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Preface

The theory of infinite games has become, in the last few decades, a very
important topic in set theory. The main object of investigating games is to
obtain more information on various objects in set theoretical universe, by
finding game-theoretic equivalents of statements about these objects.

An infinite game played on Boolean algebras first appeared in [15]. Since
then, many distinguished scientists in this area participated in constructing
and discovering interesting properties of such games.

For most set theorists nowadays, Boolean algebras are firmly connected
to forcing. Many properties of Boolean algebras can be expressed in terms of
their forcing properties. This is why a major part of Chapter 1 of this thesis
is devoted to this method. After mentioning the prerequisites, we introduce
some definitions and turn to the foundation of forcing. Both approaches,
via Boolean algebras and via partial orders are described, and then they are
compared. Some important properties of Boolean algebras are introduced,
such as chain conditions and distributivity laws. The end of the chapter
contains definitions of all notions of forcing that will be used throughout
the thesis.

The description of games on Boolean algebras begins in Chapter 2. At
the beginning some general notation is established, and the notions of a
play, a partial play and a winning strategy are introduced. The first game
considered is the Banach-Mazur game. It is of great historical importance,
but it also served as an inspiration for Jech’s descending chain game, the
one that we describe next. From that point on, we turn our attention to so-
called “cut-and-choose” games, the main subject of the thesis. Since some
properties hold for all such games, we prove them first. Then we describe
another Jech’s game, characterizing distributivity laws, that was thoroughly
investigated. We also define its equivalent on partial orders. Finally, three
more games, introduced by Kada, are mentioned.

The last chapter is devoted to the game Gls, characterizing a collapsing
property of Boolean algebras. A special (countable) case of this game was
first defined by Professor Miloš Kurilić and myself in [25], and the general
game was introduced in [26]. The game is investigated from the point of view
of each of the players, and a Boolean algebra is defined on which neither
of them has a winning strategy. The results in this chapter, as well as the
results in sections 2.3 and 2.5, present our contribution to the theory.

While writing this material, I tried to make it as self-contained as pos-
sible, providing a proof or a reference for every result (for classical results
references are usually made to textbooks [19] and [24], rather than to pa-
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pers where they were proved). In particular, I included proofs that are,
in my opinion, useful for understanding the material, and proofs that are
commonly skipped in the textbooks. On the other hand, long and technical
proofs are usually not included, with the exception of Chapter 3, where all
the results are proved in detail.

I wish to express my gratitude to my supervisor, Professor Miloš Kurilić,
who initiated our work in this area, led the research, and finally made many
suggestions that helped me to improve the thesis. I also wish to thank
Professor Milan Grulović who is responsible for my interest in set theory.
Finally, my family is a motive and an inspiration for everything I do, and
so it was during the writing of this thesis.

Novi Sad, 21. 4. 2009. Boris Šobot
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Chapter 1

Forcing

In this chapter we give some definitions and facts needed for understanding
the main part of the thesis, as well as some examples that will be used later.

1.1 Notation and preliminaries

Throughout this thesis it will be understood that the reader has the knowl-
edge of ZFC axioms and their basic corollaries, such as recursive definitions,
inductive proofs, the cumulative hierarchy Vα (α ∈ Ord), the constructible
universe L, models of set theory, some cardinal arithmetic etc. All this can
be found in textbooks, for example [19] or [24].

Here is some notation we will need. We will denote cardinals by κ, λ, µ, . . .
and ordinals in general by α, β, γ, . . . or ξ, η, ζ . . . The sequences (including
ordered pairs) will be written in “angle” parenthesis 〈 and 〉, with occasional
abuse of notation; for example 〈〈a, b〉, 〈〈xn, yn〉 : n ∈ ω〉〉 is a sequence of
ordered pairs, with 〈a, b〉 as the first, and 〈xn, yn〉 as the n + 2-nd element
(n ∈ ω).

We will use the following notation:

Ord - the class of all ordinals;
Lim - the class of all limit ordinals;
Card - the class of all cardinals;
Reg - the class of all regular cardinals;
AB - the set of all functions mapping A to B;
<αB =

⋃
β<α

βB;
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8 Chapter 1. Forcing

P (A) - the power set of A;
[A]κ - the set of all subsets of A of cardinality κ;
[A]<κ - the set of all subsets of A of cardinality less than κ.

To denote the inclusion between two sets, we use ⊆ and ⊇. If we want
to emphasize that the inclusion is strict, we use ⊂ and ⊃. If we consider a
sequence x of elements of a set A and an element a ∈ A, with xaa we denote
the sequence obtained by adding a to the end of x. If f : A→ B is a function,
for X ⊆ A and Y ⊆ B we also denote f [X] = {b ∈ B : ∃x ∈ X f(x) = b}
and f−1[Y ] = {a ∈ A : f(a) ∈ Y }. The domain A of f will be denoted by
dom f , and the rank f [A] of f , by ran f .

Definition 1.1 Let α be a limit ordinal. An increasing sequence 〈αξ : ξ <
β〉 of ordinals less than α is cofinal in α if for every γ < α there is ξ < β
such that γ ≤ αξ. The cofinality of α, denoted by cf(α), is min{β ∈ Ord :
there is a sequence of length β cofinal in α}.

Lemma 1.2 ([19], Lemma 3.8) cf(α) is a regular cardinal for every α ∈ Lim.

Definition 1.3 If κ is an uncountable cardinal, a subset C ⊆ κ is closed
unbounded (or just “club”) if:

(i) it is closed, i.e. supD ∈ C for every nonempty D ⊆ C;

(ii) it is unbounded, i.e. for every α < κ there is β ≥ α such that β ∈ C.

A set S ⊆ κ is stationary if it intersects every club in κ.

Lemma 1.4 ([24], Lemma II 6.13) If κ is an uncountable regular cardinal
and f : κ→ κ is a function, then {α < κ : f [α] ⊆ α} is a club in κ.

Lemma 1.5 ([19], Theorem 8.3) The intersection of less than κ club subsets
of κ is a club in κ.

Definition 1.3 can be generalized:

Definition 1.6 If κ is an uncountable cardinal, C ⊆ [κ]ω is closed un-
bounded if:

(i) it is closed, i.e.
⋃
n∈ωDn ∈ C for every countable increasing chain

D0 ⊆ D1 ⊆ D2 ⊆ . . . of elements of C;
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(ii) it is unbounded, i.e. for every X ∈ [κ]ω there is Y ∈ C such that
X ⊆ Y .

A set S ⊆ [κ]ω is stationary if it intersects every club in [κ]ω.

We will now state some additional axioms. If κ is a regular cardinal
and S is a stationary subset of κ, by ♦κ(S) we will denote the following
statement:

♦κ(S): There are sets Aγ ⊆ γ for γ ∈ S such that for each A ⊆ κ the
set {γ ∈ S : A ∩ γ = Aγ} is a stationary subset of κ.

The special case ♦κ+(E(κ)), where E(κ) = {α < κ+ : cf(α) = κ}, will
be the most important for us. In another special case, S = κ, we will write
only ♦κ instead of ♦κ(κ). For κ = ω1 we get the well-known Jensen’s1

diamond principle:

♦: There are sets Aγ ⊆ γ for γ ∈ ω1 such that for each A ⊆ ω1 the set
{γ ∈ ω1 : A ∩ γ = Aγ} is a stationary subset of ω1.

Lemma 1.7 (a) V = L ` ∀κ ∈ Reg ∀S (S is stationary in κ ⇒ ♦κ(S)).

(b) If S1 and S2 are stationary in κ and S1 ⊆ S2, then ♦κ(S1) ⇒ ♦κ(S2).

(c) For each regular cardinal κ, ♦κ+ ⇒ 2κ = κ+.

Proof. (a) This is a generalization of Jensen’ Theorem V = L ` ♦ (see
[19], Theorem 13.21).

(b) Follows from the fact that a subset of κ containing a stationary set
is stationary.

(c) Assume ♦κ+ , let 〈Aγ : γ ∈ κ+〉 be the sequence thus obtained, and let
A ⊆ κ. The sets SA = {γ < κ+ : A = Aγ} and S′A = {γ < κ+ : A∩ γ = Aγ}
may differ only in elements γ < supA, so since S′A is stationary in κ+, SA
must be stationary too. But then |SA| = κ+. Hence |P (κ)| > κ+ would
imply |

⋃
A∈P (κ) SA| > κ+ (because the sets SA are pairwise disjoint), which

is a contradiction since
⋃
A∈P (κ) SA ⊆ κ+. �

We remark that conditions ♦κ+(E(κ)) and ♦κ+ are equivalent for κ = ω.

1Ronald B. Jensen (b. 1936), American mathematician
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Finally, “0] exists” is another axiom we will need, introduced by Solo-
vay2. It claims the existence of the set

0] = {ϕ(x1, . . . , xn) : Lℵω |= ϕ(ℵ1, . . . ,ℵn)}.

Part of its strength lies in providing a truth definition for the constructible
universe (it is known that a truth definition in general does not exist by
Tarski’s Theorem, see [19], Theorem 12.7). To fully understand 0] it is
necessary to get acquainted with Silver3 indiscernibles; see [19], page 311
for more information and some important corollaries of the nonexistence of
0]. However, the nonexistence of 0] is equivalent to a property that is quite
simple to formulate; we will need only one implication of this equivalence.

Theorem 1.8 (Jensen’s Covering Theorem) ([19], Theorem 18.30) If
0] does not exist, then for every uncountable set X of ordinals there is a
constructible Y ⊇ X of the same cardinality.

1.2 Partial orders and complete Boolean algebras

Partial orders and Boolean algebras will be denoted by blackboard-bold
letters, P for 〈P,≤〉 and B for 〈B,∧,∨,′ , 0, 1〉 respectively. When only their
domains are considered however, we will use ordinary P and B. We also
denote B+ = B \ {0}, and whenever we consider a Boolean algebra as a
partial order, it will be understood that we consider 〈B+,≤〉.

Definition 1.9 Let P be a partial order, X ⊆ P , Y ⊆ P and p, q ∈ P .

• (p, q)P = {r ∈ P : p < r < q} and [p, q]P = {r ∈ P : p ≤ r ≤ q}.

• X is dense in P if ∀r ∈ P ∃s ∈ X s ≤ r.

• X is open dense in P if it is dense and ∀r ∈ X ∀s ∈ P (s ≤ r ⇒ s ∈ X).

• X↓= {r ∈ P : ∃x ∈ X r < x}; in particular p↓= {r ∈ P : r < p}.

• X is dense below p if ∀r ≤ p ∃s ∈ X s ≤ r.

• X is empty below p if ¬∃r ∈ X r ≤ p.

• p and q are incompatible (we write p ⊥ q) if ¬∃r ∈ P (r ≤ p ∧ r ≤ q);
otherwise they are compatible.

2Robert M. Solovay (b. 1938), American mathematician
3Jack H. Silver, contemporary American mathematician
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• p is incompatible with X (again, we write p ⊥ X) if p is incompatible
with every element of X.

• X and Y are incompatible if every element of X is incompatible with
Y .

For a Boolean algebra B we define

π(B) = min{|D| : D is dense in B}.

Definition 1.10 A partial order P is separative if

∀p, q ∈ P (¬p ≤ q ⇒ ∃r ≤ p r ⊥ q).

Definition 1.11 A Boolean algebra B is complete if every subset X ⊆ B
has supremum and infimum.

To avoid robust conditions in theorems, we will often assume that Boolean
algebras are complete, although sometimes a weaker condition may suffice.

Theorem 1.12 ([19], Theorem 14.10) For every separative partial order P
there is, unique up to isomorphism, a complete Boolean algebra B and a
one-to-one mapping e : P → B+ such that

1) p1 ≤ p2 ⇔ e(p1) ≤ e(p2);
2) e[P ] is dense in B.

Definition 1.13 The unique complete Boolean algebra mentioned in The-
orem 1.12 is called the completion of P and denoted r.o.(P).

The map e from Theorem 1.12 is called the canonical embedding of P
in B. Note that, if p1, p2 ∈ P , then p1 ⊥ p2 iff e(p1) ⊥ e(p2). In order to
simplify writing, we will often identify elements of P with their images via e.
The notation r.o.(P) originates from the notion of regular open sets. More
details on this and other facts concerning the completion of a separative
partial order can be found in [30].

Lemma 1.14 For every partial order P there is a separative partial order
Q and a mapping h : P → Q such that

1) p1 ≤ p2 ⇒ h(p1) ≤ h(p2);
2) p1 ⊥ p2 ⇔ h(p1) ⊥ h(p2).
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Proof. Let 〈P,≤〉 be an arbitrary partial order. Obviously, the relation ∼
on P defined by

p ∼ q iff ∀r ∈ P (r is compatible with p⇔ r is compatible with q)

is an equivalence relation. Thus, if we define a relation � on the quotient
set P/∼ as follows:

[p] � [q] iff ∀r ∈ P (r ≤ p⇒ r is compatible with q),

then 〈P/∼,�〉 is clearly a separative partial order. The function h : P →
P/∼ defined by h(p) = [p] clearly satisfies 1) and 2). �

The partial order Q from the lemma above is called the separative quo-
tient of P. When proving theorems about forcing we will restrict our atten-
tion to separative partial orders; Lemma 1.43 allows us to do this. However,
combining Lemma 1.14 with Theorem 1.12 we can also define the completion
of an arbitrary partial order:

Theorem 1.15 ([19], Corollary 14.12) For every partial order P there is,
unique up to isomorphism, a complete Boolean algebra B and a mapping
e : P → B+ such that

1) p1 ≤ p2 ⇒ e(p1) ≤ e(p2);
2) p ⊥ q ⇔ e(p) ⊥ e(q);
3) e[P ] is dense in B.

Definition 1.16 A collection {bα : α < κ} of elements of a partial order P
is an antichain if bα ⊥ bβ for α < β < κ. An antichain A is maximal if there
is no p ∈ P such that A ∪ {p} is also an antichain.

Definition 1.17 Let κ be an infinite cardinal. A partial order P satisfies
the κ-chain condition (shorter: the κ-c.c.) if there are no antichains of
cardinality κ in P. In particular, if there are no uncountable antichains in P,
we say that P satisfies the countable chain condition (c.c.c.). We also denote

c.c.(P) = min{κ ∈ Card : P satisfies the κ− c.c.}

Lemma 1.18 If P is a partial order and B = r.o.(P), then c.c.(P) = c.c.(B).

Proof. Every antichain in P is also an antichain in B, so c.c.(P) ≤ c.c.(B).
Let us prove that the other inequality holds. Let A be an antichain in B.
Then there is an antichain in P of the same cardinality: below every a ∈ A
we find pa ∈ P such that pa ≤ a; then {pa : a ∈ A} is the antichain we
wanted. �
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Lemma 1.19 ([19], Theorem 7.15) For every partial order P c.c.(P) is a
regular uncountable cardinal.

