denote density and velocity, respectively.
The two eigenvalues of this system are equal, λ1 = λ2 = v and the system is

weakly hyperbolic. It has two types of solution depending on the initial conditions
vl and vr. If vl ≤ vr then the system has a bounded weak entropy solution that is
a combination of contact discontinuities and vacuum states (u ≡ 0). In the second
case, when vl > vr a delta shock wave solution exists, see [1], [16].

The subject of the present paper is theoretical analysis and numerical verification
of delta shock wave existence for (1). Therefore we will consider only the case
vl > vr. In this case the solution does not contain the vacuum state and we can
transform the system into the evolutionary form

ut + wt = 0

wt + (w2/u)x = 0,
(3)

introducing the new variable w = uv. The initial data is now given by

u(x, 0) =
{

ul, x < 0
ur, x > 0 , w(x, 0) =

{
wl = ulvl, x < 0
wr = urvr, x > 0 .

There are two possible approaches to theoretical analysis of the considered prob-
lem. The measure theoretic solution to (1)-(2) constructed in a number of papers,
for example [5] or [16], has a distributional limit given by

U(x, t) ≈
{

ul, x < ct
ur, x > ct

+ (vl − vr)
√

ulurtδ(x− ct),

V (x, t) ≈
{

vl, x < ct
vr, x > ct

.

The second possibility, which will be presented here, is to give a solution using
generalized function space obtained from nets of smooth functions representing the
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so-called generalized functions. Spaces of that type are already successfully used
in numerics for PDE’s. One can see [2] for some other examples. The particular
version of Colombeau generalized functions, Gg(R2

+), used in the present paper is
defined in [12]. Therefore we will solve Riemann problem for system (3) in the
case wl/ul > wr/ur using the above mentioned space of generalized functions. The
obtained solution can be interpreted as a net of smooth functions possessing the
distributional limit which contains the delta function. Further more the solution
satisfies the admissibility condition for delta shock waves given by

λ2(ul, vl) ≥ λ1(ul, vl) ≥ c ≥ λ2(ur, vr) ≥ λ1(ur, vr).

The waves which satisfy the above condition are said to be overcompressive.
We will also present one numerical procedure that generates a solution in a large

time interval and therefore gives a reasonable verification of theoretical results. The
numerical solutions will be obtained for the system (1) and its perturbation

ut + wt = 0

wt + (w2/u + µuγ)x = 0,
(4)

where 1 < γ < 3, wl/ul > wr/ur. Such perturbation is introduced in order to
get strictly hyperbolic system. The perturbed system (4) is called isentropic gas
dynamics model. We take γ to be constant or coupled with µ in such a way that
γ = γ(µ) → 1 as µ → 0. Contrary to a viscosity approximation when a perturbed
system is parabolic or mixed hyperbolic-parabolic, system (4) is hyperbolic so its
Riemann problem can be solved by a combination of the usual elementary wave
solutions.

In all three cases, the original problem and two different perturbations, the ob-
tained results are mutually consistent and also consistent with generalized solution.
Another interpretation of such result is that the numerical procedure used in this
paper is robust enough to be applied to weakly hyperbolic problems.

There is a large class of numerical methods dealing with conservation laws.
Roughly speaking, one can consider methods on fixed or moving meshes. As dis-
continuities propagate in time, the solution at a spatial point can change very
rapidly and therefore fixed spatial mesh requires extremely small time step. On the
other hand there is no justification for small time steps in smooth regions. That
is why a nonuniform mesh with reasonably large spatial step in smooth regions
and small step in discontinuity regions should be more efficient for this type of
problems. As shocks travel in time, mesh should also be able to adjust in time
so that points remain concentrated near discontinuities, thus maintaining a bal-
ance between computational costs and accuracy. Time adaptation can be done by
static re-griding technique, or it can be based on dynamic refinement in which the
mesh equation is explicitly derived. Based on the equidistribution principle, which
attempts to distribute some measure of solution error over the spatial domain, dy-
namic refinement naturally generates concentration of mesh points in the regions
of discontinuity. This technique leads to the coupled problem consisting of mesh
equation based on monitor function and physical PDE, see [4] or [14].

High resolution finite volume methods are employed to solve the physical PDE.
One of them is the wave propagation method introduced by LeVeque in [8] and
implemented in the software package CLAWPACK [7]. The method is based on
Godunov’s scheme and Roe’s solvers with addition of high resolution terms. One
of the implementations of this method, coupled with dynamic refinement of mesh
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with fixed number of spatial points is presented in [14]. That algorithm, with the
necessary adjustment to the specific problem we consider here, will serve as a base
for our experiments.

Delta shock waves can be obtained using the following procedure. The first
step is the smoothing of initial data (2) over some finite interval where a small
parameter ε > 0 denotes the smoothing width. The second step is to find a smooth
approximate solution depending on the given perturbation term to the Riemann
problem. Interpretation of the solution can be given in the framework of Colombeau
generalized functions algebras, like in [10] as already explained i.e solutions are
considered as nets of smooth functions depending on a parameter ε with equality
substituted by the distributional convergence as ε tends to zero.

Due to the specific nature of the delta shock waves (they contain δ-functions)
it is not possible to follow the solution to (1) numerically in a large time interval.
Therefore we will follow the solution only until a time point T where the delta
shock is clearly formed.

The situation is different for the perturbed system (4) even for a small value of
a perturbation coefficient µ. The solution is a combination of two shock waves in
the case wl/ul > wr/ur, and we can follow the numerical solution for quite a long
time.

