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Abstract

Quasi-Newton methods for solving singular systems of nonlinear equa-
tions are considered in this paper. Singular roots cause a number of prob-
lems in implementation of iterative methods and in general deteriorate
the rate of convergence. We propose two modifications of QN methods
based on Newton’s and Shamanski’s method for singular problems. The
proposed algorithms belong to the class of two-step iterations. Influence
of iterative rule for matrix updates and the choice of parameters that keep
iterative sequence within convergence region are empirically analyzed and
some conclusions are obtained.
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1 Introduction

Consider the problem of solving a system of nonlinear equations

F (x) = 0 (1)

where F : Rn → Rn is nonlinear mapping. We assume that there exists a
solution x∗ ∈ Rn. If F is continuously differentiable in the neighborhood of x∗,
F ′ is Lipschitz continuous at x∗ and F ′(x∗) is a nonsingular matrix, the problem
(1) is called nonsingular and x∗ is a nonsingular root. If F ′(x∗) is a singular
matrix, then the problem (1) is singular and x∗ is a singular root.
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If (1) is nonsingular then the most famous iterative method is the Newton
method

xk+1 = xk − F ′(xk)−1F (xk)

which possesses good theoretical characteristics such as quadratic convergence
and affine invariance. Despite its obvious qualities, this method has a number of
disadvantages in practice. It is primarily the case with the high cost of a Newton
iteration, due to necessity to compute all elements of the Jacobian matrix, as
well as the need for exact solution of a linear system using new matrix for every
iteration. Therefore, many modification of Newton method have been proposed.
One group of modifications are Quasi-Newton methods. The basic idea behind
any Quasi-Newton method is to eliminate computation of the Jacobian in every
iteration. Detailed overviews of Quasi-Newton methods are presented in [18]
and [31].

When the problem (1) is singular, the performance of Newton and Quasi-
Newton methods deteriorates. A number of proposals for modification of the
Newton method for singular systems have been considered in literature. Roughly
speaking, we can distinguish between two classes of modifications. The first
class are methods with two-step iteration like the ones presented in [13] for
Newton’s method, [14] for Shamanski’s method and in [15] for inexact Newton’s
method. The second class of modifications are tensor methods introduced in
[27], [7], [1]. The basic idea behind the tensor method is to use the Hessian,
i.e., the second derivative of F and thus achieve better convergence rate for
singular problems. Theoretical analysis of both classes of methods for singular
problems is cumbersome and technically demanding. In the last decade, analysis
of continuous Newton method is in focus too, see [10],[11]. Singular problems
and continuous methods are considered in [12],[20],[23],[24],[25], [26]. In [26] it
is shown that the quadratic converegence to singular roots can be recovered by
using two-stage integration schemes for the continuous Newton method, which
is the extension of the results derived heuristically by Kelley and Suresh [13],
for their two-step iteration scheme.

In this paper we consider the class of singular problems that is character-
ized by rank(F ′(x∗)) = n − 1 or the so-called problems with regular singular-
ity. For such problems we propose two possible modifications of QN methods
and investigate their properties empirically using a collection of test problems.
The considered QN methods - Broyden’s method, Mart́ınez’s Column Updat-
ing Method and Thomas’ method are well known for their good behaviour in
the case of nonsingular systems, see [29]. Thus their modification for singular
problems is an attractive possibility. The application of the Broyden method
to singular problems is already analysed in [6]. Based on the theoretical results
available for the Newton, Shamanski and Inexact Newton method we conclude
that QN methods should behave better if the same kind of two-step iterative
procedure is applied. Therefore we propose two possibilities for such modifi-
cation and analyse their numerical behaviour. All considered QN methods use
two consequtive iterations for the matrix update. Since we are dealing with
a two-step iterative procedures each iterative step yields two iteration points,
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mid-iteration vk and full-iteration xk+1. So two obvious possibilities arise for the
update rule of QN matrix - either two consequtive iterations or mid- and full
iteration can be used to derive the update of QN matrix. The results presented
in this paper strongly favour the update with full iterations only. Conclusions in
this paper are based only on numerical results but the presented results suggest
that the proposed modification has useful properties. Theoretical analysis will
be the subject of future research.

This paper is organized as follows: in Section 2 we consider behaviour of
Quasi-Newton methods near singularities, practical acceleration algorithms for
a nonlinear system at singular roots are introduced in Section 3, numerical
results and comparisons are given in Section 4 and conclusions are presented in
the last section. Throughout this paper we will use the Euclidean norm denoted
by ‖ · ‖.

2 The behaviour of Newton-like method near
singularities

The convergence behavior of an iterative sequence depends on the nature of
singularity of F ′(x∗). Therefore, during our analysis we assume the following
singular assumptions, [6].