Lemma 1.20 If B = r.o.(P) and c.c.(P) = κ, then |B| ≤ |P |<κ.

Proof. We define f : B → [P ]<κ in the following way: for every b ∈ B we
choose a maximal antichain f(b) of elements of P below b. This mapping
is obviously one-to-one, because if b1 6= b2 then (in B)

∨
f(b1) = b1 6= b2 =∨

f(b2), hence f(b1) 6= f(b2). �

Definition 1.21 G is a filter on a partial order P if

(i) ∅ 6= G ⊆ P ;

(ii) if p ∈ G, q ∈ P and p ≤ q, then q ∈ G;

(iii) if p, q ∈ G, then there is r ∈ G such that r ≤ p and r ≤ q.

Definition 1.22 G is an ultrafilter on a Boolean algebra B if

(i) ∅ 6= G ⊆ B;

(ii) if b ∈ G, a ∈ B and b ≤ a, then a ∈ G;

(iii) if a, b ∈ G, then a ∧ b ∈ G;

(iv) for each b ∈ B either b ∈ G or b′ ∈ G.

If κ is an infinite cardinal, an ultrafilter on the Boolean algebra 〈P (κ),∩,
∪,′ , ∅, κ〉 is also called an ultrafilter on κ.

Definition 1.23 If κ and λ are infinite cardinals, an ultrafilter G on κ is
λ-complete if, whenever µ < λ and Xα ∈ G for α < µ,

⋂
α<µXα ∈ G as well.

An uncountable cardinal κ is measurable if there is a κ-complete ultrafilter
on κ.

Definition 1.24 Let 〈Xα : α < κ〉 be a sequence of subsets of an infinite
cardinal κ. The diagonal intersection of sets Xα is the set 4α<κXα = {ξ <
κ : ξ ∈

⋃
α<ξXα}. A κ-complete ultrafilter G on κ is normal if it is closed

under diagonal intersections, i.e. whenever Xα ∈ G for α < κ, 4α<κXα ∈ G
as well.
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More on measurable cardinals and normal ultrafilters can be found in
[19], page 127.

Another additional axiom, very useful in consistency proofs is the Mar-
tin4 Axiom. It states that for all κ < c MAκ holds, where

MAκ: If P is a c.c.c. partial order and D a collection of at most κ sets
dense in P, then there is a filter on P that intersects all elements of D.

Lemma 1.25 ([24], Theorem II 2.18) MAκ implies 2κ = c.

Many facts concerning MA can be found in [27].

1.3 Basics of forcing

The method of forcing is widely used in consistency proofs. It was introduced
by Cohen5 in [6] and [7]. Starting with a model M of ZF(C), and a partial
order P in M (or its completion B = r.o.(P)), it produces another model of
ZF(C). It is customary to work with the universe V instead of a model M
in general. P is also called a notion of forcing, and elements of P are called
forcing conditions.

Definition 1.26 A filter G on P is P-generic over V if for every set D ∈ V
dense in P, G ∩D 6= ∅.

Definition 1.27 An ultrafilter G on B is B-generic over V if, for all X ⊆ G
such that X ∈ V ,

⋂
X ∈ G holds.

The following lemma is easy to prove.

Lemma 1.28 Let P be a partial order, B = r.o.(P) and let e : P → B+ be
the canonical embedding.

(a) If F is a P-generic filter, then

F ′ = {b ∈ B : ∃p ∈ F e(p) ≤ b}

is a B-generic ultrafilter.

4Donald A. Martin (b. 1940), American mathematician
5Paul J. Cohen (1934-2007), American mathematician
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(b) If G is a B-generic ultrafilter, then

G∗ = {p ∈ P : e(p) ∈ G}

is a P-generic filter.

It is clear that (F ′)∗ = F and (G∗)′ = G, i.e. the operations of getting
a B-generic ultrafilter from a P-generic filter and getting a P-generic filter
from a B-generic ultrafilter are mutually inverse.

Now we define a Boolean-valued model V B in V . Informally, a Boolean-
valued model differs from “usual” models in the fact that formulas need not
only be true (1) or false (0), but they take values from a Boolean algebra B
(more on Boolean-valued models can be found in [5]).

Definition 1.29 Let B be a complete Boolean algebra. A Boolean-valued
model is 〈A, I,E〉, where A is a set called the Boolean universe, and I :
A2 → B and E : A2 → B are functions such that, for σ, τ, µ, ν ∈ A (writing
‖σ = τ‖ and ‖σ ∈ τ‖ instead of I(σ, τ) and E(σ, τ) respectively)

(i) ‖σ = σ‖ = 1,

(ii) ‖σ = τ‖ = ‖τ = σ‖,

(iii) ‖σ = τ‖ ∧ ‖τ = µ‖ ≤ ‖σ = µ‖,

(iv) ‖σ ∈ τ‖ ∧ ‖µ = σ‖ ∧ ‖ν = τ‖ ≤ ‖µ ∈ ν‖.

The intuition behind this is that ‖σ = τ‖ is the measure of equality, and
‖σ ∈ τ‖ the measure of membership between two elements of A.

Let us define the sets V B
α by recursion on α ∈ Ord:

V B
0 = ∅

V B
α+1 = {f : f is a function ∧ dom f ⊆ V B

α ∧ ran f ⊆ B}

V B
α =

⋃
β<α V

B
β if α is a limit ordinal.

Finally, our Boolean universe will be the class

V B =
⋃

α∈Ord

V B
α .
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For σ ∈ V B let ρ(σ) = min{α ∈ Ord : σ ∈ V B
α+1}; this is called the

rank of σ. (There should be no confusion with the usual notion of rank.)
Ordering (V B)2 by the relation:

(σ1, τ1) ≺ (σ2, τ2) ⇔ ρ(σ1) < ρ(σ2) ∨ (ρ(σ1) = ρ(σ2) ∧ ρ(σ1) < ρ(σ2))

and introducing the Boolean operation ⇒ by x⇒ y = x′ ∨ y we can define
by recursion on pairs 〈σ, τ〉 ∈ (V B)2:

‖σ ∈ τ‖ =
∨

µ∈dom (τ)

(‖σ = µ‖ ∧ τ(µ))

‖σ ⊆ τ‖ =
∧

µ∈dom (σ)

(σ(µ) ⇒ ‖µ ∈ τ‖)

‖σ = τ‖ = ‖σ ⊆ τ‖ ∧ ‖τ ⊆ σ‖.

Having determined the values of atomic formulas, defining Boolean val-
ues of other first-order formulas is quite natural. Introducing another oper-
ation ⇔ by x⇔ y = (x⇒ y) ∧ (y ⇒ x), let us define ‖ϕ(σ)‖ for σ ∈ V B by
recursion on the complexity of the formula ϕ(x) (for reasons of simplicity,
we restrict ourselves only to formulas with one argument):

‖¬ψ(σ)‖ = ‖ψ(σ)‖′

‖(ψ ∧ θ)(σ)‖ = ‖ψ(σ)‖ ∧ ‖θ(σ)‖
‖(ψ ∨ θ)(σ)‖ = ‖ψ(σ)‖ ∨ ‖θ(σ)‖
‖(ψ ⇒ θ)(σ)‖ = ‖ψ(σ)‖ ⇒ ‖θ(σ)‖
‖(ψ ⇔ θ)(σ)‖ = ‖ψ(σ)‖ ⇔ ‖θ(σ)‖

‖∃x ψ(x)‖ =
∨
τ∈V B

‖ψ(τ)‖

‖∀x ψ(x)‖ =
∧
τ∈V B

‖ψ(τ)‖.

Now let G be a B-generic ultrafilter over V ; only the case G /∈ V will
produce something interesting to us. We define, by recursion on ρ(σ), the
G-interpretation iG of elements of V B:

iG(σ) = {iG(τ) : τ ∈ dom σ ∧ σ(τ) ∈ G}.

We will also write σG instead of iG(σ). Finally, let
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VB[G] = {σG : σ ∈ V B}.

We call 〈VB[G],=,∈〉 a generic extension of V . (We usually need not
emphasize the Boolean algebra used in forcing, and write only V [G].) Every
x ∈ V [G] has a “name”, i.e. x̄ ∈ V B such that iG(x̄) = x.

The canonical names for all elements x ∈ V (denoted by x̌) are defined
by recursion on ρ(x):

x̌ = {〈y̌, 1〉 : y ∈ x}.

We prove, by induction on rank(x), that iG(x̌) = x. Suppose iG(y̌) = y for
all y ∈ V such that rank(y) < rank(x). Then

iG(x̌) = {iG(σ) : σ ∈ dom (x̌) ∧ x̌(σ) ∈ G}
= {iG(y̌) : y ∈ x ∧ 1 ∈ G} = {y : y ∈ x} = x.

Thus, all x ∈ V are in V [G] as well. To prove G ∈ V [G], we find its canonical
name as well:

Ḡ = {〈b̌, b〉 : b ∈ B}.

Again, we have

iG(Ḡ) = {iG(σ) : σ ∈ dom Ḡ ∧ Ḡ(σ) ∈ G}
= {iG(b̌) : b ∈ B ∧ b ∈ G} = {b : b ∈ G} = G.

(Note that this proves part (c) of the Generic Model Theorem below.)

It is convenient here to remind the reader of some facts on absoluteness.
There are formulas ϕ(x) of ZF(C) that can be satisfied by some set in one
model, and not be satisfied by that set in another model. Hence classes de-
termined by such formulas differ too; for example the classes of all cardinals
need not be the same in two models M, N of ZFC, so we write CardM and
CardN to distinguish between those classes. We say that a formula ϕ(x) is
absolute for models M,N (M⊆ N ) if for all x ∈M

M |= ϕ(x) iff N |= ϕ(x).

We say that a formula (or the class defined by that formula) is absolute if
it is absolute for every two models of set theory. A function f : X → Y is
absolute if the formula f(x) = y is. For example, natural numbers, the set
ω, the function-class rank and the constructible universe L are absolute.
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Theorem 1.30 (The Generic Model Theorem) ([19], Theorem 14.5)

(a) V [G] is a model of ZF.

(b) If V |= AC, then V [G] |= AC as well.

(c) V ⊆ V [G] and G ∈ V [G].

(d) OrdV [G] = OrdV .

(e) If N is a transitive model of ZF such that V ⊆ N and G ∈ N , then
V [G] ⊆ N .

Part (e) of the Generic Model Theorem states that every model obtained
by forcing is in certain sense minimal. This is because every set in V [G] can
be defined using only G and elements of V .

Definition 1.31 A Boolean algebra is atomless if ∀a ∈ B+ ∃b ∈ B+ b < a.

Lemma 1.32 (a) If P is a notion of forcing in V such that

∀p ∈ P ∃q, r ∈ P (q ≤ p ∧ r ≤ p ∧ q ⊥ r) (1.1)

and G is a P-generic filter over V , then G /∈ V .

(b) If B is a complete Boolean algebra, then V [G] 6= V for every B-generic
ultrafilter G over V iff B is atomless.

Proof. (a) Let G be a filter in V and D = {p ∈ P : p /∈ G}. D is dense
in P: for every p ∈ P there are incompatible elements q and r below p, and
they can not both be in G. Clearly G ∩D = ∅. Thus there is no P-generic
filter in V .

(b) Let B be atomless and let G be B-generic. If p ∈ B+, there is q ∈ B+

such that q < p. Putting r = p∧ q′ we see that (1.1) holds, so by (a) G /∈ V .
Conversely, let there be an element p ∈ B+ such that the interval (0, p)B is
empty. G = {b ∈ B : p ≤ b} is obviously a B-generic ultrafilter (because
every dense set must contain p). Since G ∈ V , Theorem 1.30(e) implies
V [G] = V . �

Thus, the new model V [G] contains all elements of V and, if B is atom-
less, some new sets as well. Hence a set that is not absolute, such as P (ω),
may be different in models V and V [G]. In Example 1.1 below new subsets
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of ω are added by forcing, so (P (ω))V 6= (P (ω))V [G].

If κ is a cardinal and X a set of cardinality greater than κ, a bijection
f : κ → X can be added by forcing; this means that a set can change
cardinality in a generic extension, so we write |X|V or |X|V [G] to emphasize
in which model we are calculating its cardinality. As a special case, when
X = λ is a cardinal in V , as in Example 1.2, it will no longer be a cardinal
in V [G]; we say that λ is collapsed to κ. If CardV [G] = CardV we say that
forcing preserves cardinals. If cfV [G](α) = cfV (α) for all limit ordinals α, we
say that forcing preserves cofinalities.

Lemma 1.33 Let κ be a cardinal in V . If all regular cardinals λ ≤ κ in V
remain regular in V [G], then forcing by B preserves cardinals less than or
equal to κ, i.e. (Card ∩ κ+)V [G] = (Card ∩ κ+)V .

Proof. Let V [G] be a generic extension by B and suppose that all regular
cardinals λ ≤ κ in V remain regular in V [G]. If λ ≤ κ is a regular cardinal,
then it remains a cardinal by the assumption. Otherwise, λ is a limit car-
dinal, and the set Reg ∩ λ is unbounded in λ (if α < λ, then α < |α|+ < λ
and |α|+ is regular). It follows from our assumption that (Reg ∩ λ)V [G] is
unbounded in λ too. But the supremum of a set of cardinals must be a
cardinal too. �

It is usually more natural to work with partial orders than with Boolean
algebras. In some textbooks the exposition of forcing deals directly with
partial orders (for example in [24]). So let P be a separative partial order.
The class V P can be defined in a similar way as V B:

V P
0 = ∅

V P
α+1 = {σ : σ ⊆ V P

α × P}

V P
α =

⋃
β<α V

P
β if α is a limit ordinal

and finally
V P =

⋃
α∈Ord

V P
α .

Now, if G is a P-generic filter, iG and V [G] are defined in an analogous
way as above (compare with Lemma 1.28):

iG(σ) = {iG(τ) : ∃p ∈ G 〈τ, p〉 ∈ σ}
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V [G] = {iG(σ) : σ ∈ V P}.

Now let B = r.o.(P), and let e : P → B+ the canonical embedding. We
define e∗ : V P → V B by recursion:

e∗(σ) = {〈e∗(τ),
∨

〈τ,p〉∈σ

e(p)〉 : τ ∈ dom σ}.

It is easy to prove that e∗ is maps the class V P onto V B. If P has a greatest
element 1, for x ∈ V we can define the canonical name x̌ ∈ V P in the same
way as in V B, and it is easy to prove that e∗(x̌) = x̌ for all x ∈ V .