The basic numerical algorithm will be the one presented in [14], with some
adaptation to the specific problem we consider. First of all we apply the smoothing
technique to initial data in order to avoid non-physical oscillations. The original
problem (1) is modified by introducing the perturbation term shown in [4]. The
monitor function used to distribute the mesh points is based on the arclength
function with a parameter that prevents too many points in the shock regions but
allows enough points in these regions. Furthermore the mesh is moving in spatial
domain with time in order to follow the waves. These parameters (smoothing,
perturbation, mesh parameter and spatial movement of the mesh) have a great
influence on performance of the method and therefore need careful adjustment.
Several properties of delta shock waves are exploited in order to check the relevance
of obtained numerical solution.

This paper is organized as follows. Section 2 deals with theoretical analysis and
establishes the existence of overcompressive delta shock wave solution in the frame-
work of Colombeua generalized functions. The numerical algorithm is presented in
Section 3. The algorithm is basically the one presented in [14]. Section 4 explains
the criteria for evaluation of numerical results and two different perturbation used
to get hyperbolic system. Numerical results are presented in Section 5.

2. Generalized solution

We shall briefly repeat some definitions of Colombeau algebra given in [12] and
[10]. Denote R2

+ := R× (0,∞), R2
+ := R× [0,∞) and let C∞b (Ω) be the algebra of

smooth functions on Ω bounded together with all their derivatives. Let C∞
b

(R2
+) be

a set of all functions u ∈ C∞(R2
+) satisfying u|R×(0,T ) ∈ C∞b (R × (0, T )) for every

T > 0. Let us remark that every element of C∞b (R2
+) has a smooth extension up

to the line {t = 0}, i.e. C∞b (R2
+) = C∞b (R2

+). This is also true for C∞
b

(R2
+).

Definition 1. EM,g(R2
+) is the set of all mappings G : (0, 1)×R2

+ → R, (ε, x, t) 7→
Gε(x, t), where for every ε ∈ (0, 1), Gε ∈ C∞

b
(R2

+) satisfies:
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For every (α, β) ∈ N2
0 and T > 0, there exists N ∈ N such that

sup
(x,t)∈R×(0,T )

|∂α
x ∂β

t Gε(x, t)| = (ε−N ), as ε → 0.

EM,g(R2
+) is an multiplicative differential algebra, i.e. a ring of functions with the

usual operations of addition and multiplication, and differentiation which satisfies
Leibnitz rule.
Ng(R2

+) is the set of all G ∈ EM,g(R2
+), satisfying:

For every (α, β) ∈ N2
0, a ∈ R and T > 0

sup
(x,t)∈R×(0,T )

|∂α
x ∂β

t Gε(x, t)| = O(εa), as ε → 0.

¤
Clearly, Ng(R2

+) is an ideal of the multiplicative differential algebra EM,g(R2
+),

i.e. if Gε ∈ Ng(R2
+) and Hε ∈ EM,g(R2

+), then GεHε ∈ Ng(R2
+).

Definition 2. The multiplicative differential algebra Gg(R2
+) of generalized func-

tions is defined by Gg(R2
+) = EM,g(R2

+)/g(R2
+). All operations in Gg(R2

+) are defined
by the corresponding ones in EM,g(R2

+). ¤
If C∞b (R) is used instead of C∞b (R2

+) (i.e.t = const = 0), then one obtains
EM,g(R), Ng(R), and consequently, the space of generalized functions on a real line,
Gg(R).

In the sequel, G denotes an element (equivalence class) in Gg(Ω) defined by its
representative Gε ∈ EM,g(Ω).

Since C∞
b

(R2
+) = C∞

b
(R2

+), one can define the restriction of a generalized func-
tion to the line {t = 0} in the following way.

For a given G ∈ Gg(R2
+), its restriction G|t=0 ∈ Gg(R) is the class determined

by a function Gε(x, 0) ∈ EM,g(R). In the same way as above, G(x− ct) ∈ Gg(R) is
defined by Gε(x− ct) ∈ EM,g(R).

If G ∈ Gg and f ∈ C∞(R) are polynomially bounded together with all its
derivatives, then one can easily show that the composition f(G), defined by a
representative f(Gε), G ∈ Gg makes sense. It means that f(Gε) ∈ EM,g if Gε ∈
EM,g, and f(Gε)− f(Hε) ∈ Ng if Gε −Hε ∈ Ng.

The equality in the space of the generalized functions Gg is too strong for our
purpose (see [11] for some nice examples), so we need to define a weaker relation,
the so-called association.

Definition 3. A generalized function G ∈ Gg(Ω) is said to be associated with
u ∈ D′(Ω), G ≈ u, if for some (and hence every) representative Gε of G, Gε → u
in D′(Ω) as ε → 0. Two generalized functions G and H are said to be associated,
G ≈ H, if G−H ≈ 0. The rate of convergence in D′ with respect to ε is called the
order of association. ¤

A generalized function G is said to be of a bounded type if

sup
(x,t)∈R×(0,T )

|Gε(x, t)| = O(1) as ε → 0,

for every T > 0.
G ∈ Gg is a positive generalized function if there exists its representative Gε and

a real a > 0 such that Gε(x, t) ≥ a, for every (x, t) ∈ R2
+. This condition on a

representative also means that G ≥ a.
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Let u ∈ D′L∞(R). Let A0 be the set of all functions φ ∈ C∞0 (R) satisfying
φ(x) ≥ 0, x ∈ R,

∫
φ(x)dx = 1 and supp φ ⊂ [−1, 1], i.e.

A0 = {φ ∈ C∞0 : (∀x ∈ R)φ(x) ≥ 0,

∫
φ(x)dx = 1, supp φ ⊂ [−1, 1]}.