A1. F is twice Lipschitz continuously differentiable.

A2. rank(F ′(x∗)) = n− 1.

A3. Let N be the null space of F ′(x∗) spanned by ϕ ∈ Rn and X the range
space such that Rn = N ⊕X. For any projection PN onto N parallel to
X we assume

PNF
′′(x∗)(ϕ,ϕ) 6= 0.

If singular assumptions A1-A3 are satisfied then F ′(x) is singular on the
manifold S = {x ∈ Rn| detF ′(x) = 0} and x∗ ∈ S. Also S is transversal to ϕ.
All these sets are illustrated at Figure 1 by a simple example.

Assumptions A1-A3 can be modified and generalized. The assumption
F ′′(x∗)(φ, φ) 6∈ range(F ′(x∗)) is an alternative statement of assumption A3, but
note that this need not assume that the range is transversal to N, see [24],[25].
Example 1. [22]

F (x) =

[
x1 + x1x2 + x22
x21 − 2x1 + x22

]
The singular root is x∗ = (0, 0)T , null space is N = span(0, 1) and range

space is X = span(1,−2). The Jacobian F ′(x) is singular on the hyperbole given
by 2x1 − 2x21 + 6x2 − 4x1x2 + 2x22 = 0.
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Figure 1

The first and the most important results about Newton method in singular
case are presented in [22] and [8], one analysis of the Broyden method is given
in [6] and properties of the chord or fixed Newton method for singular problem
are analyzed in [5].

It is clear that the proper choice of x0 is much more difficult in the singular
case due to singularity of Jacobian on the manifold S. Therefore the region for
initial approximation must be modified. The initial ball from the nonsingular
problem B(ρ) = {x ∈ Rn| ||x∗ − x|| ≤ ρ} is replaced by a cone defined by

W (ρ, θ, ν) = {x ∈ Rn‖ 0 < ||x∗ − x|| < ρ, ||PX(x− x∗)|| ≤ θ||PN (x− x∗)||ν}.

For ν = 1 the set W (ρ, θ, ν) is a cone which corresponds to folded singularities
and it is the main one considered in this paper. The class of methods we
considered can be described by the general algorithm presented below.

Algorithm QN: Quasi-Newton

Let x0 ∈ Rn and B0 ∈ Rn×n be given.

For k = 0, 1, 2, . . .

Step 1. Compute sk from
Bks

k = −F (xk). (2)

Step 2. Define xk+1 = xk + sk.

Step 3. Update the approximation of the Jacobian

Bk+1 = G(Bk, x
k+1, xk),

where G is an iterative function for approximation of the Jacobian.

Clearly, each QN method of this class is determined by a particular function
G in Step 3. We will consider the following four QN methods.

1. Fixed Newton method

Bk+1 = G(Bk) = B0, k = 0, 1, 2, . . . .

The method is very cheap, but the convergence for nonsingular problems
is only linear if B0 is a good enough approximation of F ′(x∗) and x0 is
close enough to x∗.
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2. Broyden’s method, [2]. The update rule is given by

Bk+1 = G(Bk, x
k, xk+1) = Bk +

(yk −Bksk)sk
T

(sk, sk)
, k = 0, 1, 2, . . . , (3)

where yk = F (xk+1) − F (xk) and sk = xk+1 − xk. The Broyden method
is the most popular QN method. Under the standard (nonsingular) as-
sumptions there exist ε > 0 and δ > 0 such that if ||B0−F ′(x∗)|| < ε and
||x0 − x∗|| < δ then the sequence {xk} obtained by the Broyden method
converges superlinearly.

3. Mart́ınez’s Column Updating Method - MCUM, [17]

Let α ∈ (0, 1√
n

) and j ∈ {1, 2, . . . , n} be an index such that |sj | > α||sk||.
Let us denote by Ikj ⊆ {1, . . . , n} the set of indices of elements from jth
column which should be modified. Then the matrix Bk+1 differs from Bk
only in the jth column,

bk+1
ij =


yi−
∑

l 6=j
bkils

k
l

sk
j

, i ∈ Ikj

bkij , i 6∈ Ikj
, k = 0, 1, 2, . . . (4)

Theoretically, this method is superlinearly convergent only if restarted i.e.,
Bi·m = F ′(xi·m) for some m ∈ N, and i = 1, 2, . . .. However in practice
it converges without a restart. Some modifications of this method are
presented in [19].

4. Thomas’ method, [30]. The update rule is given by

Bk+1 = G(Bk, x
k, xk+1) = Bk +

(yk −Bksk)dk
T

(dk, sk)
, k = 0, 1, 2, . . . , (5)

where dk = (Pk + ‖s
k‖
2 I)sk, Pk+1 = (1 + ‖sk‖)(‖sk‖I +Pk− dkdk

T

(dk,sk)
), P0 is

given and yk = F (xk+1)−F (xk). If the standard assumptions are satisfied
then the Thomas method is locally superlinearly convergent, [30], [29].