For a first-order formula ϕ, p ∈ P and σ1, σ2, . . . , σn ∈ V P we define the
forcing relation:

p P ϕ(σ1, σ2, . . . , σn) iff e(p) ≤ ‖ϕ(e∗(σ1), e∗(σ2), . . . , e∗(σn))‖.

We usually omit P in subscript if it is not necessary to emphasize the
notion of forcing that was used. Also, to make formulas more readable, we
will write only σ instead of e∗(σ).

Lemma 1.34

(a) ‖∃x ∈ σ ϕ(x)‖ =
∨
τ∈dom σ(σ(τ) ∧ ‖ϕ(τ)‖).

(b) ‖∀x ∈ σ ϕ(x)‖ =
∧
τ∈dom σ(σ(τ) ⇒ ‖ϕ(τ)‖).

Proof. (a)

‖∃x ∈ σ ϕ(x)‖ = ‖∃x (x ∈ σ ∧ ϕ(x))‖
=

∨
µ∈V B

‖µ ∈ σ ∧ ϕ(µ)‖

=
∨
µ∈V B

∨
τ∈dom σ

(‖τ = µ‖ ∧ σ(τ) ∧ ‖ϕ(µ)‖)

=
∨

τ∈dom σ

(σ(τ) ∧
∨
µ∈V B

(‖τ = µ‖ ∧ ‖ϕ(µ)‖))

=
∨

τ∈dom σ

(σ(τ) ∧ ‖∃y (τ = y ∧ ϕ(y))‖)

=
∨

τ∈dom σ

(σ(τ) ∧ ‖ϕ(τ)‖).
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(b) Follows easily from (a). �

In order to simplify writing, in the following lemma we will omit unnec-
essary variables and identify e(p) with p:

Lemma 1.35

(a) If p  ϕ and q ≤ p, then q  ϕ.

(b) For every ϕ the set {q ∈ P : q  ϕ or q  ¬ϕ} is dense in P (if q  ϕ
or q  ¬ϕ we say that q decides ϕ).

(c) p  ¬ϕ iff ¬∃q ≤ p q  ϕ.

(d) If {q ∈ P : q  ϕ} is dense below p, then p  ϕ.

(e) p  ϕ ∧ ψ iff p  ϕ and p  ψ.

(f) p  ϕ ∨ ψ iff ∀q ≤ p ∃r ≤ q (r  ϕ or r  ψ).

(g) If A is a set in V , then

p  ∀x ∈ Ǎ ϕ(x) iff ∀a ∈ A p  ϕ(ǎ).

(h) If A is a set in V , then

p  ∃x ∈ Ǎ ϕ(x) iff ∀q ≤ p ∃r ≤ q ∃a ∈ A r  ϕ(ǎ).

Proof. (a) and (e) are obvious.
(b) Let p ∈ P . p must be compatible with at least one of the elements

‖ϕ‖ and ‖¬ϕ‖, say p∧ ‖ϕ‖ 6= 0. Then there is q ∈ P such that q ≤ p∧ ‖ϕ‖;
thus q ≤ p and q  ‖ϕ‖.

(c) Let p  ¬ϕ, and suppose there is q ≤ p such that q  ϕ. But by (a)
we have q  ¬ϕ as well, so q ≤ ‖ϕ‖ ∧ ‖¬ϕ‖ = 0, a contradiction. On the
other hand, if ∀q ≤ p ¬q  ϕ, we have p∧‖ϕ‖ = 0 (otherwise there would be
an element q ∈ P below p ∧ ‖ϕ‖, so q  ϕ). But this means that p ≤ ‖ϕ‖′,
i.e. p  ¬ϕ.

(d) Suppose that {q ∈ P : q  ϕ} is dense below p. If there is r ≤ p such
that r  ¬ϕ, there would be q ≤ r such that q  ϕ, a contradiction. Now
(c) implies p  ϕ.
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(f) Using (c) and (e) we get

p  ϕ ∨ ψ ⇔ p  ¬(¬ϕ ∧ ¬ψ)
⇔ ∀q ≤ p ¬q  (¬ϕ ∧ ¬ψ)
⇔ ∀q ≤ p ¬(q  ¬ϕ ∧ q  ¬ψ)
⇔ ∀q ≤ p (¬q  ¬ϕ ∨ ¬q  ¬ψ)
⇔ ∀q ≤ p (∃r ≤ q r  ϕ ∨ ∃r ≤ q r  ψ)
⇔ ∀q ≤ p ∃r ≤ q (r  ϕ ∨ r  ψ).

(g) Using Lemma 1.34 we get

p  ∀x ∈ Ǎ ϕ(x) ⇔ p ≤ ‖∀x ∈ Ǎ ϕ(x)‖
⇔ p ≤

∧
τ∈dom Ǎ

(Ǎ(τ) ⇒ ‖ϕ(τ)‖)

⇔ p ≤
∧
a∈A

(Ǎ(ǎ) ⇒ ‖ϕ(ǎ)‖)

⇔ p ≤
∧
a∈A

(1 ⇒ ‖ϕ(ǎ))‖

⇔ ∀a ∈ A p ≤ ‖ϕ(ǎ)‖
⇔ ∀a ∈ A p  ϕ(ǎ)

(h) Using (c) and (g) we get

p  ∃x ∈ Ǎ ϕ(x) ⇔ p  ¬∀x ∈ Ǎ ¬ϕ(x)
⇔ ∀q ≤ p ¬q  ∀x ∈ Ǎ ¬ϕ(x)
⇔ ∀q ≤ p ¬∀a ∈ A q  ¬ϕ(ǎ)
⇔ ∀q ≤ p ∃a ∈ A ¬q  ¬ϕ(ǎ)
⇔ ∀q ≤ p ∃a ∈ A ∃r ≤ q r  ϕ(ǎ).�

One of the implications in part (h) of the previous lemma can be strength-
ened in a certain sense:

Lemma 1.36 (The Maximum Principle) ([19], Lemma 14.19) If p 
∃x ϕ(x), then there is a ∈ V B such that p  ϕ(a).

The following statement, given adequate ingredients, provides an element
of V B:
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Lemma 1.37 (The Mixing Lemma) ([19], Lemma 14.18) If W is a set
of pairwise disjoint elements of B and aw ∈ V B for w ∈ W , then there is
a ∈ V B such that ‖a = aw‖ ≥ w for all w ∈W .

Definition 1.38 Let P and Q be partial orders. i : P → Q is a complete
embedding if:

(1) for p1, p2 ∈ P , if p1 ≤ p2 then i(p1) ≤ i(p2);

(2) for p1, p2 ∈ P , if p1 ⊥ p2 then i(p1) ⊥ i(p2);

(3) for every q ∈ Q there is p ∈ P such that for all p′ ≤ p i(p′) and q are
compatible in Q.

(The word “embedding” may be misleading; i is not necessarily one-to-
one.)

Theorem 1.39 ([24], Theorem VII 7.5) Let P and Q be partial orders, and
i : P → Q a complete embedding in V .

(a) If H is a Q-generic filter over V , then i−1[H] is a P-generic filter over
V and V [i−1[H]] ⊆ V [H].

(b) If G is a P-generic filter over V , then G′ = {q ∈ Q : ∃p ∈ G i(p) ≤ q}
is a Q-generic filter over V and V [G] ⊆ V [G′].

Theorem 1.40 ([18], Lemma 2.7) Let P and Q be partial orders, and h :
Q→ P a function such that

(1) for q1, q2 ∈ Q, if q1 ≤ q2 then h(q1) ≤ h(q2);

(2) for every q ∈ Q and every p ∈ P such that p ≤ h(q) there is q′ ∈ Q
compatible with q such that h(q′) ≤ p.

If H is a Q-generic filter over V , then H ′ = {p ∈ P : ∃q ∈ H p ≥ h(q)} is a
P-generic filter over V and V [H ′] ⊆ V [H].

Definition 1.41 Let P and Q be partial orders. i : P → Q is a dense
embedding if

(1) for p1, p2 ∈ P , if p1 ≤ p2 then i(p1) ≤ i(p2);

(2) for p1, p2 ∈ P , if p1 ⊥ p2 then i(p1) ⊥ i(p2);

(3) i[P ] is dense in Q.
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It is easy to see that every dense embedding is complete. The connection
between forcing with partial orders and forcing with Boolean algebras can
be derived from the next theorem.

Theorem 1.42 ([24], Theorem VII 7.11) Let P and Q be partial orders,
and i : P → Q a dense embedding.

(a) If H is a Q-generic filter over V , then i−1[H] is a P-generic filter over
V and V [i−1[H]] = V [H].

(b) If G is a P-generic filter over V , then G′ = {q ∈ Q : ∃p ∈ G i(p) ≤ q}
is a Q-generic filter over V and V [G] = V [G′].

As a special case of Theorem 1.42, if B is the completion of P, F is a
P-generic filter over V and G the corresponding B-generic ultrafilter (see
Lemma 1.28), then we have VP[F ] = VB[G] and moreover, for every σ ∈ V P,
σF = (e∗(σ))G (see [24], Lemma VII 7.13(a)). Hence, forcing with a partial
order P produces the same extension as forcing with r.o.(P) (via the cor-
responding ultrafilter). Another consequence of the theorem above is that
isomorphic partial orders yield the same generic extensions. In general, if for
every P-generic filter G there is a Q-generic filter H such that VP[G] = VB[H],
and vice versa, we will call those partial orders forcing equivalent.

It suffices to investigate only forcing extensions via separative partial
orders:

Lemma 1.43 Every partial order P is forcing equivalent with its separative
quotient.

Proof. Follows from Lemma 1.14 and Theorem 1.42. �

Finally, we turn to the second fundamental theorem on forcing, disclosing
the way to prove various properties of generic extensions.

Theorem 1.44 (The Forcing Theorem) ([19], Theorem 14.6) Let G be
a P-generic filter over V , B = r.o.(P), and let G′ be the corresponding B-
generic ultrafilter over V . For every formula ϕ(x1, x2, . . . , xn), and every
σ1, σ2, . . . , σn ∈ V P the following conditions are equivalent:

(a) V [G] |= ϕ(iG(σ1), iG(σ2), . . . , iG(σn));

(b) ∃p ∈ G p  ϕ(σ1, σ2, . . . , σn);
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(c) ‖ϕ(σ1, σ2, . . . , σn)‖ ∈ G′.

Hence, if we choose a suitable partial order P (and thus the correspond-
ing complete Boolean algebra), we can extend V to a model V [G] having
desired properties.

The problem of existence of a generic filter for a partial order P can be
dealt with in several ways. However, we need not work with V [G] itself; if
we want to show that some property ϕ is consistent with ZFC+A, where A
is an additional set of axioms, it is enough to take a notion of forcing P in a
model of ZFC+A and show that p  ϕ for some p ∈ P (i.e. ‖ϕ‖ > 0), and if
we want to show that ϕ holds in every extension of V , it is enough to prove
that 1  ϕ (that is, ‖ϕ‖ = 1). Here 1 denotes the greatest element of P. Of
course, we may also consider partial orders without one, but adding it does
not change r.o.(P) (the completion adds one anyway), so we can assume that
P has a greatest element.

Elements of V P are also called names for elements of V [G]. Particularly
useful are so-called “nice names”. Now we introduce several such types of
names.

Definition 1.45 (a) If σ is a name in V B, a B-nice name for a subset of
σ is any τ ∈ V B of the form {〈π, bπ〉 : π ∈ dom σ}, where bπ ∈ B for
π ∈ dom σ.

(b) If σ is a name in V P, a P-nice name for a subset of σ is any τ ∈ V P of
the form

⋃
{{π} ×Aπ : π ∈ dom σ}, where each Aπ is an antichain in

P.

Note. Of course, τ is actually a name for a subset of σG, but since we do
not know what σG is until G is fixed, we must call τ “a nice name for a
subset of σ”.

Since there can be no confusion, we will drop the prefixes and call both
these types only “nice names”. A special case occurs when x ∈ V (of course,
then all y ∈ x are in V too); then a nice name has the form τ = {〈y̌, by〉 : y ∈
x}. In this case ‖y̌ = ž‖ = 0 for different elements y, z in V , so ‖y̌ ∈ τ‖ = by
for all y ∈ x. Nice names for functions will also prove to be very useful to
us.
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Definition 1.46 A nice name for a function in (XY )V [G], where X and Y
are sets in V , is any τ ∈ V B of the form: {〈〈x̌, y̌〉, bx,y〉 : x ∈ X, y ∈ Y } such
that {bx,y : y ∈ Y } is a maximal antichain in B for each x ∈ X. The set of
all such names will be denoted by Nn(XY ).

Lemma 1.47 ([24], Lemma 5.12) If σ, µ ∈ V P, then there is a nice name
τ ∈ V P for a subset of σ such that

1  (µ ⊆ σ ⇒ µ = τ).

It is common practice (and we will follow it) to write down long formulas
in a shorter, informal way, as in the lemma below.

Lemma 1.48 If µ ∈ V B is a name in V [G], then there is τ ∈ Nn(XY ) such
that

‖µ is a function from X̌ to Y̌ ⇒ µ = τ‖ = 1. (1.2)

Proof. Without loss of generality we can assume that X = κ and Y = λ
are cardinals in V . For all α < κ and 0 < β < λ let bα,β = ‖〈α̌, β̌〉 ∈
µ‖ \

∨
0<β1<β

bα,β1 and bα,0 = (
∨

0<β<λ bα,β)
′. We define τ = {〈〈α̌, β̌〉, bα,β〉 :

α ∈ κ, β ∈ λ}. Clearly, {bα,β : β < λ} is a maximal antichain for each α < κ,
so τ ∈ Nn(κλ). To prove (1.2), let G be a B-generic ultrafilter over V and
(working from now on in V [G]) assume that µG : κ → λ. This means that
there is p ∈ G such that

‖∀α < κ̌ ∃β < λ̌ 〈α, β〉 ∈ µ‖ ≥ p (1.3)

and

‖∀α < κ̌ ¬∃β1, β2 < λ̌ (β1 6= β2 ∧ 〈α, β1〉, 〈α, β2〉 ∈ µ)‖ ≥ p. (1.4)

By (1.4) for each α < κ and β1 < β2 < λ we have ‖〈α̌, β̌1〉 ∈ µ‖ ∧ ‖〈α̌, β̌2〉 ∈
µ‖∧p = 0, which implies bα,β ∧p = ‖〈α̌, β̌〉 ∈ µ‖∧p for β > 0. Furthermore,
for each α (1.3) implies

∨
β<λ ‖〈α, β〉 ∈ µ‖ ≥ p. Both {bα,β ∧ p : β < λ}

and {‖〈α̌, β̌〉 ∈ µ‖ ∧ p : β < λ} are maximal antichains below p, so it fol-
lows that bα,0 ∧ p = ‖〈α̌, 0̌〉 ∈ µ‖ ∧ p. Thus ‖〈α̌, β̌〉 ∈ τ ⇔ 〈α̌, β̌〉 ∈ µ‖ ≥ p
for all α < κ and β < λ, so ‖∀α < κ τ(α) = µ(α)‖ ≥ p and we get τG = µG.�

Later on we will prove a modification of this result (Lemma 2.43). The
previous lemma allows us to assume whenever it is convenient, without loss
of generality, that a given name for a function belongs to Nn(XY ):
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Corollary 1.49 For any two sets X,Y ∈ V , every function f : X → Y in
any extension V [G] has a nice name in V .