Let φε(x) = ε−1φ(x/ε), x ∈ R. Then

ιφ : u 7→ u ∗ φε/Ng,

where u ∗φε/Ng denotes the equivalence class with respect to the ideal Ng, defines
a mapping of D′L∞(R) into Gg(R), where ∗ denotes the usual convolution in D′. It
is clear that ιφ commutes with the derivation, i.e.

∂xιφ(u) = ιφ(∂xu).

Definition 4. (a) G ∈ Gg(R) is said to be a generalized step function with
value (y0, y1) if it is of bounded type and

Gε(y) =

{
y0, y < −ε

y1, y > ε

Denote [G] := y1 − y0.
(b) D ∈ Gg(R) is said to be generalized delta function (δ-function, for short) if

its representatives are nonnegative functions supported in [−1, 1] such that∫
Dε(y)dy = 1. ¤

Suppose that the initial data are given by

u|t=T =

{
u0, x < X

u1, x > X
v|t=T =

{
v0, x < X

v1, x > X.

Definition 5. Delta shock wave is an associated solution to (3) of the form

u(x, t) = G(x− ct) + s1(t)D(x− ct)

w(x, t) = H(x− ct) + s2(t)D(x− ct),
(5)

where
(i) c ∈ R is the speed of the wave,
(ii) si(t), t ≥ 0 are smooth functions, si(0) = 0, i = 1, 2.
(iii) G and H are generalized step functions with values (u0, u1) and (v0, v1)

respectively, and D is a generalized delta function. ¤

Remark 1. The standard choice for a generalized delta function is Dε = φε, φ ∈ A0,
i.e. D = ιφ(δ), where δ is the delta distribution. Also, the standard choice for a
representative of a step function is G = ιφ(g) = g ∗ φε

/Ng, where

g =

{
y0, x < 0
y1, x > 0

∈ L∞

. The above definition does not provide a unique way to interpret the product of
generalized step and delta function (as in [10], where the representatives are chosen
in a special way), but this fact has not importance in the case of system (3) as will
be shown later.

We shall use the following three lemmas.
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Lemma 1. Let A ∈ Gg(R2
+) be of a bounded type, B ≥ τ > 0, τ ∈ R be a generalized

function in Gg(R2
+) and D ∈ Gg(R) be a generalized delta function. Then

A(x, t)
B(x, t) + s(t)D(x− ct)

≈ A(x, t)
B(x, t)

, (6)

for any smooth function s : R+ → R+.

Proof. Take a representatives Bε ≥ τ and Dε ≥ 0, supp Dε ⊂ [−ε, ε] of B and D,
respectively. Then

I =
∣∣∣
∫∫

R2
+

( Aε(x, t)
Bε(x, t) + s(t)Dε(x− ct)

− Aε(x, t)
Bε(x, t)

)
φ(x, t)dxdt

∣∣∣

≤
∫∫

supp φ∩{(x,t): |x−ct|<ε}

∣∣∣Aε(x, t)
Bε(x, t)

∣∣∣|φ(x, t)|dxdt.

Since |Aε(x, t)| ≤ C1 < ∞, the integrand of the last integral is bounded. The fact
that mes(suppφ ∩ {(x, t) : |x − ct| < ε}) ≤ const · ε proves that I → 0 as ε → 0.
Here mes denotes the Lebesque measure. ¤

Lemma 2. Let A, B and D be as above. Let s1, s2 : R+ → R+, i = 1, 2, be smooth
functions. Then

A(x, t)s1(t)D(x− ct)
B(x, t) + s2(t)D(x− ct)

≈ 0. (7)

Proof. It is easy to see that
∥∥∥ Aε(x, t)s1(t)Dε(x− ct)

Bε(x, t) + s2(t)Dε(x− ct)

∥∥∥
L∞(R2

+)
= Cε < ∞,

and

mes
(

supp
( Aε(x, t)s1(t)Dε(x− ct)
Bε(x, t) + s2(t)Dε(x− ct)

) ∩ supp φ
)

= O(ε), ε → 0,

for every φ ∈ C∞0 (R∞+ ). Thus
∫∫

R2
+

( Aε(x, t)s1(t)Dε(x− ct)
Bε(x, t) + s2(t)Dε(x− ct)

)
φ(x, t)dxdt → 0, ε → 0.¤

Remark 2. Let us notice that if the generalized delta functions from above have
different representatives, the relation (7) might be false . For example, if they have
representatives with disjoint supports, then the right-hand-side of (7) will be

(A(x, t)/B(x, t))s1(t)δ(x− ct)

instead of zero.

Lemma 3. Let A, D and si be as above. Suppose that B is of bounded type. Then

A(x, t)s1(t)D2(x− ct)
B(x, t) + s2(t)D(x− ct)

≈ A(x, t)
s1(t)
s2(t)

D(x− ct),

provided that s1(t)/s2(t) can be continuously prolonged to the point t = 0.
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Proof. Using the fact that Gg(R2
+) is a multiplicative algebra one gets

A(x, t)s1(t)D2(x− ct)
B(x, t) + s2(t)D(x− ct)

=
A(x, t)s1(t)D2(x− ct) + A(x, t) s1(t)

s2(t)
B(x, t)D(x− ct)

B(x, t) + s2(t)D(x− ct)

−
A(x, t) s1(t)

s2(t)
B(x, t)D(x− ct)

B(x, t) + s2(t)D(x− ct)

=
A(x, t) s1(t)

s2(t)
D(x− ct)

(
s2(t)D(x− ct) + B(x, t)

)

B(x, t) + s2(t)D(x− ct)

−
A(x, t) s1(t)

s2(t)
B(x, t)D(x− ct)

B(x, t) + s2(t)D(x− ct)

≈A(x, t)
s1(t)
s2(t)

D(x− ct).