Thomas’ method belongs to the same class of rank one updates as Broy-
den’s method. It was introduced in [30]. Although it has not seen wide
application, probably due to lack of proper understanding, [18], some
numerical studies show its good properties, [29]. The method applies
geometrical sequential estimation techniques in calculation of the Quasi-
Newton matrix Bk as an estimate for the Jacobian matrix. Behavior of
Thomas’ method for a special class semismooth system is investigated in
[3]. Although less popular, the method appears to be comptetitive with
Broyden’s methods.

The following theorems describe properties of Newton’s and Broyden’s meth-
ods for singular problems.
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Theorem 2.1 [6] Assume that singular assumptions A1-A3 hold. Let x0 ∈
W (ρ, θ, 1). If ρ and θ are sufficiently small then the Newton method is well
defined and

lim
n→∞

||x∗ − xk+1||
||x∗ − xk||

=
1

2
(6)

lim
n→∞

||PX(x∗ − xk+1)||
||PN (x∗ − xk)||2

= 0. (7)

Theorem 2.2 [6] Assume that singular assumptions A1-A3 hold and that γ, ν
are given. Let x0 ∈W (ρ, θ, 1), and

||(B0 − F ′(x0))PX || ≤ γρ, ||(B0 − F ′(x0))PN || ≤ γρ2.

Then for ρ and θ sufficiently small the Broyden method is well defined and

lim
n→∞

||x∗ − xk+1||
||x∗ − xk||

=

√
5− 1

2
(8)

lim
n→∞

||PX(x∗ − xk+1)||
||PN (x∗ − xk)||2

= 0. (9)

Newton method is quadratically convergent for nonsingular problems, but
for singular problems the convergence rate is only linear with 1/2 being the
asymptotic linear rate. For a nonsingular case, Broyden’s method converges
superlinearly, while for a singular case the convergence deteriorates to linear,
with (

√
5 − 1)/2 being the asymptotic linear rate. Relations (7) and (9) show

that the rate of convergence is not the same for N and X spaces. Convergence
is evidently slower in the null space N. The difference in convergence rate for
the considered QN method is illustrated using a set of examples below. We
report the results for Example 2 in all details in Tables 1-6. The results for
Examples 3-7 indicate essentially the same behavior and thus we present them
in a condensed form in Tables 7-8. The last considered Example 7 does not
fulfill the regular singularity assumption, i.e rank(F ′(x∗)) = n−2. Nevertheless
the results are similar to the other examples as can be seen in Table 9.
Example 2. Let F be defined in Example 1 and take x0 = (0.5, 0.8). When
applying Mart́ınez Column Updating Method to this simple example we have
three posibilities. The first one is denoted as MCUM12 and is the method orig-
inally defined by Mart́ınez in [17] and denoted by (4) here. MCUM1 updates
only the first column of Jacobian, while MCUM2 updates only the second col-
umn of Jacobian. Column 2 corresponds to the null space of F ′(x∗). The values
of iterative sequences {xk} and rates of convergence are presented in Tables
1-4. The results clearly indicate that the best approach is to use only MCUM2
updates i.e. to update only the component in the null space. MCUM1 updates
only the component in space X. The results for this particular example show
that MCUM2 is linearly convergent, MCUM1 is sublinear, while the rate for
MCUM12 can not be clearly defined.
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it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -0.041165 0.530522 0.564043
2 0.031498 0.378183 0.713176
3 0.014447 0.321575 0.848236
4 -0.021966 -0.018204 0.088625
5 -0.016718 -0.300130 10.536739
6 -0.007690 0.108152 0.360701
7 -0.001290 0.213124 1.965666
8 -0.004484 -0.000622 0.021238
9 -0.001712 -0.039564 8.748796

10 0.000760 -0.097064 2.451110
11 -0.001579 0.026270 0.271125
12 -0.001048 0.107980 4.103219
13 -0.000584 -0.000098 0.005487
14 -0.000187 -0.008393 14.170156
15 0.000023 -0.013775 1.640832
... ... ... ...
31 0.000000 -0.000065 1.294385
32 -0.000000 -0.000022 0.346329
33 -0.000000 -0.000008 0.373427
34 -0.000000 0.000002 0.270369

it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -1.040000 0.910000 1.464830
2 -0.378924 -1.367040 1.026532
3 0.374792 2.407648 1.717659
4 -0.286696 -3.553462 1.463081
5 0.160703 7.771839 2.180500
6 -0.324485 -6.711689 0.864415
7 -1.672315 -52.588910 7.830236
8 -0.250115 -5.943120 0.113054
9 -0.148141 -5.334998 0.897228

10 0.500350 -2.925186 0.556050
... ... ...