Proof. if µ is any name for f , there is p ∈ G such that

p  µ is a function from X̌ to Y̌ .

But from Lemma 1.48 it follows that there is τ ∈ Nn(XY ) such that

p  µ is a function from X̌ to Y̌ ⇒ µ = τ,

so p  µ = τ . Hence τ is also a name for f . �

We conclude this section with some notes about forcing with a product
of Boolean algebras.

Lemma 1.50 Let {Bα : α < κ} be a family of complete Boolean algebras
and B =

∏
α<κ Bα (with operations defined componentwise).

(a) If G is a B-generic ultrafilter over V then there is α < κ and a Bα-
generic ultrafilter H over V such that VB[G] = VBα [H].

(b) If H is a Bα-generic ultrafilter over V for some α < κ then there is a
B-generic ultrafilter G over V such that VB[G] = VBα [H].

Proof. To simplify the explanation, we give a proof of the special case κ = 2
(the proof in general is similar). For a ∈ B we denote by Ba the Boolean
algebra 〈a↓,∧a,∨a,′a , 0, a〉, where ∧a,∨a,′a are restrictions of the operations
in B to a↓. First we note that, if B = B1 × B2, then there are b1 = 〈1B1 , 0B2〉
and b2 = 〈0B1 , 1B2〉 in B such that Bb1 ∼= B1 and Bb2 ∼= B2. By Theorem 1.42
isomorphic Boolean algebras yield the same generic extensions, so it suffices
to give proof for Bb1 and Bb2 instead of B1 and B2.

(a) Let G be a B-generic ultrafilter. Then G contains exactly one of the
elements b1 and b2, for example b1. Let H = {g ∧ b1 : g ∈ G}. Clearly, H is
a Bb1-generic ultrafilter. Since H can be defined within V [G], it follows that
H ∈ V [G], so by minimality of V [H] (Theorem 1.30(e)) we get V [H] ⊆ V [G].
Moreover, G = {g ∈ B : g ∧ b1 ∈ H} so G ∈ V [H]. It follows that
V [G] ⊆ V [H] as well.

(b) Let H be a Bb1-generic ultrafilter. Then G = {g ∈ B : g ∧ b1 ∈ H} is
a B-generic ultrafilter and H = {g ∧ b1 : g ∈ G}, so V [G] = V [H] follows as
in (a). �
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1.4 Chain conditions and distributivity

In this section some connections will be given between various properties of
partial orders and the effect they have on generic models produced by them.

Theorem 1.51 ([19], Theorem 15.3) If κ is a regular cardinal and P satisfies
the κ-c.c. then κ is a regular cardinal in every extension by P as well.

Corollary 1.52 Every cardinal greater than or equal to c.c.(P) remains a
cardinal in every extension by P.

Proof. Similar to the proof of Lemma 1.33, using Theorem 1.51. �

The following lemma establishes a chain condition for many important
notions of forcing.

Lemma 1.53 ([24], Lemma VII 6.10) Let λ be an infinite cardinal and let
I and J be arbitrary sets. If

P = {p : p is a function ∧ dom p ∈ [I]<λ ∧ ran p ⊆ J},

then 〈P,⊇〉 satisfies the (|J |<λ)+ − c.c.

Another way to prove that certain cardinals are preserved in generic
extensions is by generalized distributivity. This notion will also be one of
the most important in following chapters.

Definition 1.54 Let κ and λ be infinite cardinals. A complete Boolean
algebra B is (κ, λ)-distributive if for every collection 〈aαβ : α < κ, β < λ〉 of
elements of B ∧

α<κ

∨
β<λ

aαβ =
∨

f :κ→λ

∧
α<κ

aαf(α). (1.5)

A complete Boolean algebra B is κ-distributive if it is (κ, λ)-distributive for
all infinite λ ∈ Card.

It is easy to see that the distributivity laws
∧
α<κ(a∨aα) = a∨

∧
α<κ aα

and
∨
α<κ(a ∧ aα) = a ∧

∨
α<κ aα hold in every complete Boolean alge-

bra. Also, the inequality ≥ always holds in (1.5): for every α < κ and every
f : κ→ λ we have aαf(α) ≤

∨
β<λ aαβ (since aαf(α) is among elements aαβ on

the right-hand side). It follows that
∧
α<κ aαβ ≤

∧
α<κ

∨
β<λ aαβ , and since
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it holds for every f : κ→ λ, we have
∨
f :κ→λ

∧
α<κ aαβ ≤

∧
α<κ

∨
β<λ aαβ .

If B is a complete Boolean algebra, let us define

h2(B) = min{κ : B is not (κ, 2)-distributive}.

Definition 1.55 A partition of an element b of a partial order P is a max-
imal antichain of elements below b. A partition W1 is a refinement of a
partition W2 if for every x ∈ W1 there is y ∈ W2 such that x ≤ y. A
partition of unity 1 of a Boolean algebra B is also called a partition of B.

Theorem 1.56 The following conditions are equivalent for every complete
Boolean algebra B in V and every infinite cardinal κ:

(a) B is κ-distributive;

(b) every intersection of κ sets open dense in B is open dense;

(c) for every generic extension VB[G] and every set A in V , every function
f : κ→ A in VB[G] is also in V ;

(d) for every a ∈ B+ and every collection {Wα : α < κ} of partitions of a
there are b ∈ B+ and wα ∈Wα such that b ≤ wα for all α < κ;

(e) for every a ∈ B every collection of κ partitions of a has a common
refinement.

Proof. (a)⇒(b) Let Dα for α < κ be open dense subsets of B. The
intersection D =

⋂
α<κDα is always open: if d ∈ D and b ≤ d, since every

Dα is open, d ∈ Dα implies b ∈ Dα, so b ∈ D.
Now let B be κ-distributive. To prove that D is dense, let b ∈ B+ and let
us find d ∈ D such that d ≤ b. Let λ = supα<κ |Dα|. For every α < κ let
{aα,β : β < κα} be an enumeration of the set {b∧ d : d ∈ Dα}, and aα,β = 0
for κα ≤ β < λ. Since ∨

β<λ

aα,β = b ∧
∨
Dα = b

the left-hand side of (1.5) equals b. It follows that
∨
f :κ→λ cf = b as well,

where cf =
∧
α<κ aα,f(α) for f ∈ κλ. Hence at least one of the elements cf

is nonzero so, since cf ≤ aα,f(α) ∈ Dα for all α < κ, cf is the element we
wanted.
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(b)⇒(c) Let VB[G] be a generic extension, A ∈ V and f : κ → A a
function in V [G]. Let f̄ be a name for f . There is p0 ∈ G such that

p0  f̄ is a function ∧ dom f̄ = κ̌ ∧ ran f̄ ⊆ Ǎ. (1.6)

For each α < κ let

Dα = {p ≤ p0 : ∃x ∈ A p  f̄(α̌) = x̌}.

We prove that Dα is open dense below p0 for every α < κ: it is obvious that
Dα is open, so let q ≤ p0. (1.6) implies that p0  ∃x ∈ Ǎ f̄(α̌) = x, i.e.

∀q ≤ p0 ∃p ≤ q ∃x ∈ A p  f̄(α̌) = x̌,

so there is p ≤ q such that p ∈ Dα.
It is easy to see that (b) implies that the intersection of every family of
κ sets open dense below p0 is open dense too. Applying this to the set
D =

⋂
α<κDα, we obtain p ∈ D∩G. Now we can define a function g : κ→ A

in V : for every α < κ let g(α) = xα ∈ A be such that p  f̄(α̌) = x̌α. But
g(α) = f(α) for all α < κ, so f = g.

(c)⇒(d) First let us notice that we can assume a = 1 without loss of
generality. This is because, if {Wα : α < κ} is a collection of partitions of a,
then {Wα∪{a′} : α < κ} is a collection of partitions of B, and any partition
refining it can be reduced to a partition refining {Wα : α < κ} by excluding
all elements below a′.
Thus, let {Wα : α < κ} be a collection of partitions of unity, and let G
be any B-generic ultrafilter. For every α < κ let fα ∈ V B be such that
‖fα = w̌‖ = w for w ∈ Wα (such elements exist by Lemma 1.37). Since
‖∃w ∈ W̌α fα = w‖ =

∨
w∈Wα

w = 1, we have iG(fα) ∈ Wα. In V [G] we
define a function f : κ → B in the following way: let f(α) = iG(fα). By
(c) this function is in V , so ran f ∈ V as well. For every α < κ there is
w ∈ Wα such that ‖fα = w̌‖ = w ∈ G, so fα = w and we get f(α) ∈ G.
Hence b =

∧
ran f ∈ G as well, so b 6= 0. Since f(α) ∈ Wα for every α < κ,

we found b ∈ B such that b is below some element of every Wα.
(d)⇒(e) As above, it suffices to show that every collection of κ partitions

of unity has a common refinement. Thus let {Wα : α < κ} be a collection
of partitions of unity. Let C = {b ∈ B : ∀α < κ ∃wα ∈ Wα b ≤ wα}, and
let U be a maximal antichain in C. Suppose

∨
U 6= 1. If we apply (d) to

a = (
∨
U)′ and the collection {W ′

α : α < κ}, where W ′
α = {w ∧ a : w ∈

Wα} \ {0}, we find an element b ∈ B and wα ∈ W ′
α such that b ≤ wα for

α < κ. This means that b is in C, and it is incompatible with all elements
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of U , a contradiction with the maximality of U . Hence U is a common
refinement for all partitions Wα.

(e)⇒(a) Let λ be an infinite cardinal and let {aαβ : α < κ, β < λ} be
a family of elements of B. We already showed that the inequality ≥ in
(1.5) always holds, so let u =

∧
α<κ

∨
β<λ aαβ . We construct the collection

{bαβ : α < κ, β < λ} such that, for every α < κ, Wα = {bαβ : β < λ}
is a partition of u and bαβ < aαβ for all β < λ, by recursion on β: if
we already defined bαγ for γ < β let bαβ = aαβ ∧ (

∨
γ<β bαγ)

′ ∧ u. Since∨
β<λ aαβ ≥ u for every α < κ, we have

∨
β<λ bαβ = u. Now we ap-

ply (e) to the collection {Wα : α < κ} and get a partition W of u such
that for every w ∈ W there is fw : κ → λ such that bαfw(α) ∈ Wα and
w ≤ bαfw(α) for every α < κ. This means that

∧
α<κ bαfw(α) ≥ w, so∨

f :κ→λ

∧
α<κ bαf(α) ≥

∨
w∈W

∧
α<κ bαfw(α) ≥

∨
w∈W w = u. �

Each of the conditions of Theorem 1.56 except (a) makes sense for par-
tial orders in general as well, and each of them can be used to define κ-
distributivity of partial orders (the usual way to do this is using (b); some-
times such partial orders are called κ-Baire). It is not hard to prove the
result that supports this:

Lemma 1.57 Let (∗) be any of the conditions (b), (c), (d) or (e) of Theorem
1.56. A partial order P has the property (∗) iff the Boolean algebra r.o.(P)
has (∗).

The following corollary of Theorem 1.56(d) and Lemma 1.33 is among
the most useful theorems in theory of forcing:

Corollary 1.58 If a partial order P is ν-distributive for all ν < κ, then

(a) if cfV (µ) = λ ≤ κ, then cfV [G](µ) = λ as well;

(b) CardV ∩ κ+ = CardV [G] ∩ κ+.

Most of the equivalents in Theorem 1.56 generalize to (κ, λ)-distributivity:

Theorem 1.59 The following conditions are equivalent for every Boolean
algebra B in V and every two cardinals κ and λ:

(a) B is (κ, λ)-distributive;

(b) for every a ∈ B+ and every collection {Wα : α < κ} of partitions of
a of size at most λ there are nonzero b ≤ a and wα ∈ Wα such that
b ≤ wα for all α < κ;
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(c) for every a ∈ B every collection of κ partitions of a of size at most λ
has a common refinement;

(d) for every generic extension VB[G], every function f : κ→ λ in VB[G] is
also in V .

Unlike κ-distributivity, we can not use conditions (b) and (c) to define
(κ, λ)-distributivity for partial orders. Of course, we can use (d), and a pos-
sible alternative non-forcing definition will be given in Section 2.5.

Especially important is part (d) of the previous theorem for λ = 2, since
a notion of forcing adds a subset A ⊆ κ iff it adds its characteristic function
f : κ→ 2, because each of these two can be defined from the other.

Lemma 1.60 If a complete Boolean algebra B is (κ, 2)-distributive, then it
is also (κ, 2κ)-distributive.

Proof. Let V [G] be a generic extension of V , and let B be (κ, 2)-distributive.
By Theorem 1.59 every function f : κ → 2 in V [G] is also in V . But then
the same holds for subsets of κ. It follows that all subsets of κ × κ in
V [G] are also in V ; this is because the canonical bijection ϕ : κ → κ × κ
generates a bijection ϕ′ : P (κ) → P (κ × κ), so P (κ)V = P (κ)V [G] implies
P (κ× κ)V = P (κ× κ)V [G].
Now let f : κ→ P (κ) be in V [G]. f can be coded by the set Yf = {〈α, β〉 ∈
κ× κ : β ∈ f(α)}. By what we proved above Yf belongs to V , and so does
f , because f(α) = {β < κ : 〈α, β〉 ∈ Y } for α < κ. By Theorem 1.59 B is
(κ, 2κ)-distributive. �

Next we define a property stronger than distributivity, but often easier
to prove.

Definition 1.61 A partial order P is κ-closed iff for every ordinal γ < κ
and every descending sequence 〈pα : α < γ〉 of elements of P there is p ∈ P
such that p ≤ pα for all α < γ.

Lemma 1.62 Every κ+-closed partial order is κ-distributive.