In the last association process we have used relation (7). ¤

Now we are in the position to state the following theorem.

Theorem 1. There exists an overcompressive delta shock wave solution to (3,2) if
ul, ur > 0, wl/ul > wr/ur.

Proof. Let

u(x, t) = G(x− ct) + s1(t)D(x− ct)

w(x, t) = H(x− ct) + s2(t)D(x− ct)
(8)

where G and H are generalized step functions with values (ul, ur) and (wl, wr),
respectively, si : R+ → R+, si(0) = 0, i = 1, 2, are smooth functions, and D is a
generalized delta function. In the sequel we shall omit the argument x − ct. We
have

w2

u
=

(H + s2(t)D)2

G + s1(t)D
=

H2 + 2Hs2(t)D + s2
2(t)D

2

G + s1(t)D

=
H2

G + s1(t)D
+

2Hs2(t)D
G + s1(t)D

+
s2
2(t)D

2

G + s1(t)D
≈ H2

G
+ 0 +

s2
2(t)

s1(t)
D,

(9)

by Lemmas 1-3.
Substituting (8) into the first equation of (3) one gets

ut + wx ≈ −c[G]δ + s′1(t)δ − cs1(t)δ′ + s2(t)δ′ + [H]δ

= (s′1(t)− c[G] + [H])δ + (s2(t)− cs1(t))δ′ ≈ 0.

Thus, s1(t) = σt, s2(t) = cσt and

σ = c[G]− [H]. (10)
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Substitution of (8) into the second equation of (3) and use of (9) yields

wt +
(w2

u

)
x
≈ −c[H]δ + s′2(t)δ − cs2(t)δ′ +

[H2

G

]
δ +

s2
2(t)

s1(t)
δ′

=
(
cσ − c[H] +

[H2

G

])
δ + (c2σ − c2σ)δ′

=
(
cσ − c[H] +

[H2

G

])
δ = 0,

i.e.

c(σ − [H]) +
[H2

G

]
= 0. (11)

Solving (10) and (11) gives

c =
wr − wl ± |wr/ur − wl/ul|√ulur

ur − ul
.

Adding the overcompressiveness condition

wl/ul ≥ c ≥ wr/ur,

one gets the following final result for the speed of the delta shock wave

c =
wr − wl + (wl/ul − wr/ur)

√
ulur

ur − ul
,

if [G] 6= 0, and otherwise

c =
wl + wr

2ur
.

In the both cases

σ = (wl/ul − wr/ur)
√

ulur. (12)

This proves the theorem. ¤

Remark 3. (a) Let us notice that the solution obtained in the previous theorem is
associated to the distributions

U(x, t) ≈
{

ul, x < ct
ur,x > ct

+
(

wl

ul
− wr

ur

)√
ulurtδ(x− ct),

W (x, t) ≈
{

wl, x < ct
wr, x > ct

+
(

wl

ul
− wr

ur

)√
ulurctδ(x− ct),

(13)

where

c =
[GH]− [H]

√
ulur

[G]
or c =

wl + wr

2ur
if [G] = 0.

(b) The same limit is obtained in [10] for (1) if one takes w = uv with using
singular shock wave solution. But comparing with that one, our solution does not
have non-zero correction factors.
(c) Since the value of v on the line x = ct is determined to be c in [1], [5] or [16]
the measure-theoretic product uv gives the same solution (13).



NUMERICAL VERIFICATION OF DELTA SHOCK WAVES 9

3. The numerical algorithm

The algorithm we use here is a modification of the algorithm introduced in [15].
Therefore, we will explain it briefly with a detailed explanation of the changes we
made in order to get more efficiency and better resolution. of the particular problem
we are interested in.

For a problem of the following form

ut + f(u)x = 0

the procedure is based on two independent parts: a mesh redistribution algorithm
and a solution algorithm. We shall first explain the solution algorithm.

Let {tn} denote the sequence of time steps with ∆tn = tn+1 − tn. Assume that
a spatially fixed mesh on the computational domain [a, b] is given by

x = x(ξ), ξj = j/(J + 1), 0 ≤ j ≤ J + 1,

where ξ ∈ [0, 1], and

x(0) = a and x(1) = b.

The Godunov scheme (see [8]) assumes that the solution is piecewise constant on
each subinterval [xj , xj+1] and the discrete solution is taken as an average value of
the actual solution along the lower cell boundary,

Un
j =

1
∆xn

j

xj+1/2∫

xj−1/2

u(x, t)dx,

where ∆xn
j = xn

j+1/2 − xn
j−1/2 presents the local spatial step. The method requires

the solution of Riemann problems at every cell boundary in each time step. Doing
so in practice can be very expensive, especially for nonlinear problems, as is the case
with problem (1). Therefore, it is advisable to introduce an approximate Riemann
solver. One possibility is the well-known Roe solver, see [13].

The Roe solver is based on the linearized system

ut + Â · ux = 0, (14)

where Â is an m×m matrix with the following properties

Â(ul, ur)(ur − ul) = f(ur)− f(ul), (15)

Â(ul, ur) is diagonizable with real eigenvalues, (16)

Â(ul, ur) −→ f ′(u) when ul, ur −→ u. (17)

The Roe linearization will be discussed in details later on. Right now let us
assume that the appropriate linearization is available and proceed with solution
procedure for the linear problem (14). Notice that (16) implies that Â is diagoniz-
able with real eigenvalues, so we can decompose it into

Â = RΛR−1,
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where Λ = diag(λ1, λ2, ..., λm) is a diagonal matrix of eigenvalues and R = [r1 |
r2 | ..... | rm] is the matrix of the appropriate eigenvectors. Let us introduce the
following notation

λ+
p =max(λp, 0), Λ+ = diag(λ+

1 , ..., λ+
m),

λ−p =min(λp, 0), Λ− = diag(λ−1 , ..., λ−m),

Â+ = RΛ+R−1, Â− = RΛ−R−1.