30 0.000021 -0.004262 0.442657
31 0.000015 -0.000570 0.133711
32 0.000005 0.001629 2.857754
33 -0.000002 0.003839 2.357061

... ... ...
48 0.000000 0.000031 0.432544
49 0.000000 0.000008 0.257287
50 0.000000 -0.000001 0.150652

Table 1: MCUM12, B0 = F ′(x0) Table 2: MCUM12, B0 = E

it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -0.041165 0.530522 0.564043
2 0.031498 0.378183 0.713176
3 0.014447 0.321575 0.848236
4 0.006965 0.251758 0.782400
5 0.003880 0.198532 0.788431
6 0.002217 0.156050 0.785951
7 0.001483 0.128098 0.820852
8 0.000516 0.088208 0.688564
9 0.001040 0.103339 1.171572

10 0.000772 0.090810 0.878744
11 0.000458 0.073349 0.807708
12 0.000443 0.069784 0.951395
13 0.000460 0.070988 1.017262
14 0.000261 0.055398 0.780376
15 0.000258 0.053570 0.966994

... ... ...
31 0.000097 0.033435 0.900999
32 0.000091 0.032061 0.958920
33 0.000103 0.034093 1.063360
34 0.000040 0.023299 0.683391

it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -0.041165 0.530522 0.564043
2 0.200706 0.023434 0.379747
3 0.002728 0.193727 0.958806
4 -0.000608 0.162746 0.840005
5 0.001599 0.060361 0.371016
6 -0.000168 0.051306 0.849695
7 -0.000754 0.094054 1.833239
8 -0.000012 0.033631 0.357563
9 -0.000010 0.025399 0.755226

10 0.000001 0.014356 0.565207
11 -0.000000 0.009293 0.647355

... ... ...
20 0.000000 0.000120 0.617114
21 -0.000000 0.000074 0.618696
22 0.000000 0.000046 0.617554
23 -0.000000 0.000028 0.618380
24 0.000000 0.000018 0.617784
25 -0.000000 0.000011 0.618214
26 0.000000 0.000007 0.617904

Table 3: MCUM1, B0 = F ′(x0) Table 4: MCUM2, B0 = F ′(x0)

As expected, we see that the convergence of Mart́ınez’s MCUM depends on
the choice of column for modification and the best way is to update the column
which corresponds to null space. But detection of null space is impossible when
the solution is unknown. Then the best column for modification is generally
unknown which is why we shall proceed with the original Mart́ınez method.

7



The results for Thomas’s method are presented in Tables 5 and 6. The ratio
of errors in two consecutive iterations indicates behavior similar to Broyden’s
method, like in nonsingular case, [18] and semismooth case, [3].

it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -0.041165 0.530522 0.564043
2 0.043229 0.353589 0.669443
3 -0.001107 0.261983 0.735456
4 -0.000779 0.126238 0.481859
5 -0.000058 0.084496 0.669329
6 0.000032 0.051488 0.609358
7 0.000007 0.032241 0.626187
8 -0.000001 0.019784 0.613628
9 -0.000001 0.012217 0.617487

10 -0.000000 0.007547 0.617805
11 0.000000 0.004671 0.618853
12 0.000000 0.002888 0.618224
13 -0.000000 0.001784 0.617867
14 -0.000000 0.001102 0.617839
15 -0.000000 0.000681 0.618036

it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -1.040000 0.910000 1.464830
2 -0.440601 -1.154596 0.894269
3 0.903702 4.726926 3.894244
4 -0.185928 -1.725719 0.360663
5 -0.065560 -2.774219 1.598769
6 -0.171779 -0.945279 0.346221
7 -0.090057 -0.613697 0.645603
8 -0.002694 -0.350650 0.565335
9 0.010065 -0.271554 0.774938

10 0.007278 -0.213237 0.785165
11 0.001028 -0.133014 0.623440
12 -0.001869 -0.053734 0.404207
13 -0.001239 0.001104 0.030866
14 -0.000253 0.032667 19.684711
15 0.000503 0.093199 2.852922