Proof. Let P be κ+-closed and let {Dα : α < κ} be a collection of open
dense sets. By Theorem 1.56 it suffices to prove that D =

⋂
α<κDα is open

dense too. D is obviously open, so let p ∈ P ; we want to find r ∈ D such
that r ≤ p. We construct a sequence 〈pα : α < κ〉 of elements of P by
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recursion: let p0 ∈ D0 be such that p0 ≤ p. If pβ are already defined for
β < α, we consider two cases: first, if α = γ + 1 we simply let pα ∈ Dα

be such that pα ≤ pγ ; otherwise, if α is a limit ordinal, since P is κ-closed,
there is q ∈ P such that q ≤ pβ for all β < α, and we let pα ∈ Dα be such
that pα ≤ q. Finally, we let r be an element such that r ≤ pα for all α < κ.
pα ∈ Dα implies r ∈ Dα for all α < κ, so r ∈ D. �

Corollary 1.63 Every complete Boolean algebra containing a κ+-closed
dense subset is κ-distributive.

Now we mention another, even more general, distributivity law.

Definition 1.64 A complete Boolean algebra B is (κ, λ, µ)-distributive if
for every collection 〈aαβ : α < κ, β < λ〉 of elements of B∧

α<κ

∨
β<λ

aαβ =
∨

f :κ→[λ]<µ

∧
α<κ

∨
β∈f(α)

aαβ . (1.7)

B is weakly (κ, λ)-distributive if it is (κ, λ, ω)-distributive, and it is weakly
κ-distributive if it is weakly (κ, λ)-distributive for all λ ∈ Card. Weakly
(ω, ω)-distributive Boolean algebras are simply called weakly distributive.

Thus (κ, λ)-distributivity is the same as (κ, λ, 2)-distributivity. Again
we have a generalization of Theorem 1.56:

Theorem 1.65 The following conditions are equivalent for every Boolean
algebra B in V :

(a) B is (κ, λ, µ)-distributive;

(b) for every a ∈ B+ and every collection {Wα : α < κ} of partitions of a
of size at most λ there are nonzero b ≤ a and Vα ∈ [Wα]<µ such that
b ≤

∨
Vα for all α < κ;

(c) for every f : κ → λ in V [G] there is g : κ → [λ]<µ in V such that
f(α) ∈ g(α) for all α < κ.

Corollary 1.66 Forcing with a weakly distributive Boolean algebra does
not add an unbounded real, i.e. a function f : ω → ω such that there is no
h : ω → ω in V such that f(n) ≤ h(n) for all n ∈ ω.
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Proof. Suppose the opposite, that B is weakly distributive and forcing with
B adds an unbounded real f . By previous theorem there is g : ω → [ω]<ω in
V such that f(n) ∈ g(n) for all n ∈ ω. Let h(n) = max g(n) for n ∈ ω; then
g bounds f . �

Lemma 1.67 For every complete Boolean algebra B the following condi-
tions are equivalent:

(a) B is (ω, ω1, ω1)-distributive;

(b) ‖|ω̌V1 | = ω̌‖ = 0.

Proof. (a)⇒(b) Assume that ‖|ω̌V1 | = ω̌‖ > 0. Then in some generic
extension V [G] there is a bijection f : ω → ωV1 . But if B were (ω, ω1, ω1)-
distributive, there would be a function g : ω → [ω1]<ω1 in V such that
f(n) ∈ g(n) for all n ∈ ω. If we let h(n) = sup g(n), h : ω → ωV1 would be a
bijection in V , a contradiction.

(b)⇒(a) Suppose B is not (ω, ω1, ω1)-distributive. Then there is a generic
extension V [G] and a function f : ω → ωV1 in V [G] such that there is no
g : ω → [ω1]<ω1 in V such that f(n) ∈ g(n) for all n ∈ ω. But ran f must
be unbounded in ωV1 : otherwise the function g defined by g(n) = sup ran f
for all n ∈ ω would bound f , a contradiction. Since ωV1 ≤ ω

V [G]
1 and

cfV [G](ωV1 ) = ω, it follows that |ωV1 |V [G] = ω. �

1.5 Proper, Sacks, Laver and ωω-bounding notions
of forcing

In this section we consider some other properties a notion of forcing can
have. The first of these was introduced by Shelah6.

Definition 1.68 A notion of forcing is proper if for every uncountable car-
dinal κ, every set S ⊆ [κ]ω that is stationary in the ground model remains
stationary in the generic extension.

Every c.c.c. partial order, and every ω1-closed partial order is proper (see
[19], Lemmas 31.2 and 31.3).

Lemma 1.69 If P is a proper notion of forcing, then every set that is sta-
tionary in ω1 in the ground model remains stationary in ω1 in every generic
extension.

6Saharon Shelah (b. 1945), Israeli mathematician
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Proof. We first prove that, if C is a club in [ω1]ω, then C∗ = {α < ω1 :
α =

⋃
Dn for some ascending sequence 〈Dn : n ∈ ω〉 in C} is a club in ω1.

C∗ is obviously closed, so let α < ω1. We define a sequence 〈αn : n < ω〉
of ordinals and a sequence 〈Dn : n < ω〉 of elements of C by recursion.
First let α0 = α and let D0 ∈ C be such that α0 + 1 ⊆ D0. For n > 0
let αn = supDn−1 and Dn ∈ C be such that αn + 1 ⊆ Dn. Finally, let
D =

⋃
n∈ωDn. Since D =

⋃
n∈ω αn as well, D is an ordinal so D ∈ C∗.

Let S be stationary subset of ω1 (in V ). S is also stationary in [ω1]ω: if C
is a club in [ω1]ω, C∗ is a club in ω1 so S ∩C∗ 6= ∅, which implies S ∩C 6= ∅.
Thus S is also stationary in [ω1]ω in V [G]. Now, if U is a club in ω1 in V [G],
U is also a club in [ω1]ω in V [G], so S ∩ U 6= ∅. �

Definition 1.70 If g : ω → ω is a nondecreasing unbounded function, we
denote Sg = {ϕ ∈ ω([ω]<ω) : ∀n < ω |ϕ(n)| ≤ g(n)} and call the elements
of Sg slaloms. In particular, if g(n) = n+ 1, we denote Sg by S.

Definition 1.71 A forcing notion P has the Sacks7 property if

1  ∀f ∈ ω̌ω̌ ∃ϕ ∈ (SV )ˇ ∀n < ω̌ f(n) ∈ ϕ(n). (1.8)

The next lemma shows that it is not necessary to bound the width of
“the gates” ϕ(n) of a slalom from Definition 1.71 with n+ 1.

Lemma 1.72 For any nondecreasing unbounded g : ω → ω a forcing notion
P has the Sacks property iff

1  ∀f ∈ ω̌ω̌ ∃ϕ ∈ ((Sg)V )ˇ ∀n < ω̌ f(n) ∈ ϕ(n).

Proof. (⇒) Let g : ω → ω be nondecreasing and unbounded, and let
f : ω → ω be a function in V [G].

Claim. If P has the Sacks property, then

1  ∀h ∈ ω̌(<ω̌ω̌) ∃ϕ ∈ ((S∗)V )ˇ ∀n < ω̌ h(n) ∈ ϕ(n), (1.9)

where S∗ = {ϕ ∈ ω([<ωω]<ω) : ∀n < ω |ϕ(n)| ≤ n+ 1}.

Proof. Let ψ : <ωω → ω be a bijection in V . If h : ω → <ωω, let
h′ : ω → ω be defined by h′(n) = ψ(h(n)). Applying (1.8) to h′ we get
ϕ′ ∈ SV such that for all n < ω h′(n) ∈ ϕ′(n). Defining ϕ ∈ (S∗)V by

7Gerald E. Sacks, contemporary American mathematician
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ϕ(n) = ψ−1[ϕ′(n)] we obtain that for all n < ω h(n) ∈ ϕ(n). This proves
the Claim.

For n ∈ ω let x(n) = min{m ∈ ω : g(m) ≥ n+ 1}, and let h : ω → <ωω
be defined by h(n) = f � (x(n)). Now, applying the Claim to h we get
ϕ′ ∈ (S∗)V such that h(n) ∈ ϕ′(n) for n < ω. Now define ϕ(m) for m ∈ ω
as follows. If g(m) = n+ 1 (which means x(n) ≤ m < x(n+ 1)) let ϕ(m) =
{ψ(m) : ψ ∈ ϕ′(n+ 1) ∧ dom ψ > m}. Now we have f(m) = h(n+ 1)(m) ∈
ϕ(m) (since h(n+ 1) ∈ ϕ′(n+ 1)). But |ϕ′(n+ 1)| ≤ n+ 1 = g(m) implies
|ϕ(m)| ≤ g(m); thus we proved (1.8).

(⇐) Analogous to the first implication. �

Definition 1.73 A forcing notion P is ωω-bounding if

1  ∀f ∈ ω̌ω̌ ∃g ∈ ((ωω)V )ˇ ∀n < ω̌ f(n) ≤ g(n). (1.10)

It may seem from Lemma 1.72 that the properties of being ωω-bounding
and being Sacks are equivalent, but they are not. The reason is that in
(1.10) g depends on f , and in the formula in Lemma 1.72 the width of ϕ(n)
for ϕ ∈ Sg is given a priori by g.

Definition 1.74 A forcing notion P has the Laver8 property if

1  ∀f ∈ ω̌ω̌ (∃h ∈ ((ωω)V )ˇ∀n ∈ ω̌ f(n) ≤ h(n) ⇒
∃ϕ ∈ (SV )ˇ ∀n < ω̌ f(n) ∈ ϕ(n)). (1.11)

Clearly, (1.10) and (1.11) imply (1.8), so a partial order has the Sacks
property iff it is ωω-bounding and has the Laver property. The proof of the
following lemma is analogous to the proof of Lemma 1.72.

Lemma 1.75 For any nondecreasing unbounded g : ω → ω a forcing notion
P has the Laver property iff

1  ∀f ∈ ω̌ω̌ (∃h ∈ ((ωω)V )ˇ∀n ∈ ω̌ f(n) ≤ h(n) ⇒
∃ϕ ∈ ((Sg)V )ˇ ∀n < ω̌ f(n) ∈ ϕ(n)). (1.12)

1.6 Various notions of forcing

In this section we give some examples of notions of forcing, all of which will
be used later. We begin with the partial order that was the first ever used
for this purpose, introduced by Cohen in [6] and [7].

8Richard Laver, contemporary American mathematician
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Example 1.1 (Cohen forcing) Let P = <ω2, P ′ = <ωω and, Q = {f :
dom f ∈ [ω]<ω, ran f ⊆ {0, 1}}. Forcing with P = 〈P,⊇〉 or Q = 〈Q,⊇〉 adds
a function f =

⋃
G ∈ ω2, and forcing with P′ = 〈P ′,⊇〉 adds a function

g =
⋃
G ∈ ωω, called a Cohen real (in both cases G is the corresponding

generic filter). But using Theorem 1.42 and the identity function f : P → Q
we see that the partial orders P and Q are forcing equivalent. On the other
hand, applying Theorem 1.42 to the bijection i : P ′ → P defined by

i(〈k0, . . . , km〉) = 11 . . . 1︸ ︷︷ ︸
k0

0 . . . 0 11 . . . 1︸ ︷︷ ︸
km

we also obtain that P and P′ are forcing equivalent. Thus all these forc-
ing notions produce the same extensions. Some of the functions in these
extensions are unbounded reals.

For any regular cardinal κ, Q can be generalized to Qκ = 〈Qκ,⊇〉, where
Qκ = {f : dom f ∈ [κ]<κ, ran f ⊆ {0, 1}}. Forcing with Qκ adds a function
f ∈ κ2, i.e. a subset of κ. Qκ is (2<κ)+-c.c. by Lemma 1.53, so Q is c.c.c.
Thus it preserves all cardinals and their cofinalities, and so do P and P′.

Qκ can be further generalized to a forcing notion adding a larger number
of subsets of κ. Using this Cohen proved the independence of the Continuum
Hypothesis from the axioms of ZFC.

The completion of Cohen notion of forcing (either P, P′ or Q, since these
completions are isomorphic) is called the Cohen algebra. �

Lemma 1.76 The Cohen algebra is the unique (up to isomorphism) atom-
less complete Boolean algebra having a countable dense subset.

Another way to obtain the Cohen algebra is the following: let B be the
σ-algebra of all Borel sets of reals and let Im be the σ-ideal of meager sets.
Then B/Im ∼= r.o.(〈B \ Im,⊆〉), and this algebra is also isomorphic to the
Cohen algebra.

Example 1.2 (Collapse forcing) Let κ be a regular cardinal and λ > κ
be a cardinal. Let P = {f : dom f ∈ [κ]<κ, ran f ⊆ λ}. The partial order
〈P,⊇〉 is κ-closed, so by Lemma 1.62 and Corollary 1.58 it preserves all
cardinals and cofinalities up to κ. By Lemma 1.53 it is also (λ<κ)+-c.c. so,
if λ<κ = λ, then it preserves the cardinals greater than λ. But λ (and thus
all cardinals between κ and λ) is collapsed to κ.

The completion of 〈P,⊇〉 is called a collapsing algebra and denoted
Col(κ, λ). �
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Example 1.3 (Random forcing) This notion of forcing was introduced
by Solovay in [31]. Let B be the σ-algebra of all Borel sets of reals (or all
Borel subsets of the interval [0, 1], for example) and let In be the σ-ideal of
sets of Lebesgue measure zero. Then B/In ∼= r.o.(〈B \ In,⊆〉) is a complete
Boolean algebra that is not (ω, 2)-distributive, but is weakly ω-distributive.

Forcing via B also adds a function in ωω, called a random real. �

Example 1.4 (Shooting a club) This notion of forcing was introduced
by Baumgartner9, Harrington10 and Kleinberg11 in [4]. Let A ⊆ ω1 be
stationary. We define PA = {p ⊆ A : p is closed and bounded} and for
p, q ∈ PA

p ≤ q iff q = p ∩ α for some α < ω1.

PA = 〈PA,≤〉 is ω-distributive, so by Theorem 1.56 forcing with PA does not
add new countable sets and ℵ1 remains a cardinal in V [G]. On the other
hand, it adds a club subset C of A. This can also be a way to destroy a
stationary subset of ω1: if ω1 \A is also stationary in V , it does not remain
stationary in V [G], because it is disjoint with C. In this case r.o.(PA) does
not have an ω1-closed dense subset, thus providing an example that the
reverse implication of Corollary 1.63 does not hold. �

Example 1.5 (Prikry forcing) This notion of forcing was constructed by
Prikry12 in [28]. Let κ be a measurable cardinal and D a normal ultrafilter
on κ. Let P be the set of all ordered pairs 〈s,A〉, where s is a finite increasing
sequence of ordinals below κ, A ∈ D and min(A) > max(s). The order on
P is defined as follows:

〈t, B〉 ≤ 〈s,A〉 iff t ⊇ s ∧B ⊆ A ∧ ran (t \ s) ⊆ A.

r.o.(P) is (ω, λ)-distributive for all λ < κ, but not (ω, κ)-distributive. Forcing
with P adds a cofinal function f : ω → κ called a Prikry sequence, but it
preserves all cardinalities. To prove this Prikry used the following property
of P:

Lemma 1.77 ([19], Lemma 21.12) Let P be Prikry forcing, 〈s,A〉 ∈ P and
σ a sentence. Then there is A′ ∈ D such that 〈s,A′〉 ≤ 〈s,A〉 and 〈s,A′〉
decides σ, meaning that either 〈s,A′〉  σ or 〈s,A′〉  ¬σ.