Now, for the linearized system (14) Godunov’s method takes the form

Un+1
j = Un

j −
∆tn
∆xj

[
Â−(Un

j+1 − Un
j ) + Â+(Un

j − Un
j−1)

]
. (18)

Besides that, the scheme requires the time step to satisfy the Courant-Friedrichs-
Levy stability condition [9],

ν = max
j,p

∣∣∣∣
∆tn
∆xj

λp(Un
j )

∣∣∣∣ ≤ 1. (19)

Although, in practice a more restrictive condition ν ≤ 0.9 is used. It is also impor-
tant to mention that the Godunov scheme is implemented in the software package
CLAWPACK ([7]) and we used this implementation.

Let us finally discuss the Roe linearization procedure determined by (15) - (17).
The condition (15) is reflecting R-H discontinuity condition in the solution. From
(16) we get that the system is hyperbolic and solvable and (17) imply consistency
with the original nonlinear system. In order to get an appropriate

ut + Âux = 0.

we start with condition (15) and get the equation
[

α β
γ δ

]
·
[

ur − ur

wr − wl

]
=

[
wr − wl
w2

r

ur
− w2

l

ul

]
.

Starting from this equation and using condition (17) we get the matrix Â,

Â =

[
0 1

−wrwl

ulur

wr

ur
+

wl

ul

]
.

Clearly, conditions (15) and (17) are satisfied. The eigenvalues of Â are

λ1,2 =
1
2

(
wr

ur
+

wl

ul
±

∣∣∣∣
wr

ur
− wl

ul

∣∣∣∣
)

and the corresponding eigenvectors

r1 =
[

1
λ1

]
and r2 =

[
1
λ2

]
.

The system (3) we considered in our paper is weakly hiperbolic, i.e. the two
eigenvalues λ1 and are λ2 the same. One typical approach to fix the lack of hiper-
bolicity is to add an pertubation term to the system (See section 4.2), in order
to get a hyperbolic system. Therefore we will consider two cases: λ1 6= λ2 for
the system with perturbation and λ1 = λ2 for the weakly hyperbolic case - the
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system without perturbation. Since the solution to a Riemann problem of a linear
hyperbolic system of PDE’s consists of jumps of the form

[U ] =
∑

p

αprp,

see [8], we have
[

ur − ul

wr − wl

]
=α1r1 + α2r2

=α1

[
1
λ1

]
+ α2

[
1
λ2

]
.

(20)

If λ1 6= λ2 relation (20) yields
ur − ul =α1 + α2

wr − wl =α1λ1 + α2λ2,

so we have

(α1, α2) =
(

wr − wl + λ2(ul − ur)
λ1 − λ2

,
wl − wr + λ1(ur − ul)

λ1 − λ2

)
.

Let us now explain how to handle weakly hyperbolic system (3) without pertur-
bation. Since we have λ1 = λ2, there holds r1 = r2, and (20) gives

ur − ul =α1 + α2

wr − wl =(α1 + α2)λ1.

One of possible solutions of the above system is

(α1, α2) = (0, ur − ul)

and therefore the weak hyperbolic system is also solvable. Thus we have shown
that the Roe linearization exists in both cases.

Let us now explain the mesh redistribution algorithm.
The equidistribution principle (a detailed explanation can be found in [6]) is

formulated as Mxξ = constant or equivalently

(Mxξ)ξ = 0 (21)

for a monitor function M(x, y) > 0. Generally speaking, the monitor function is an
appropriately chosen measure of numerical solution of the physical PDE. In order
to solve the mesh redistribution equation (21), in [15] it is suggested to take an
artificial time τ and solve

xτ = (Mxξ)ξ, 0 < ξ < 1 (22)

with boundary conditions x(0, τ) = a and x(1, τ) = b. Making discretization of (22)
we get

x̃j = xj +
∆τ

∆ξ2
[Mj(xj+1 − xj)−Mj−1(xj − xj−1)], (23)

where ∆ξ = 1/(J +1). Solving (23) with boundary conditions x0 = a and xJ+1 = b
leads to a new grid.

In [15] it is also suggested to use the following Gauss-Seidel type iteration to
solve the mesh moving equation (21):

Mn
j (xn

j+1 − xn+1
j )−Mn

j−1(x
n+1
j − xn+1

j−1 ) = 0. (24)
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In the above mentioned paper it is demonstrated that the new mesh {xn+1} gen-
erated by (24) keeps the monotonic order of {xn}.

n this paper, we will introduce an alternative approach. We will use a Newton-
type iteration to solve (21):

Mj(xn+1
j+1 − xn+1

j )−Mj−1(xn+1
j − xn+1

j−1 ) = 0. (25)

Let us demonstrate that the new mesh {xn+1} generated by (24) keeps the mono-
tonic order of mesh points {xn}.
Lemma 4. Assume xn

j > xn
j−1, for 1 ≤ j ≤ J. If the new mesh {xn+1} is obtained

by using Newton’s iterative scheme for (23), then xn+1
j > xn+1

j−1 , for 1 ≤ j ≤ J.

Proof. From (23) we have

Mjx
n+1
j+1 − (Mj + Mj−1)xn+1

j + Mj−1x
n+1
j−1 = 0,

which gives
−αjx

n+1
j+1 + xn+1

j − βjx
n+1
j−1 = 0, (26)

after dividing by −(Mj + Mj−1). Here

αj =
Mj

Mj + Mj−1
and βj =

Mj−1

Mj + Mj−1
.