Table 5: Thomas’ method, B0 = F ′(x0), Table 6: Thomas’ method, B0 = E

Another remark worth making concerns both Mart́ınez’s and Thomas’s method.
Tables above clearly indicate that the choice of initial approximation B0 has
strong influence on the iterative sequence. That is expected due to the fact
that the initial approximation also plays an important role in the nonsingu-
lar case. In fact, both Broyden’s and Thomas’s method belong to the class of
QN methods that satisfy the bounded-deterioration principle in the nonsingular
case. For such methods we are not able to claim convergence of {Bk} to F ′(x∗)
without additional assumptions, [9]. But the bounded deterioration property is
powerful enough to secure the convergence of {xk}. Although the initial choice
B0 = E is often successful, better results are obtained with B0 = F ′(x0). The
question of initial approximation B0 is the subject of many papers particularly
in the case of large dimensions. It is evident from this example that proper
choice of initial approximations x0 and B0 plays an even more important role
in the singular case than in the nonsingular case and that B0 = F ′(x0) is much
better. Furthermore, the proof of Theorem 2.2 in [6] suggests that it is essential
to take the first iteration as Newton’s iteration for the Broyden method. It is
quite reasonable to expect the same for MCUM and Thomas’ method. From
now on we will assume that B0 = F ′(x0).

Previous conclusions about Mart́ınez’s and Thomas’ method are checked and
confirmed in the next five examples. We also list the solution, null space and
initial approximations for all examples.
Example 3. [21]

F (x) =

[
x

10x
x=0.1 + 2y2

]
, x∗ = (0, 0), N = span(0, 1), x0 = (3, 1)

8



Example 4.

F (x) =

[
x2 − y
x2 + y2

]
, x∗ = (0, 0) N = span(1, 0), x0 = (3, 1)

Example 5. [28]

F (x) =

[
x+ y − 2
x2 + y2 − 2

]
, x∗ = (1, 1) N = span(1,−1), x0 = (3, 2)

Example 6. [4]

F (x) =

[
x+ y2

3
2xy + y2 + y3

]
, x∗ = (0, 0) N = span(0, 1), x0 = (0.5, 0.5)

Example 7. [14]

F (x) =

 x+ xy + y2

x2 − 2x+ y2

x+ z2

 , x∗ = (0, 0, 0) N = span(0, 1, 1), x0 = (1, 0.5, 1)

For all methods we use B0 = F ′(x0) with α = 0.7 in Examples 3-6 and
α = 0.5 in Example 7 when applying Mart́ınez’s method and P0 = 0.0005I in
Thomas’ method. The stopping criterion is the number of iterations and for
all methods we calculate 30 iterations. In Tables 7 and 8 the results for Exam-
ples 3-6 are presented. The last (30th) iteration is given for the three considered
Mart́ınez methods (MCUM1,MCUM2, MCUM12) and Thomas’ method. Letter
D denotes numerical singularity of an update so the iterative process stopped be-
fore reaching 30th iteration. Clearly the choice of update column for Mart́ınez’s
method has strong influence again. A few comments are due concerning the
empirical convergence rate ‖x∗−xk+1‖/‖x∗−xk‖. Examples 3 and 5 consists of
one linear and one nonlinear equation and hence for all convergent methods the
empirical rate approaches (

√
5−1)/2, the same as in Broyden’s method. In Ex-

amples 2 and 4 there is no linear component and hence the empirical rate mainly
oscillates around 1 indicating sublinear convergence. The exception is Thomas’
method at Example 6 where the empirical rate is again close to (

√
5− 1)/2.

Table 9 contains results for Mart́ınez’s and Thomas’ methods applied to
Example 7. As already mentioned, this example does not satisfy the regular
singularity condition since rank(F ′(x∗)) = 1, but the behaviour of all con-
sidered methods was again in line with the previous examples. A surprising
fact is that Thomas’ method generated a sequence with empirical rate oscillat-
ing around 0.5 which is the rate of convergence for the Newton method. All
Mart́ınez’s methods demonstrate sublinear convergence in this example while
Table 9 clearly indicates that the best results were obtained using MCUM123
i.e. the method without fixed update column.
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MCUM1 MCUM2

Example (x30
1 , x30

2 ) (x30
1 , x30

2 )

3 D (0, −3.88075(−6))

4 (−3.01222(−4),−8.08037(−9)) D

5 (1, 0.999997) (1,1)

6 (−4.62268(−4), 2.75342(−2)) (−3.24604(−9), 9.58753(−4))

Table 7: Mart́ınez’s methods for fixed update column

MCUM12 Thomas’

Example (x30
1 , x30

2 ) (x30
1 , x30

2 )

3 (0,−3.1446(−6)) (0, −3.39033(−6))

4 (−3.01222(−4),−8.08037(−9)) (−3.27623(−3), 7.79816(−7))

1.3 (1,1) (1, 0.999999)

1.4 (8.7883(−8), 3.44936(−4)) (9.9435(−13), 2.79228(−6))

Table 8: Mart́ınez’s and Thomas’ methods

Method x30

MCUM1 (8.65285(−5), 2.06108(−2), 1.13313(−2))

MCUM2 (−3.54096(−7),−6.15288(−4), 6.58251(−5))

MCUM3 (−1.03782(−5),−2.96838(−3), 3.10629(−3))

MCUM123 (−3.45326(−11), 1.35062(−5), 6.5033(−3))

Thomas (−7.64324(−5),−1.5785(−2), 2.05642(−2))

Table 9: Mart́ınez’s and Thomas’ methods

3 Algorithms for singular roots

In the previous section we have mentioned that QN methods for singular prob-
lem are slower than the same methods for nonsingular case. In fact the conver-
gence in the null space is very slow and it deteriorates the overall convergence
rate.