9James E. Baumgartner, contemporary American mathematician
10Leo A. Harrington, contemporary American mathematician
11Eugene Kleinberg, contemporary American mathematician
12Karel L. Prikry, contemporary Czech mathematician
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Definition 1.78 A partial order T = 〈T,≤〉 is a tree if for every t ∈ T the
set t↓ is well-ordered.

We will need some notation regarding trees. If t ∈ T let

htT(t) = o.t.(t↓)
Levα(T) = {t ∈ T : htT(t) = α}

Tα =
⋃
β<α

Levβ(T)

ht(T) = min{α ∈ Ord : Levα(T) = ∅}.

We will omit the subscript T whenever this does not cause any ambiguity.

Definition 1.79 A tree T will be called:
-a κ-tree if ht(T) = κ and |Levα(T)| < κ for all α < κ;
-well-pruned if for each t ∈ T and each α satisfying ht(t) ≤ α < ht(T)

there is s ∈ Levα(T) such that t ≤ s;
-ever-branching if above each t ∈ T there are at least two incomparable

elements;
-normal if: 1) T has the smallest element; 2) T is well-pruned and 3) for

all s, t ∈ T , if ht(s) = ht(t) is a limit ordinal and s↓= t↓, then s = t.

Clearly, two elements of a tree T = 〈T,≤〉 are incomparable iff they are
incompatible in the reversed tree T∗ = 〈T,≥〉. A maximal chain in a tree is
called a branch.

Example 1.6 (Suslin tree) A λ-Suslin13 tree is a λ-tree with no chains
or antichains of cardinality λ. An ω1-Suslin tree is called just a Suslin tree.
The statement “there are no Suslin trees” is known as the Suslin Hypothesis
(SH) and it is neither provable nor refutable in ZFC: ¬SH follows from ♦,
and SH from ¬CH+MAℵ1 . The proofs of these facts can be found in [19],
pages 274 and 241 respectively. Forcing with T∗ “kills” the Suslin tree T by
adding an uncountable branch to it.

A Suslin algebra is an atomless, c.c.c. ω-distributive complete Boolean
algebra. If T is a normal Suslin tree, then r.o.(T∗) is a Suslin algebra.
Conversely, if B is a Suslin algebra then B has a complete subalgebra that is
a completion of a reversed Suslin tree. �

More on Suslin trees can be found in [33] or [34]. We mention one more
fact that will be used later:

13Mikhail Ya. Suslin (1894-1919), Russian mathematician
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Lemma 1.80 For every well-pruned κ+-Suslin tree T = 〈T,≤〉 the reversed
partial order T∗ (and therefore the algebra r.o.(T∗) as well) is κ-distributive.

Proof. First let us show that for every set D open dense in T∗:

∃ξ < κ+ ∀η > ξ Levη(T) ⊆ D. (1.13)

Let A be a maximal antichain in D. It is also an antichain in T∗, so we
have |A| ≤ κ. Therefore ξ = supa∈A ht(a) < κ+. Now suppose t ∈ T is such
that ht(t) > ξ. Since D is dense in T∗, there is d ∈ D such that t ≤ d and,
since A is maximal, there is a ∈ A comparable to d, hence with t too. As
ht(t) > ξ and ht(a) ≤ ξ hold, we also have a ≤ t, thus t ∈ D. This proves
(1.13).

Now assume Dα, for α < κ, are open dense subsets of T∗. We will prove
that

⋂
α<κDα is open dense as well. We already know that the intersection

of open sets is always open. For every Dα we choose ξα such that ∀η >
ξα Levη(T) ⊆ Dα. If we denote ξ = supα<κ ξα, the set

⋂
α<κDα contains

all levels of the reversed tree T∗ below level Lξ so, since T is well-pruned, it
is dense. �

Example 1.7 (Sacks forcing) This notion of forcing was introduced by
Sacks in [29]. Let P be the set of all initial ever-branching subtrees of the
tree <ω2 (they are called perfect trees). Forcing with 〈P,⊇〉 adds f ∈ ω2
called a Sacks real. This is an example of a partial order satisfying the
Sacks property, and hence the Laver property and ωω-bounding property as
well. �

Example 1.8 (Iterated forcing) Sometimes it is necessary to force more
than once to obtain a model that satisfies conditions we want to obtain.
In that way we get a sequence M0 ⊆ M1 ⊆ . . . ⊆ Mγ ⊆ . . . (γ < κ) of
models, where each Mγ+1 is obtained by forcing using a partial order in
Mγ . Actually, we pick these partial orders (more precisely, their names)
in M0. There are several ways to obtain Mγ for γ ∈ Lim, so there are as
many types of iterated forcing: finite support iteration, countable support
iteration etc. A method has been developed that allows us to obtain a
partial order complex enough so that forcing with it gives the same generic
extension as this iteration, see [3], [19] or [24].

Iterated forcing was introduced by Solovay and Tennenbaum14 in [32].
Perhaps the most well-known application of this method is the proof of the
following theorem.

14Stanley Tennenbaum, contemporary American mathematician
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Theorem 1.81 ([24], Theorem VIII 6.3) Assume that in V κ is a regular
uncountable cardinal and 2<κ = κ. Then there is a partial order P that is
c.c.c. in V and V [G] |= 2ω = κ ∧ MA for every generic extension V [G] by
P.





Chapter 2

Cut-and-choose games on
Boolean algebras

All the games that will be described in this chapter are played by two play-
ers, White and Black, with White playing first. They make their moves
subsequently. For each game we will describe the moves each of the players
is allowed to make, and the criterion that they need to fulfill to win. We
begin with some history, using it to introduce the notions and notation that
we will use from now on.

2.1 Infinite games. The Banach-Mazur game

The first infinite game was defined in 1930. Today it is known as the Ba-
nach1-Mazur2 game.

Definition 2.1 Let A ⊆ ωω. The game GBM(A) is played as follows:

• First, White chooses a0 ∈ <ωω;

• in his n-th move Black chooses bn ∈ <ωω such that bn ⊃ an;

• in his n-th move (for n > 0) White chooses an ∈ <ωω such that
an ⊃ bn−1.

Thus x =
⋃
n<ω an =

⋃
n<ω bn ∈ ωω. White wins iff x ∈ A, and Black wins

otherwise.
1Stefan Banach (1892-1945), Polish mathematician
2Stanis/law Mazur (1905–1981), Polish mathematician
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A sequence 〈a0, b0, . . . , an, bn, . . .〉 of moves of both players obtained in
this way will be called a play, and each its initial subsequence 〈a0, b0, . . . , an,
bn〉 or 〈a0, b0, . . . , bn−1, an〉 a partial play.

Perhaps the most important notion in infinite game theory is the notion
of a winning strategy. Informally speaking, we say that one of the players
has a winning strategy in such a game iff there is an algorithm such that,
if he plays by that algorithm then he wins the game regardless of the other
player’s moves. More formally, a strategy for a player X is a function that
maps every possible partial play that can precede a move of X to an element
of the set of allowed moves for X. (Of course, Σ may be a multi-valued func-
tion, but assuming the Axiom of Choice we can restrict our attention only
to single-valued functions.)

Thus, in the game described above, if we denote with Sn the set of
all strictly increasing sequences of length n of elements of <ωω, a strategy
for White is a function Σ :

⋃
n<ω S2n → <ωω such that, for all n ∈ ω

and all 〈a0, b0, . . . , an−1, bn−1〉 ∈ S2n, Σ(〈a0, b0, . . . , an−1, bn−1〉) ⊃ bn−1 .
This means that, if the moves so far were a0, b0, . . . , an−1, bn−1, then White
should play Σ(〈a0, b0, . . . , an−1, bn−1〉). Such a function is a winning strat-
egy if for every play 〈a0, b0, . . . , an, bn, . . .〉 in which White follows Σ (i.e.
an = Σ(〈a0, b0, . . . , an−1, bn−1〉) for all n ∈ ω) the sequence

⋃
n<ω an be-

longs to A. Similarly, a strategy for Black is a function Σ :
⋃
n<ω S2n+1 →

<ωω such that Σ(〈a0, b0, . . . , bn−1, an〉) ⊃ an, and it is a winning strat-
egy if for every play 〈a0, b0, . . . , an, bn, . . .〉 in which Black follows Σ (i.e.
bn = Σ(〈a0, b0, . . . , bn−1, an〉) for all n ∈ ω)

⋃
n<ω an /∈ A holds.

For every game G there are three possibilities:
1) White has a winning strategy,
2) Black has a winning strategy or
3) neither of two players has a winning strategy; in this case we say that

G is undetermined.

Notice that, although each play 〈a0, b0, . . . , an, bn, . . .〉 is won by one of
the players, due to the infinity of the game this doesn’t mean that one of
them must have a winning strategy. Of course, this may depend on certain
parameters, such as the set A in the game GBM(A). Trivially, if A = ω then
White wins every play, and if A = ∅ then Black wins every play.



2.1. Infinite games. The Banach-Mazur game 45

We remind the reader that a subset A of a topological space is nowhere
dense if the interior of its closure is empty, meager if it is a countable union
of nowhere dense sets, and has the Baire property if there is an open set G
such that (A \G) ∪ (G \A) is meager.

Lemma 2.2 ([19], Lemma 33.7) Let A ⊆ ωω. Black has a winning strategy
in the game GBM(A) iff A is meager in the usual topology.

For ϕ ∈ <ωω let us denote Bϕ = {x ∈ ωω : ϕ ⊆ x} - a base open set in
the usual topology on ωω.

Lemma 2.3 ([19], Corollary 33.8) Let A ⊆ ωω. White has a winning strat-
egy in the game GBM(A) iff for some ϕ ∈ <ωω the set Bϕ \ A is meager in
the usual topology.

The Banach-Mazur game can be reformulated as a game of the following
form.

Definition 2.4 If X ⊆ ωω, the game G′(X) is played as follows. The
players, White and Black, subsequently choose natural numbers a0, b0, . . .,
an, bn, . . .; White wins if the sequence 〈a0, b0, . . . , an, bn, . . .〉 is in X, and
Black wins otherwise.

Now let f : ω → <ωω be a bijection. The Banach-Mazur game played on
a set A can be rephrased as follows: instead of a finite sequence x of natural
numbers each player chooses a natural number f−1(x) in each move. Let
X be the set of all sequences 〈a0, b0, . . . , an, bn, . . .〉 ∈ ωω such that either
f(an) 6⊂ f(bn) for some n ∈ ω, or the sequence 〈f(a0), f(b0), . . . , f(an),
f(bn), . . .〉 is strictly increasing and

⋃
n∈ω f(an) ∈ A. Then White wins

a play 〈a0, b0, . . . , an, bn, . . .〉 of the game G′(X) iff White wins the play
〈f(a0), f(b0), . . . , f(an), f(bn), . . .〉 of the game GBM(A).

The following additional axiom, defined by Mycielski3 and Steinhaus4,
is known as the Axiom of Determinacy.

(AD) For every set X ⊆ ωω the game G′(X) is determined.

So if AD holds, the Banach-Mazur game GBM(A) is determined for every
A ⊆ ωω as well. On the other hand, the Axiom of Choice implies that there

3Jan Mycielski (b. 1932), Polish mathematician
4Hugo D. Steinhaus (1887-1972), Polish mathematician
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is a set of reals that does not have the Baire property (for the construction
of such a set see [14], page 2). Thus the following lemma, which is a direct
consequence of Corollary 27.4 from [23], implies that in ZFC the Banach-
Mazur game can be undetermined.

Lemma 2.5 If A is a set that does not have the Baire property, then there
is an open set OA ⊆ ωω such that the game GBM(A \OA) is undetermined.

More information on the games of type G′(X) and the Axiom of Deter-
minacy can be found in [23] or [19].

2.2 Games on Boolean algebras. The game Ginf(κ)

From now on we will concentrate on games characterizing certain important
properties of complete Boolean algebras. The first of these games, inspired
by the Banach-Mazur game, was introduced by Jech5 in [15]. It can be
defined on any partial order, so let P = 〈P,≤〉 be a partial order and let
B = r.o.(P) be its completion. Unless otherwise stated, all results in this
section are due to Jech.

Definition 2.6 The descending chain game Ginf(ω) is played on a partial
order P as follows:

• first, White chooses a0 ∈ P ;

• in his n-th move Black chooses bn ∈ P such that bn ≤ an;

• in his n-th move (for n > 0) White chooses an ∈ P such that an ≤ bn−1.

Black wins if there is p ∈ P such that p ≤ an for all n ∈ ω (this also means:
p ≤ bn for all n ∈ ω), and White wins otherwise.

Thus, if we denote with D(nP ) the set of all descending sequences of
length n in P , in the game Ginf(ω), a strategy for White is a function
Σ :

⋃
n<ωD(2nP ) → P such that Σ(〈a0, b0, . . . , an, bn〉) ≤ bn for every par-

tial play 〈a0, b0, . . . , an, bn〉. Such a strategy is a winning strategy if for every
play 〈a0, b0, . . . , an, bn, . . .〉 in which White follows Σ there is no p ∈ P such
that p ≤ bn for all n < ω. A (winning) strategy Σ :

⋃
n<ωD(2n+1P ) → P

for Black is defined in a similar, quite natural, way.

5Thomas J. Jech (b. 1944), Czech mathematician
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When playing this game on a complete Boolean algebra B, it will be
understood that we actually play on 〈B+,≤〉; thus White wins a play
〈a0, b0, . . . , an, bn, . . .〉 iff

∧
n∈ω an = 0. Now we will need the following obvi-

ous lemma.

Lemma 2.7 If Σ :
⋃
n<ωD(2nP ) → P is a winning strategy for White in

Ginf(ω) played on P and Σ1 :
⋃
n<ωD(2nP ) → P is such that Σ1(x) ≤ Σ(x)

for all x ∈
⋃
n<ωD(2nP ), then Σ1 is also a winning strategy for White in

Ginf(ω) played on P.

Lemma 2.8 Let P be a separative partial order and B = r.o.(P).

(a) White has a winning strategy in the game Ginf(ω) played on P iff he
has a winning strategy in Ginf(ω) played on B.