Obviously, αj , βj > 0. Since αj + βj = 1, equation (26) yields

(βj − 1)xn+1
j+1 + xn+1

j ± βjx
n+1
j − βjx

n+1
j−1 = 0,

which implies

(xn+1
j − xn+1

j+1 )− βj(xn+1
j−1 − xn+1

j ) = βj(xn+1
j − xn+1

j+1 ),

i.e.
(xn+1

j − xn+1
j+1 )− βj(xn+1

j−1 − xn+1
j ) = (1− αj)βj(xn+1

j − xn+1
j+1 ),

which gives

(xn+1
j − xn+1

j+1 )− (1− αj)(xn+1
j − xn+1

j+1 ) = βj(xn+1
j−1 − xn+1

j ),

i.e.
αj(xn+1

j − xn+1
j+1 ) = βj(xn+1

j−1 − xn+1
j ). (27)

Suppose
xn+1

j−1 > xn+1
j , i.e. xn+1

j−1 − xn+1
j > 0 (28)

for some j, 1 < j < J. Relations (27), (28) and positivity of αj and βj yields

xn+1
j − xn+1

j+1 > 0, i.e. xn+1
j > xn+1

j+1 .

Continuing in such a way we get

a = xn+1
0 > ... > xn+1

j−1 > xn+1
j > xn+1

j+1 > ... > xn+1
J = b,

which is impossible. Therefore, xn+1
j < xn+1

j+1 for all j, 1 ≤ j ≤ J. ¤
Few remarks about the monitor function M are due here. If M is the arc-length

function, i.e.
M =

√
1 + |ux|2,

then the corresponding centered finite difference approximation is given by

Mj =

√
1 +

∣∣∣∣
U j+1 + U j

xj+1 − xj

∣∣∣∣,
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where
U j = (Uj+1∆xj + Uj∆xj+1)/(∆xj+1 + ∆xj).

As M is largest where the solution changes most rapidly, the spatial points con-
centrate in regions with large gradient changes. In order to avoid local oscillation
due to the large gradient changes, it is useful to replace the mesh function with a
regularized version M̃i. The regularized function we use in this paper is suggested
in [15] and is given by

M̃j ≈ 1
4
(Mj+1 + 2Mj + Mj−1). (29)

Using (25) and (29) we get

M̃n,m
j xn,m+1

j+1 − (M̃n,m
j + M̃n,m

j−1 )xn,m+1
j + M̃n,m

j−1 xn,m+1
j−1 = 0. (30)

To balance the number of points inside a steep internal layer, we use a regularizing
factor α in the following manner:

M =

√
1 +

1
α
|ux|2,

where α > 1. The factor α allows us to reduce the magnitude of the monitor
function in situations where |ux| is very large, thereby avoiding over-resolution of
steep layers, while also ensuring that M still retains a significant peak near these
discontinuities. Different approaches in scaling α, based on the maximum solution
value, maximum derivative value or the average value of the derivative over the
spatial domain, suggested in [4], [8] and [14] respectively, have been successful with
linearized mesh equation, but do not behave well in nonlinear case. Therefore, in
[15] the regularizing factor is suggested to be taken for free. However, in the region
where the monitor function has high magnitude, there is a significant number of
points, so ∆xj goes to zero. Thus, in some time step, while moving the mesh from
{xn,m

j } to {xn,m+1
j } the CFL number (19) can go out of the feasible range (i.e.

ν > 0.9). So one has to interrupt the moving mesh procedure by taking the previous
mesh {xn,m

j }, although ‖xn,m
j − xn,m−1

j ‖ > ε. In order to avoid such interruption
of the numerical procedure if ν > 0.9, we suggest increasing the regularizing factor
with some fixed amount and performing the current time step again.

Since the shock travel within spatial domain with time it is necessary to generate
mesh that is also moving within spatial domain. Otherwise we would not be able to
follow the solution for longer time intervals. This mesh adjustment is done using the
following procedure. The current spatial domain is divided into two parts according
to the position of the maximum of the numerical solution. If the interval on the
left side of the maximum is longer than the right one, the first point from the left
interval is catted and a new point is added to the end of the other interval. The
procedure is to be repeated until the two intervals are of equal length.

Using the algorithm proposed in [15] with the modifications explained above we
get the following numerical procedure.

Algorithm.

Step 1: Given an initial solution U0 at time t = t0, equidistribute the mesh
exactly using a discretization of the exact equidistribution principle (Mx)ξ = 0.
Given an initial value α∗, set α = α∗.
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Step 2: Increase the time level to t = tn+1 and take a guess at the new mesh
positions using

{
xn+1,0

j

}
=

{
xn

j

}
and move grid from

{
xn+1,m

j

}
to

{
xn+1,m+1

j

}

using (30) and compute
{

Un+1,m+1
j

}
on the new grid based on the Godunov scheme

(18) with ν ≤ 0.9. If ν > 0.9, go set α := α + 10 and go to the beginning of Step 2.
Repeat the updating procedure until

∥∥xn+1,m+1 − xn+1,m
∥∥ ≤ ε.

Step 3: Compute
{
Un+1

j

}
on the new mesh

{
xn+1

j

}
obtained in the pervious

step to get the solution approximations at time level tn+1.
Step 4: Adjust the mesh such that the position of the maximizer (spatial point

for which the current approximation has maximal value) is approximately the mid-
dle mesh point.

Step 5: If tn+1 ≤ T, go to step 2.

4. Application to the solutions with singular shock

4.1. Pressureless system. Denote with us and ws the singular parts of the delta
shock wave (5), i.e.

us(x, t) =s1(t)D(x− ct)

ws(x, t) =s2(t)D(x− ct),

and set
Q(t) :=

∫
Us(x, t)dx and P (t) :=

∫
Ws(x, t)dx, t > 0.