Let us start with the modified Newton method suggested in [13].

Algorithm N: Modification of the Newton method

Let x0 ∈ Rn be given.
For k = 0, 1, 2, . . .

Step 1. Solve F ′(xk)wk = −F (xk).

Step 2. Compute vk = xk + wk.

Step 3. Solve F ′(vk)sk = −F (vk)

Step 4. Compute
xk+1 = vk + (2− C · ‖sk‖α)sk (10)

The iterative sequence {xk} defined by the above algorithm with C ∈ R and
α ∈ (0, 1) is locally superlinearly convergent, i.e.

||x∗ − xk+1|| ≤ K||x∗ − xk||1+α
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under assumptions A1-A3. This method generalizes the modified Newton method
for the case f : R→ R. The value 2 which appears in Step 4 given by (10) pro-
vides fast convergence of the components in the null space, while C ·‖sk‖α keeps
the modified iterations in the region of convergence W. Obviously two sequences
are obtained, where {xk} is the sequence of iterates and {vk} is the sequence of
mid-iterates.

The Shamanski method could be easily adapted to handle singular problems
with superlinear convergence, [14].

Algorithm S: Shamanski method

Let x0 ∈ Rn be given.
For k = 0, 1, 2, . . .

Step 1. Solve F ′(xk)wk = −F (xk).

Step 2. Compute vk = xk + wk.

Step 3. Solve F ′(xk)sk = −F (vk)

Step 4. Compute
xk+1 = vk + (4− C · ‖sk‖α)sk (11)

Both methods, given by Algorithm N and Algorithm S, can deal with general
singular problems with rank(F ′(x∗)) = n−p using slightly different rule for the
modified iterations. Superlinear convergence of Algorithm S for p = 1 is given
by the following theorem.

Theorem 3.1 [14] Assume that singular assumptions A1-A3 hold. Let x−1 be
given and x0 = x−1−F ′(x−1)−1F (x−1). Consider the sequence {xk} defined by
Algorithm S. Let α ∈ (0, (

√
5−1)/2) and C 6= 0 Then for ρ, θ and µ sufficiently

small and x−1 ∈ W (ρ, θ, µ), we have xk ∈ W (ρ, θ, µ) for all k ≥ 0, and the
sequence {xk} converges q−superlinearly to x∗ with q−order 1 + α.

In this paper we suggest two modifications of Quasi-Newton methods based
on the ideas of Algorithm N and Algorithm S. The general QN algorithm for
singular roots is the following.

Algorithm SQN: Modification of QN method

Let M , C > 0, α ∈ (0, 1), x0 ∈ Rn and nonsingular B0 ∈ Rn×n be given.
For k = 0, 1, 2, . . .

Step 1. Solve
Bkw

k = −F (xk) (12)

Step 2. Compute
vk = xk + wk (13)

Step 3. Update B′k

Step 4. Solve
B′ks

k = −F (vk)

11



Step 5. Compute
xk+1 = vk + (M − C · ‖sk‖α)sk (14)

Step 6. Update Bk+1

In the Algorithm SQN two choices arise. The first one is the choice of real
parameters M, C, and α, which define the new iteration. In comparison with
Algorithm N the role of M is to increase the rate of convergence in the null space
while C and α should keep the new iteration within the convergence region. On
the other hand, we need two QN matrices - Step 3 and Step 6. We will analyze
both question here starting with the choice of update rule for Bk.

If we keep in mind Newton’s and Shamanski’s method two possibilities arise
for B′k and Bk+1. The Shamanski approach leads to the update rule I given
below, while the Newton method gives rise to QN update rule II.