(b) Black has a winning strategy in the game Ginf(ω) played on P iff he
has a winning strategy in Ginf(ω) played on B.

Proof. We will prove part (a), and part (b) is proved similarly (see [15]).
(⇒) Let Σ :

⋃
n<ωD(2nP ) → P be a winning strategy for White in the

game Ginf(ω) played on P. We define φ :
⋃
n<ωD(2nB) →

⋃
n<ωD(2nP ) by

recursion on the length of a sequence x ∈
⋃
n<ωD(2nB). Having defined

φ(y) for every sequence y of even length less than 2(n + 1), and given a
sequence x = 〈a0, b0, . . . , an, bn〉 ∈

⋃
n<ωD(2nB), let p = Σ(φ(x � 2n)). Let

q ∈ P be such that q ≤ p ∧ bn if p ∧ bn 6= 0, and let q ≤ p be an arbitrary
element of P otherwise. Finally we define φ(x) = φ(x � 2n)a〈p, q〉.

Now we define Σ′ :
⋃
n<ωD(2nB) → B in the following way: Σ′(x) =

Σ(φ(x)). Let us show that Σ′ is a winning strategy for White in Ginf(ω)
played on B. Let x = 〈a0, b0, . . . , an, bn, . . .〉 be a play in which White follows
Σ′, and let y = 〈p0, q0, . . . , pn, qn, . . .〉 =

⋃
n∈ω φ(x � 2n); it is a play in Ginf(ω)

since qn ≤ pn and pn+1 ≤ qn for all n < ω. Then in y White follows Σ and
pn = Σ(φ(x � 2n)) = Σ′(x � 2n) = an for n ∈ ω. Since White wins the play
y by assumption, he wins x as well: if there is b ∈ B+ such that b ≤ an for
all n ∈ ω, then there is also p ∈ P such that p ≤ b, and hence p ≤ pn for all
n ∈ ω as well.

(⇐) Now let Σ :
⋃
n<ωD(2nB) → B be a winning strategy for White

in the game Ginf(ω) played on B, and let Σ1 be defined as follows: if x =
〈a0, b0, . . . , an, bn〉 ∈

⋃
n<ωD(2nB), let p = Σ1(x) be an arbitrary element

of P such that p ≤ Σ(x). By Lemma 2.7, Σ1 is also a winning strategy for
White. Let Σ′ = Σ1 �

⋃
n<ωD(2nP ). Then Σ′ :

⋃
n<ωD(2nP ) → P .

In order to prove that Σ′ is a winning strategy for White in Ginf(ω) played
on P, we take any play 〈a0, b0, . . . , an, bn, . . .〉 on P in which White follows
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Σ′. Then it is also a play on B in which White follows Σ1, so White wins.
But this means that there is no b ∈ B such that b ≤ bn for all n ∈ ω, so
there is no p ∈ P that satisfies the same condition either. �

Theorem 2.9 White has a winning strategy in Ginf(ω) played on B iff B is
not ω-distributive.

Proof.
(⇒) Let Σ be a winning strategy for White. Let a0 = Σ(∅). We define,

for each n ∈ ω, an antichain Wn below a0 and a subset Pn of D(2n+1B)
as follows. First let W0 = {a0} and P0 = {〈a0〉}. For n > 0 let Qn be a
maximal subset of B such that:

(i) for each q ∈ Qn there is xq ∈ Pn−1 such that, if p is the last element
of xq, then q ≤ p;

(ii) Wn = {Σ(xqaq) : q ∈ Qn} is an antichain below a0.
We define Pn = {xqaqaΣ(xqaq) : q ∈ Qn}.
Let us prove by induction on n that Wn is a maximal antichain below

a0. Suppose not and let q′ = a0 \
⋃
Wn. Since Wn−1 is maximal, there is

r ∈Wn−1 such that r∧q′ 6= 0. Furthermore, there is p ∈ Pn−1 such that r is
the last element of p. Hence r∧q′ can be added to Qn so that the conditions
(i) and (ii) remain true, a contradiction with the maximality of Qn.

Thus we obtained a collection {Wn : n ∈ ω} of partitions of a0, such that
Wn+1 is a refinement of Wn for n ∈ ω. Let us show that {Wn : n ∈ ω} does
not satisfy condition (d) of Theorem 1.56, and it will follow that B is not
ω-distributive. So let an ∈ Wn for n ∈ ω, and let bn (n ∈ ω) be the unique
element of Qn+1 that lies between an and an+1. Then 〈a0, b0, . . . , an, bn, . . .〉
is a play in which White follows the strategy Σ, so there is no b ∈ B+ such
that b ≤ an for all n ∈ ω.

(⇐) Suppose B is not ω-distributive. By Theorem 1.56 there are a ∈ B+

and a collection {Wn : n ∈ ω} of partitions of a such that, if wn ∈Wn for all
n ∈ ω, then

∧
n∈ω wn = 0. We define a strategy Σ :

⋃
n<ωD(2nB) → B for

White: first let Σ(∅) = a. Let n > 0 and 〈a0, b0, . . . , an−1, bn−1〉 ∈ D(2nB).
There is w ∈Wn−1 such that bn−1∧w 6= 0, so let Σ(〈a0, b0, . . . , an−1, bn−1〉) =
bn−1 ∧w. Now it is easy to see that this is a winning strategy: if 〈a0, b0, a1,
b1, . . . , an, bn, . . .〉 is a play in which White obeys Σ and we denote by wn
the unique element of Wn such that an+1 ≤ wn for every n ∈ ω, we have∧
n∈ω an ≤

∧
n∈ω wn = 0. �

Theorem 2.10 If a partial order P has an ω1-closed dense subset, then
Black wins Ginf(ω) on P.
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Proof. Let D ⊆ P be ω1-closed and dense in P. The winning strategy
of Black is defined as follows: let Σ(〈a0, b0, . . . , bn−1, an〉) be any element
bn ∈ D such that bn ≤ an. Then since D is ω1-closed, for every play
〈a0, b0, . . . , an, bn, . . .〉 in which Black follows Σ there is b ∈ D such that
b ≤ bn for all n ∈ ω. �

The possibility of reversing this implication was thoroughly investigated,
and the following results were obtained by Jech, Foreman6 and Veličković7

respectively.

Theorem 2.11 ([16]) Black has a winning strategy in Ginf(ω) played on
a partial order P iff there exists a partial order Q such that P × Q has an
ω1-closed dense subset.

Theorem 2.12 ([12]) If Black has a winning strategy in Ginf(ω) played on
a complete Boolean algebra B and, for some cardinal κ, B is κ-distributive
and has a dense set of cardinality κ+, then B has an ω1-closed dense subset.

Theorem 2.13 ([36]) If Black has a winning strategy in Ginf(ω) played on
a complete Boolean algebra B and B has a dense subset of cardinality at
most c, then B has an ω1-closed dense subset.

It is also possible that none of the players has a winning strategy on a
partial order. One such example is the partial order PA described in Example
1.4. Precisely we have

Lemma 2.14 Let A ⊆ ω1 be such that both A and ω1 \A are stationary. If
PA is the notion of forcing shooting a club, then neither player wins Ginf(ω)
on PA.

Proof. Suppose first that there is a winning strategy Σ for Black. We
define, by recursion, functions a : [ω1]<ω → PA (showing how White should
play) and b : [ω1]<ω → ω1 in the following way: first let

a(α0) = any p ∈ PA such that max(p) > α0

b(α0) = max(a(α0)).

Now, if α0, α1, . . . , αn ∈ ω1 are ordinals such that α0 < α1 < . . . < αn, de-
fine a(α0, α1, . . . , αn) as follows: let 〈w0, b0, w1, b1, . . . , wn−1, bn−1〉 be the

6Matthew Foreman, contemporary American mathematician
7Boban Veličković (b. 1961), Serbian mathematician
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partial play in which White follows a (i.e. wk = a(α0, α1, . . . , αk)) and
Black follows Σ (i.e. bk = Σ(〈w0, b0, w1, b1, . . . , bk−1, ak〉)); then we define
a(α0, α1, . . . , αn) to be an extension of bn−1 such that b(α0, α1, . . . , αn) =
max(a(α0, α1, . . . , αn)) ≥ αn.
Now let us prove that the set

C = {β < ω1 : b(α0, α1, . . . , αn) < β whenever α0 < α1 < . . . < αn < β}

is closed unbounded. We use standard arguments; first let 〈βk : k ∈ ω〉
be an increasing sequence of elements of C, and β = sup{βk : k ∈ ω}.
If α0 < α1 < . . . < αn < β, then there is k ∈ ω such that αn < βk
so, since βk ∈ C, it follows that b(α0, α1, . . . , αn) < βk < β. Thus C is
closed. Now suppose γ < ω1 and let us find β ∈ C such that γ < β. We
define by recursion a sequence 〈γk : k ∈ ω〉: let γ0 = γ and for k ∈ ω
γk+1 = sup{b(α0, α1, . . . , αn) : α0 < α1 < . . . < αn < γk}. Finally, let
β = sup{γk : k ∈ ω}. Let us prove that β ∈ C: if α0 < α1 < . . . < αn < β,
then there is k ∈ ω such that αn < γk, so by definition b(α0, α1, . . . , αn) <
γk+1 < β. Thus C is unbounded as well.
Since ω1 \ A is stationary, there is β ∈ C ∩ (ω1 \ A). Clearly, all elements
of C are limit ordinals, so let 〈αn : n ∈ ω〉 be an increasing sequence of
ordinals such that sup{αn : n ∈ ω} = β. Let 〈w0, b0, w1, b1, . . .〉 be a play
in which White follows a (with respect to ordinals αn, n < ω) and Black
follows Σ. Since αn < max(wn) = b(α0, α1, . . . , αn) < β for all n ∈ ω, we
have sup{max(wn) : n ∈ ω} = β. This means that there is no closed subset
of A containing all ordinals max(wn) for n ∈ ω (because such set would have
to include β, and β 6∈ A), so there is no p ∈ PA such that p ≤ wn for all
n ∈ ω. Thus White wins the game, a contradiction.
The proof that White does not have a winning strategy is similar: we be-
gin choosing β ∈ C ∩ A, and in the end we come up with a closed set
p =

⋃
n∈ω wn ∪ {β} such that p ≤ wn for all n ∈ ω. �

The generalization of the game Ginf(ω) to uncountable cardinals was
defined in [13] by Fuchino8, Mildenberger9, Shelah and Vojtás.10

Definition 2.15 The game Ginf(κ) is played on a partial order P as follows:

• first, White chooses a0 ∈ P ;

8Sakae Fuchino, contemporary Japanese mathematician
9Heike Mildenberger, contemporary German mathematician

10Peter Vojtáš, contemporary Slovak mathematician
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• in his α-th move Black chooses bα ∈ P such that bα ≤ aα;

• in his α-th move (for α > 0) White chooses aα ∈ P such that aα ≤ bβ
for all β < α.

Theorem 2.16 ([13]) White has a winning strategy in Ginf(κ) played on B
iff B is not κ-distributive.

2.3 The cut-and-choose games

The rest of the games that will be considered here are so-called “cut-and-
choose” games. In this section we establish some more notation and prove
a few results that will be used in all succeeding sections.

Definition 2.17 Let B be a Boolean algebra, p ∈ B+, and let λ be an
infinite cardinal. By Ap(λ) we will denote the set of all partitions of p of
cardinality λ, by Ap(≤λ) the set of all partitions of p of cardinality at most
λ, and by Ap the set of all partitions of p, regardless of their cardinality.

For every λ ∈ Card and every A ∈ Ap(≤λ) we fix a sequence A = {pAξ :
ξ < λ} such that, for some ν ≤ λ, {pAξ : ξ < ν} is an enumeration of A, and
pAξ = 0 for ν ≤ ξ < λ. Thus we may get different sequences for the same
antichain for various cardinals λ, but this will not present a problem since
λ will be a fixed cardinal whenever we use this notation.

Definition 2.18 A cut-and-choose game of type (κ, λ, µ), where κ, λ ∈
Card, κ is infinite and µ ∈ κCard, is played on a complete Boolean algebra
B in the following way:

• first, White chooses p ∈ B+. Then, for α < κ the players make their
moves subsequently:

• in his α-th move White chooses a partition Aα of p of cardinality at
most λ;

• in his α-th move Black chooses a subset aα ∈ [λ]<µ(α), thus choosing
a subset {pAα

ξ : ξ ∈ aα} of the partition Aα.

We will sometimes abuse this notation in one of the following ways:
“a game is of type (κ,<λ, µ)” will mean that White chooses partitions of
cardinality less than λ, “a game is of type (κ,∞, µ)” that the cardinality of



52 Chapter 2. Cut-and-choose games on Boolean algebras

partitions is not bounded, and “a game is of type (κ, λ, µ)”, where µ ∈ Card,
that Black chooses less than µ elements in each of his moves.

Hence various cut-and-choose games that will be considered differ in
1) the number κ of moves,
2) the number λ of elements of each partition,
3) the function µ : κ→ Card bounding the number of elements that can

be chosen by Black in each move and, of course,
4) the winning criterion for White; this condition usually has the form

E(〈
∨
ξ∈aα

pAα
ξ : α < κ〉) = 0 for some function E : κB → B. Naturally,

Black wins iff the condition is not satisfied.

Thus White first picks an element of B+. In each of the following κ
moves he cuts p into at most λ pieces and offers them to Black, who then
chooses less than µ(α) of them. This explains the term “cut-and-choose”.

For cut-and-choose games we will, as in previous sections, use the notions
of a play (now it has the form 〈p,A0, a0, . . . , Aα, aα, . . .〉), a partial play, a
(winning) strategy etc. So a strategy for White in a cut-and-choose game
G is a pair 〈p,Σ〉 that consists of an element p ∈ B+ and a function Σ :⋃
β<κ

∏
α<β(Ap(≤λ)× [λ]<µ(α)) → Ap(≤λ). However, Σ essentially depends

only on previous moves of the opponent, so there is a way to represent such
a function in a simpler way.

Definition 2.19 A function E : κB → B is called ascending if for any two
sequences 〈aα : α < κ〉, 〈bα : α < κ〉 ∈ κB, bα ≤ aα for all α < κ implies
E(〈bα : α < κ〉) ≤ E(〈aα : α < κ〉).