Clearly, Q and P represent the surfaces below the non-constant parts of the solution
components. The definition of delta function implies

∫
Ddx ≈ 1, so Q ≈ s1(t). By

(12) and (13) one gets

Q ≈ σt ≈
(

wl

ul
− wr

ur

)√
ulurt, (31)

P ≈ cσt ≈ c

(
wl

ul
− wr

ur

)√
ulurt. (32)

From (31) and (32) there follows that both P and Q are linearly time dependent,
so their ratio is constant, i.e. P/Q = c.

4.2. Perturbation by a hyperbolic system. Consider now the isentropic (p-
system) gas dynamics system

ut + (uv)x = 0

(uv)t + (uv2 + µp(u))x = 0

with the initial data

u(x, 0) =
{

ul, x < 0
ur, x > 0 , v(x, 0) =

{
vl, x < 0
vr, x > 0 ,

where p(u) = µuγ , γ ∈ (1, 3).
One can take µ = (γ − 1)2/(4γ) and letting µ → 0 we have γ → 1 what is a

physical constitution law, see page 253 of [3]. In numerical tests we shall consider
the following cases:

(1) γ = 5
3 - approach adopted by [15],

(2) γ = γ(µ),
(3) µ = 0.
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Obviously γ = 5/3 is more simple than γ = γ(µ) but if γ = 5/3 then the velocity c
is zero and thus one gets the wave without spatial movements. Also µ = 0 implies
that there is no change in original system, while the perturbation (2) introduced
in this paper has physical meaning and leads to relievable results for decent time
intervals as will be shown here.

Since we are doing the case when the vacuum state does not appear, it is possible
to look at the system after the change of variables uv 7→ w,

ut + (w)x = 0

wt + (w2/u + µp(u))x = 0

with new initial data

u(x, 0) =
{

ul, x < 0
ur, x > 0 , w(x, 0) =

{
wl = ulvl, x < 0
wr = urvr, x > 0 ,

where wl/ul > wr/ur.
The isentropic system is strictly hyperbolic with both of the fields being genuinely

nonlinear. The shock curves are given by

Si : wr − wl =
wl

ul
(ur − ul) + (−1)i

√
ur

ul

µuγ
r − µuγ

l

ur − ul
(ur − ul)

(−1)i(ur − ul) < 0, ul, ur > 0.

In [1], the authors proved that for each pair (ul, wl), (ur, wr) such that wl/ul >
wr/ur, solution consists of two shock waves, and this solution tends to a delta
shock wave as µ → 0. The obtained delta shock wave in the limit is the same as
the one solving pressureless system (when µ = 0). With the same arguments as in
that article, one can prove that this stays true for renormalized γ. These facts are
verified numerically here for pressureless system.

5. Numerical Results

Let us now consider the system (3) with the initial data (2). Since the ini-
tial conditions are discontinuous, the selection of an appropriate initial mesh is of
particular importance. In order to allow mesh points to concentrate on or near
the initial discontinuities, the data must be smoothed over some finite width. We
therefore replace (2) with a smoothed function of the form

Ũ(x) = Ul +
1
2
(Ur − Ul)

(
1 + tanh

(x

ε

))
,

where Ul = (ul, wl), Ur = (ur, wr) and ε = 0.005 as the smoothing width.
The description of parameters used in our examples can be found in Table 1.
Parameter Description
t time
[x1, x2] spatial domain
J number of mesh points
α∗ initial value of the regularizing factor
α final value of the regularizing factor obtained by the program
µ perturbation coefficient tending to zero
γ ∈ (1, 3) is fixed or depending on µ

Table 1. The description of parameters used in our examples
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We use the following data for numerical examples.

Ul = (1, 0.2), Ur = (1.2, 0.2),
x2 − x1

J
=

1
20

, α∗ = 10.

We compare the results obtained without and with perturbation by the isentropic
system. In the later case we take µ ∈ {0.01, 0.001, 0.0001}, γ = 2µ + 2

√
µ + µ2

and γ = 5
3 . Theorem 1 gives the predicted speed c = 0.18257 and mass quotient

P/Q = 0.18257. Also one can easily check that both of P and Q are linearly time
dependent.

The results are the summarized in the following tables.
P Q P/Q

t1 = 12.1435 0.07693 0.42481 0.18110
t2 = 24.0287 0.15087 0.83043 0.18168
t3 = 36.0157 0.22886 1.25012 0.18307
t4 = 48.1054 0.30914 1.68753 0.18319
t5 = 60.136 0.38428 2.10093 0.18291

Table 2. System without perturbation, µ = 0

P Q P/Q cl cr

t1 = 6.1106 0.01911 0.14452 0.13209 0.04909 0.29457
t2 = 12.0250 0.03751 0.23418 0.16017 0.04158 0.29106
t3 = 18.0682 0.05633 0.31383 0.17948 0.04981 0.30440
t4 = 24.1149 0.07515 0.39349 0.19099 0.05805 0.31101
t5 = 30.0423 0.09361 0.49316 0.18982 0.05325 0.31289

Table 3. γ = 5/3, µ = 0.01

P Q P/Q cl cr

t1 = 20.0015 0.12631 0.71752 0.17603 0.14000 0.2200
t2 = 40.0338 0.25264 1.37278 0.18403 0.14488 0.22231
t3 = 60.0916 0.37906 2.02281 0.18690 0.14145 0.2230
t4 = 80.1589 0.50549 2.71331 0.18630 0.14346 0.22081
t5 = 100.0650 0.63087 3.41852 0.18455 0.14490 0.21986