I In this algorithm we only use sequence {xk} for the update of Bk. Both
the mid-iteration vk and the new iteration xk+1 are obtained from linear
systems with the same matrix and different left-hand side vectors. There-
fore the algorithm is quite cheap since it requires only one matrix update
per iteration. Steps 3 and 6 in Algorithm SQN become:

Step 3. Compute
B′k = Bk (15)

Step 6. Compute
Bk+1 = G(Bk, x

k, xk+1). (16)

II For each update of Bk we use the last iteration and the last mid-iteration.
Steps 3 and 6 are defined by

Step 3. Compute
B′k = G(Bk, x

k, vk). (17)

Step 6. Compute
Bk+1 = G(Bk, v

k, xk+1). (18)

Here G is the function for update of matrix Bk and we consider three pos-
sibilities (3), (4) and (5). This way we obtain a modification of the Broyden,
Mart́ınez and Thomas method, respectively.

Both algorithms are tested in Section 4. Results show that rule I is more
efficient. Since it is also cheaper the empirical conclusion would be that it is
better than rule II. Clearly, this conclusion is influenced by the collection of test
examples used in this paper. On the other hand, proofs in [14] and [15] suggest
the same conclusion. Theoretical analyzes will be a subject of future work and
here we focus on numerical results presented in the next Section.
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4 Numerical results

In this section we present the results of numerical experiments for both iterative
rules I and II in Algorithm SQN. First we will deal with parameters C,α and
M in the example we already used. Afterwards we present more test examples
analyzing only the influence of M on the number of iterations.

As already explained the role of M is to speed up the convergence in the null
space while C and α should keep the sequence {xk} in the convergence region.
Optimal values of these parameters are not known. For Newton’s method we
have M = 2 as determined in [13] and for Shamanski’s method M = 4, see [14].
A very rough guess would be that for QN method with rules I and II, M should
be somewhere between 2 and 4. Therefore we tested the case M ∈ [2, 4].

Let us first present some results of numerical testing for different values of
C and α in the following example.

Example 8. Let F be defined in Example 1 and x0 = (0.5, 0.8). Figure 2
presents the number of iterations needed to satisfy the exit criterion ‖F (xk)‖ ≤
10−8 versus M for different values of C and α.
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C = 1, α = 0.1 C = 1, α = 0.3 C = 1, α = 0.6

Figure 2: MUCM I

This example indicates that the influence of these parameters is not very
strong. The same conclusion holds for all other examples and it is in concordance
with the tests presented in [15, 14].
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Figure 3:MCUM I, M = 2.7 Figure 4: MCUM II, C = 1;α = 0.6
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it xk
1 xk

2
||x∗−xk+1||
||x∗−xk||

0 0.500000 0.800000 –
1 -0.019404 0.209186 0.222689
2 -0.000910 0.076603 0.364658
3 0.000012 0.032083 0.418789
4 -0.000000 0.011722 0.365365
5 0.000000 0.004394 0.374868
6 -0.000000 0.001620 0.368691
7 0.000000 0.000603 0.372021
8 -0.000000 0.000223 0.369297
9 0.000000 0.000083 0.370982

Table 10: MCUM I, M = 2.5,C = 1, α = 0.6

2.5

5

7.5

10

12.5

15

17.5

iter

2.5

5

7.5

10

12.5

15

17.5

iter

Figure 5: Thomas I Figure 6: Broyden I

The first 7 iterations of MCUM I method for M = 2.7, C = 1, α = 0.6 are
given in Figure 3 together with the hyperbole of singular points. The second
update rule (II) for Bk in MCUM is illustrated in Figure 4 with the number
of iterations required for the exit criterion ‖F (xk)‖ ≤ 10−8 versus M. Table 10
gives the results for MCUM and rule I. Clearly, the results are much better that
those given in Tables 1-4. Finally, Figures 5 and 6 show the number of iterations
needed for the same exit criterion as before, versus M for the Thomas I and
Broyden I method. It is clear from all these cases that for the methods of type I
we can clearly distinguish intervals with almost the same number of iterations.
The same kind of results is obtained for other test functions that follow. In other
words, it was quite possible to fix the value of M for all considered methods
and all examples and to get good results. On the other hand, rule II generally
produces results like those shown in Figure 4. It appears that the methods
of type II are much more sensitive to the choice of M and that ”optimal” M
depends on both the method and example. Therefore we present only the results
for methods of type I for all other examples.

In the examples which follow we claim that the method converges if the
condition ||F (xk)|| ≤ 10−8 is satisfied.

Let us now describe the other nonlinear singular system used for testing
in this paper. For the construction of singular system we use the Schnabel-
Frank transformation of nonsingular problem, [27]. If F (x) = 0 is a standard
nonsingular test function with solution x∗, A ∈ Rn×k has full column rank with
1 ≤ k ≤ n and

F̂ (x) = F (x)− F ′(x∗)A(ATA)−1AT (x− x∗)
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then F̂ (x) = 0 is a singular problem and rank(F̂ (x∗)′) = n − rank(A). In the
following experiments matrix A = [1, 1, . . . , 1]T is used.