Table 4. γ = 5/3, µ = 0.001

P Q P/Q cl cr

t1 = 60.1454 0.39319 2.14957 0.18292 0.17458 0.19785
t2 = 120.021 0.78106 4.24315 0.18408 0.17663 0.19580
t3 = 180.134 1.16688 6.36874 0.18322 0.17598 0.19707
t4 = 240.068 1.55000 8.51507 0.18199 0.17745 0.19619
t5 = 300.183 1.93262 10.6857 0.18086 0.17656 0.19655

Table 5. γ = 5/3, µ = 0.0001

P Q P/Q cl cr

t1 = 6.0973 0.02554 0.19425 0.13146 0.07380 0.27881
t2 = 12.0013 0.05016 0.31376 0.15987 0.07499 0.27070
t3 = 18.0444 0.07454 0.43330 0.17394 0.07759 0.27709
t4 = 24.0924 0.10059 0.54286 0.18530 0.07471 0.27394
t5 = 30.0142 0.12529 0.65243 0.19203 0.07663 0.27987

Table 6. γ = 2µ + 2
√

µ + µ2, µ = 0.01
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P Q P/Q cl cr

t1 = 20.0051 0.12887 0.73363 0.17567 0.15496 0.20495
t2 = 40.0855 0.25841 1.43772 0.17973 0.15467 0.20955
t3 = 60.0263 0.38695 2.12212 0.18234 0.15493 0.20658
t4 = 80.1492 0.51660 2.80646 0.18407 0.15721 0.20587
t5 = 100.103 0.64511 3.49079 0.18480 0.15884 0.20878

Table 7. γ = 2µ + 2
√

µ + µ2, µ = 0.001

P Q P/Q cl cr

t1 = 100.148 0.64534 3.53227 0.18270 0.18073 0.19172
t2 = 200.071 1.25455 6.83558 0.18353 0.18093 0.19143
t3 = 300.024 1.84601 10.0449 0.18378 0.18165 0.19165
t4 = 400.021 2.42775 13.2112 0.18376 0.18174 0.19124
t5 = 500.026 3.00301 16.3527 0.18364 0.18179 0.19099

Table 8. γ = 2µ + 2
√

µ + µ2, µ = 0.0001

It is quite obvious from the presented tables that the perturbation parameter µ
allows computation of an approximate solution for quite long time intervals. In fact
the results in Table 1 obtained without perturbation with the described numerical
procedure are good but we are unable to follow the solution after T ≈ 60. This
is obviously better than the time reported in [1] and we believe that this fact is a
consequence of numerical procedure used in this paper.

All other tables are obtained with perturbation parameter and clearly indicate
the ability of numerical procedure to follow the approximate solution for quite a
long time. Also smaller µ implies larger T. Since the main idea in numerical method
was to confirm theoretical expectation that perturbation of weakly hyperbolic sys-
tem into strictly hyperbolic implies existence of delta shock, larger T is certainly
desirable property. Couple of differences that are noticeable from Tables 2-8 favors
the use of γ(µ). For γ = 5/3 there is a slight decrease in P/Q after some time.
We think that such decrease is a consequence of error accumulation. Such effect
does not exist when we use γ(µ). Further more γ(µ) has physical meaning since
small µ implies that pressure goes to zero and the original problem is pressureless,
[3]. Additional quality of numerical approximation with γ(µ) is that the difference
between c1 and c2 is smaller than the difference obtained for γ = 5/3.

Figures 1 and 2 show the difference between approximate solution without and
with perturbation parameter. The first two pictures show functions u and w at
final T. Three dimensional pictures are given in the second row while the third
row contains P/Q. In both cases we have clearly formed delta shocks, with greater
width in Figure 2 as expected. Mass quotients for both perturbations, γ = 5/3 and
γ = γ(µ) are compared on Figure 3. In all cases we are approaching the theoretical
value but smaller µ implies better behavior. As a conclusion we can state that the
applied numerical procedure successfully deals with this kind of problems and the
obtained numerical results are in concordance with theoretical expectations.
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[9] LeVeque, R.J., Temple, B., Stability of Godunov’s method for a class 2×2 systems of con-

servation laws, Trans. Amer. Math. Soc. 288, 1985.
[10] Nedeljkov, M., Delta and singular delta locus for one dimensional systems of conservation

laws, Math. Meth. Appl. Sci. 27 (2004), 931-955.
[11] Oberguggenberger, M., Multiplication of Distributions and Applications to Partial Differen-

tial Equations, Pitman Res. Not. Math. 259, Longman Sci. Techn., Essex, 1992.
[12] Oberguggenberger, M. and Wang, Y-G., Generalized solutions to conservation laws, Zeitschr.

Anal. Anw. 13(1994), 7-18.
[13] Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Com-

put. Phys., 43 (1981).



NUMERICAL VERIFICATION OF DELTA SHOCK WAVES 19

90 95 100
x

2

3

4

u

90 95 100
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9
w

100
200

300

400

50

100

150

1

1.2

1.4

100
200

300

400

100
200

300

400

50

100

150

0.2

0.21

0.22

100
200

300

400

100 200 300 400 500
t

0.025

0.05

0.075

0.1

0.125

0.15

0.175

P�Q

Figure 2. γ = 2µ + 2
√

µ + µ2, µ = 0.0001

[14] Stockie, J. M., Mackenzie, J. A., Russell, R. D., A moving mesh method for one-dimensional
hyperbolic conservation laws, http://www.siam.org/journals7sisc/22-5/36422.html, (2001).

[15] Tang, H., Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conser-
vation laws, Peking, Hong Kong.

[16] Yang, H., Riemann problems for a class of coupled hyperbolic systems of conservation laws,
J. Diff. Eq. 159 (1999), 447-484.
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