The set of test problems is obtained using three functions F1, F2, F3 from
[29] while F4 is from [16]. All Fi : Rn → R and the results are given for n = 10
and n = 100. The components fk of F i as well as the initial approximations are
given below.

F1

fk(x) = xk − 0.1x2k+1, 1 ≤ k < n,

fn(x) = xn − 0.1x21,

x0 = (2, 2, . . . , 2)T

F2

f1(x) = x1,

fk(x) = cosxk−1 + xk − 1, 1 < k ≤ n,
x0 = (0.5, 0.5, . . . , 0.5)T .

F3

fk(x) =

{
1− xk, k ≡2 1

10(xk − x2k−1), k ≡2 0

x0 =

{
−1.2, k ≡2 1

1 k ≡2 0.

F4

fk(x) =


xk + 10xk+1, k ≡4 1√

5(xk+1 − xk+2), k ≡4 2
(xk−1 − 2xk)2, k ≡4 3√

10(xk−3 − xk)2, k ≡4 0,

x0 =


3, k ≡4 1
−1, k ≡4 2

0, k ≡4 3
1, k ≡4 0.

Fi n Broyden MCUM Thomas’

1 10 20 20 20
1 100 21 21 21

2 10 20 20 20
2 100 21 21 21

3 10 24 24 24
3 100 26 25 26

4 10 23 22 23
4 100 24 24 24

Table 12: QN methods
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Fi n Broyden MCUM Thomas

1 10 8 8 8
1 100 9 9 9

2 10 6 6 6
2 100 8 8 8

3 10 10 10 10
3 100 10 11 10

4 10 9 8 9
4 100 10 10 10

Table 13: Modified QN methods
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Figure 7: MCUM I, F̂1(x) = 0, n = 10

it. ||xk+1−x∗||
||xk−x∗||

1 0.197701

2 0.421388

3 0.166771

4 0.462255

5 0.126589

6 0.551790

7 0.084208

Table 14: MCUM I, F̂1(x) = 0, n = 10

Table 12 gives the results of all three considered QN methods without mod-
ification while Table 13 consists of results for the modified QN methods with
update rule I and M = 3.7. Figure 7 presents the number of iterations needed
to satisfy the exit criterion versus M. Finally, Table 14 gives the empirical con-
vergence rate for MCUM I method.

5 Conclusion

The purpose of this paper was to analyze in detail the numerical behavior of
Quasi-Newton methods in the case of singular roots and to suggest an improved
two-step procedure. We were mainly interested in nonlinear systems with regu-
lar singularity (rank(F ′(x∗)) = n−1). It is well known that the convergence rate
of Newton’s and Broyden’s method deteriorates significantly if one approaches
a singular root and hence some modified method should be used. Given that
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Mart́ınez’ and Thomas’ methods are quite competitive with Broyden’s method
in non-singular and semismooth case we first tested their behavior using a set
of small dimensional examples in Section 2. The numerical experiments clearly
demonstrate large influence of the initial approximation B0 and decrease in the
convergence rate. The choice B0 = F ′(x0) seemed to be significantly better that
the other commonly used alternative B0 = I, while the convergence rate was
linear or sublinear. In Section 3 we suggested two possibilities for two-step mod-
ification of the considered QN methods. The idea stems from the well-known
modification of Newton’s method. The two-step procedure (denoted by I) which
uses only whole iterations for QN updates seems to be more stable and is def-
initely cheaper than the procedure based on mid-iteration and full-iteration.
Therefore we adopted the procedure I and tested it on the set of problems of
larger dimensions, n = 10 and n = 100.

The numerical results presented in Section 4 suggested several conclusions.
The newly proposed algorithm depends on three real parameters. Two of them
are meant to keep iterations in the region of convergence while the third param-
eter speeds up the convergence in the null space. That parameter M has the
strongest influence of all three. In our tests values close to M = 3.7 seem to
be feasible although such conclusion is influenced by the test collection. Never-
theless one should notice that M = 2 is the optimal value for Newton’s method
while M = 4 is valid for Shamanski’s method. The convergence of Mart́ınez’s
method depends heavily on the choice of column to be updated. Not surpris-
ingly the best results are obtained if the update is made on the column that
corresponds to the null space. Thomas’ and Broyden’s two-step method were
competitive as in the case of nonsingular and semismooth problems. Although
all conclusions are based only on numerical evidence one should notice the con-
sistency of numerical results on problems with different properties. In particular
the proposed two-stage algorithms clearly outperformed QN methods without
modification in terms of computation effort. Further more the algorithm was
able to generate a convergent sequence in all tested cases. Several theoretical
questions remain open and certainly deserve further research.
Acknowledgements. The authors are grateful to the anonymous referee for
valuable suggestions and comments.
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