Theorem 2.20 Let G be a cut-and-choose game of type (κ, λ, µ) and let
E : κB → B be a function such that White wins a play 〈p,A0, a0, . . . , Aα,
aα, . . .〉 iff E(〈

∨
ξ∈aα

pAα
ξ : α < κ〉) = 0. For every complete Boolean algebra

B the following conditions are equivalent:

(a) White has a winning strategy in the game G played on B;

(b) there are p ∈ B+ and w :
⋃
β<κ

∏
α<β[λ]<µ(α) → Ap(≤λ) such that

∀i ∈
∏
α<κ

[λ]<µ(α) E(〈
∨

ξ∈i(α)

p
w(i�α)
ξ : α < κ〉) = 0. (2.1)
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Furthermore, if the function E is ascending and B satisfies

∀p ∈ B+ c.c.(〈p↓,≤〉) > λ, (2.2)

then these conditions are also equivalent to

(c) there are p ∈ B+ and w :
⋃
β<κ

∏
α<β[λ]<µ(α) → Ap(λ) such that (2.1)

holds.

Note. 1) From the proof below it will be clear that (c)⇒(a)⇔(b) holds
for every complete Boolean algebra B; the additional conditions are needed
only to prove (b)⇒(c). 2) Clearly, in the games in which there is no bound
on the cardinality of partitions chosen by White, λ can be substituted by
c.c.(B) in the formulation of the previous theorem.

Proof. (a)⇒(b). Let p and Σ make a winning strategy for White in the
game G. We define w by recursion on |w|. First, let w(∅) = Σ(∅). If α < κ,
ϕ ∈

∏
β<α[λ]<µ(β), and w(ϕ � β) is already defined for β < α, let us define

w(ϕ) = Σ(〈〈w(ϕ � β), ϕ(β)〉 : β < α〉).

Let i ∈
∏
α<κ[λ]<µ(α); we prove (2.1).

Claim. In the match in which White begins with p and Black plays
〈i(α) : α < κ〉, White, following Σ, plays Aα = w(i � α) in the α-th move.

Proof. Clearly, the first move of White is A0 = Σ(∅) = w(∅). Suppose
Claim holds for β < α. Then White, in his α-th move, plays Σ(〈〈w(i �
β), i(β)〉 : β < α〉) = w(i � α).

Since White wins the play 〈p,A0, i(0), . . . , Aα, i(α), . . .〉, we have that
E(〈

∨
ξ∈i(α) p

Aα
ξ : α < κ〉) = 0 and (2.1) is proved.

(b)⇒(c). Let p, w be as in (b). We define w′(ϕ) ∈ Ap(λ) and ψ(ϕ) ∈⋃
β<κ

∏
α<β[λ]<µ(α) by recursion on length of ϕ ∈

⋃
β<κ

∏
α<β[λ]<µ(α), so

that
(i) dom ψ(ϕ) = dom ϕ;
(ii) if α ∈ dom (ϕ), then ψ(ϕ � α) = ψ(ϕ) � α;
(iii) w′(ϕ) is a refinement of w(ψ(ϕ)).
Let β < κ and ϕ ∈

∏
α<β[λ]<µ(α), and suppose ψ(ϕ � γ) and w′(ϕ � γ)

are already defined for γ < β so that (i)-(iii) hold. If β = γ + 1, we put
C = {ξ < λ : ∃ζ ∈ ϕ(γ) pw

′(ϕ�γ)
ζ ≤ p

w(ψ(ϕ)�γ)
ξ } and ψ(ϕ) = ψ(ϕ � γ)aC.

Since |ϕ(γ)| < µ(γ), it follows that |ψ(ϕ)(γ)| = |C| < µ(γ) as well. If β is
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a limit ordinal, let ψ(ϕ) =
⋃
α<β ψ(ϕ � α). Clearly, (i) and (ii) hold. Now

let {bζ : ζ < λ} be a maximal antichain in p↓ of cardinality λ (existing by
(2.2)) and let w′(ϕ) = {bζ ∧ x : ζ < λ, x ∈ w(ψ(ϕ))} \ {0}. Obviously, w′(ϕ)
is a refinement of w(ψ(ϕ)) of cardinality λ, so (iii) holds as well.

Let i ∈
∏
α<κ[λ]<µ(α) be arbitrary and let us prove

E(〈
∨

ζ∈i(α)

p
w′(i�α)
ζ : α < κ〉) = 0. (2.3)

We define j =
⋃
α<κ ψ(i � α). By (i) and (ii) we have j ∈

∏
α<κ[λ]<µ(α).

Condition (b) implies that

E(〈
∨

ξ∈j(α)

p
w(j�α)
ξ : α < κ〉) = 0. (2.4)

Now, by (iii), for every α < κ and every ζ ∈ i(α) there is ξ ∈ j(α) such that
p
w′(i�α)
ζ ≤ p

w(j�α)
ξ , so we have∨

ζ∈i(α)

p
w′(i�α)
ζ ≤

∨
ξ∈j(α)

p
w(j�α)
ξ .

Now, the fact that E is ascending and (2.4) imply (2.3), which proves (c).
(c)⇒(a). Let p and w be the objects given by (c); the strategy for White

will consist of p and the function Σ defined by recursion as follows. First let
Σ(∅) = w∅. In the α-th step, let Σ(〈〈Aβ , aβ〉 : β < α〉) = w(〈aβ : β < α〉).

We prove that 〈p,Σ〉 is a winning strategy for White. Let 〈p,A0, a0, . . .,
Aα, aα, . . .〉 be an arbitrary play in which White follows this strategy. Since
〈aα : α < κ〉 ∈

∏
α<κ[λ]<µ(α), (2.1) guarantees that E(〈

∨
ξ∈aα

p
w(a�α)
ξ : α <

κ〉) = 0. But in the α-th move White plays Aα = w(a � α), so we have
E(〈

∨
ξ∈aα

pAα
ξ : α < κ〉) = 0 and White wins the game. �

The case λ = µ = 2 will appear in many games, and when it does we
can simplify the moves of both players in the following way: instead of a
partition Aα = {pAα

0 , pAα
1 } of p, in each of his moves White can choose only

pα = pAα
0 , and pAα

1 = p ∧ p′α is then uniquely determined. Also, Black
chooses one of those two elements, so if we introduce the following notation:

pkα =
{
pα if k = 0
p ∧ p′α if k = 1,

we may assume that Black, instead of piαα , only chooses iα ∈ {0, 1}, so in
this case we can also call the sequence 〈p, p0, i0, . . . , pα, iα, . . .〉 a play. The
previous theorem now takes the following form:
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Theorem 2.21 Let G be a cut-and-choose game of type (κ, 2, 2), and let E :
κB → B be a function such that White wins a play 〈p, p0, i0, . . . , pα, iα, . . .〉
iff E(〈piαα : α < κ〉) = 0. For every complete Boolean algebra B the following
conditions are equivalent:

(a) White has a winning strategy in the game G on B;

(b) there are p ∈ B+ and w : <κ2 → [0, p]B such that

∀i ∈ κ2 E(〈wi(α)
i�α : α < κ〉) = 0. (2.5)

If, in addition, E is ascending, then these conditions are also equivalent to

(c) there are p ∈ B+ and w : <κ2 → (0, p)B such that (2.5) holds.

(The proof of (b)⇒(c) must be slightly modified: in Ap(≤2) \ Ap(2) we
have only the trivial antichain {p}; thus in the definition of w′(ϕ) we take
w′(ϕ) = w(ψ(ϕ)) if w(ψ(ϕ)) 6= {p}, and otherwise we take w′(ϕ) to be any
partition of p into two elements.)

A strategy for Black is 〈Σp : p ∈ B+〉, where

Σp :
⋃
β<κ

(
∏
α<β

(Ap(≤λ)× [λ]<µ(α))×Ap(≤λ)) → [λ]<µ(β)

for each p ∈ B+. Again, we can considerably simplify the condition of
existence of a winning strategy. Thus, the statement analogous to Theorem
2.20 for Black is:

Theorem 2.22 Let G be a cut-and-choose game of type (κ, λ, µ), and let
E : κB → B be a function such that White wins a play 〈p,A0, a0, . . . , Aα,
aα, . . .〉 iff E(〈

∨
ξ∈aα

pAα
ξ : α < κ〉) = 0. For every complete Boolean algebra

B the following conditions are equivalent:

(a) Black has a winning strategy in the game G on B;

(b) for every p ∈ B+ there is w :
⋃
β<κ

β+1Ap(≤λ) → [λ]<µ(β) such that

∀i ∈ κAp(≤λ) E(〈
∨

ξ∈w(i�(α+1))

p
i(α)
ξ : α < κ〉) > 0. (2.6)

Furthermore, if E is ascending and B satisfies (2.2), then these conditions
are also equivalent to
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(c) for every p ∈ B+ there is w :
⋃
β<κ

β+1Ap(λ) → [λ]<µ(β) such that

∀i ∈ κAp(λ) E(〈
∨

ξ∈w(i�(α+1))

p
i(α)
ξ : α < κ〉) > 0. (2.7)

Note. As in Theorem 2.20, only one implication requires the additional
assumption that E is ascending; (a)⇔(b)⇒(c) holds for every complete
Boolean algebra B.

Proof. (a)⇒(c) Suppose Black has a winning strategy 〈Σp : p ∈ B+〉 in G,
and let p ∈ B+. We define w by recursion. If α < κ, ϕ ∈ α+1Ap(λ), and
w(ϕ � (γ + 1)) is already defined for each γ < α, let us define

w(ϕ) = Σp(〈〈〈ϕ(γ), w(ϕ � (γ + 1))〉 : γ < α〉, ϕ(α)〉).

Let i ∈ κAp(λ); we prove (2.7). An easy induction shows that, in the
match in which White begins with p and then plays 〈i(α) : α < κ〉, in the
α-th move Black, following Σp, plays aα = w(i � (α+ 1)). Since Black wins,
we have E(〈

∨
ξ∈aα

p
i(α)
ξ : α < κ〉) = 0 and (2.7) is proved.

(c)⇒(b) Let p ∈ B+ and let w be the function provided by (c). By
recursion on ϕ ∈

⋃
β<κ

β+1Ap(≤λ), for dom ϕ = β + 1, we define w′(ϕ) ∈
[λ]<µ(β) and ψ(ϕ) ∈ β+1Ap(λ) such that

(i) if α < β, then ψ(ϕ � (α+ 1)) = ψ(ϕ) � (α+ 1);
(ii) ψ(ϕ)(β) is a refinement of ϕ(β);
(iii)

∨
ζ∈w(ψ(ϕ)) p

ψ(ϕ)(β)
ζ ≤

∨
ξ∈w′(ϕ) p

ϕ(β)
ξ .

Let ϕ ∈ β+1Ap(≤λ) and suppose ψ(ϕ � (γ + 1)) and w′(ϕ � (γ + 1)) are
already defined for γ < β so that (i)-(iii) hold. Let {bζ : ζ < λ} be a partition
of p of cardinality λ (existing by (2.2)) and let C = {bζ ∧ x : ζ < λ, x ∈
ϕ(β)} \ {0}. Now we define ψ(ϕ) =

⋃
γ<β ψ(ϕ � (γ + 1))aC. Obviously, (i)

and (ii) hold. Next we put w′(ϕ) = {ξ < λ : ∃ζ ∈ w(ψ(ϕ)) pψ(ϕ)(β)
ζ ≤ p

ϕ(β)
ξ }.

Taking (ii) into account, it is easy to see that (iii) also holds.
Let i ∈ κAp(≤λ) be arbitrary and let us prove

E(〈
∨

ξ∈w′(i�(α+1))

p
i(α)
ξ : α < κ〉) > 0 (2.8)

We define j =
⋃
α<κ ψ(i � (α+1)). By (i) we have j ∈ κAp(λ). The condition

(c) implies that
E(〈

∨
ζ∈w(j�(α+1))

p
j(α)
ζ : α < κ〉) > 0. (2.9)
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Now, by (iii) and the fact that E is ascending we have (2.5), which proves
(b).

(b)⇒(a) For p ∈ B+ we define by recursion the functions Σp that make
a strategy for Black. Let p ∈ B+ and let w be given by (b); in the α-th
step, let Σp(〈〈〈Aβ, aβ〉 : β < α〉, Aα〉) = w(〈Aβ : β ≤ α〉).

We prove that 〈Σp : p ∈ B+〉 is a winning strategy. Let 〈p,A0, a0, . . .,
Aα, aα, . . .〉 be an arbitrary play in which Black follows this strategy. Since
〈Aα : α < κ〉 ∈ κAp(≤λ), (2.6) guarantees that E(〈

∨
ξ∈w(A�(α+1)) p

Aα
ξ : α <

κ〉) > 0. But in the α-th move Black plays aα = w(A � (α+ 1)), so we have
E(〈

∨
ξ∈aα

pAα
ξ : α < κ〉) > 0 and Black wins the game. �

For games of type (κ, 2, 2) the theorem above takes the following form:

Theorem 2.23 Let G be a cut-and-choose game of type (κ, 2, 2) and let E :
κB → B be a function such that White wins a play 〈p, p0, i0, . . . , pα, iα, . . .〉
iff E(〈piαα : α < κ〉) = 0. For every complete Boolean algebra B the following
conditions are equivalent:

(a) Black has a winning strategy in the game G on B;

(b) for every p ∈ B+ there is w :
⋃
β<κ

β+1(0, p)B → 2 such that for every
i ∈ κ(0, p)B

E(〈i(α)w(i�(α+1)) : α < κ〉) > 0. (2.10)

Furthermore, if E is ascending, then these conditions are also equivalent to

(c) for every p ∈ B+ there is w :
⋃
β<κ

β+1[0, p]B → 2 such that for every
i ∈ κ[0, p]B (2.10) holds.

2.4 The game Gdist(κ, λ, µ)

The investigation of cut-and-choose games began in 1984 when Jech in [16]
introduced the game Gdist(ω, 2, 2). (The notation we use differs from his.)
Again, unless we state otherwise, all results are due to Jech.

Definition 2.24 Let κ be an infinite cardinal, and let λ, µ be cardinals. The
distributivity game Gdist(κ, λ, µ) is a cut-and-choose game of type (κ, λ, µ):
it is played in κ-many steps; after choosing an element p ∈ B+ White
chooses, in his every move, a partition Aα of cardinality at most λ, and
Black chooses a set aα ∈ [λ]<µ. White wins iff

∧
α<κ

∨
ξ∈aα

pAα
ξ = 0, and

Black wins otherwise.
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Theorem 2.25 Let B be a complete Boolean algebra and λ an infinite
cardinal. White has a winning strategy in the game Gdist(ω, λ, 2) iff B is not
(ω, λ)-distributive.

Proof. (⇐) Suppose that B is not (ω, λ)-distributive. By Theorem 1.59
there are a ∈ B and partitions Wn (for n ∈ ω) of a such that |Wn| ≤ λ, and
if bn ∈Wn for every n ∈ ω, then

∧
bn = 0. A winning strategy for White is

to play Wn in his n-th move.
(⇒) Conversely, if White has a winning strategy, Theorem 2.20 claims

that there are a ∈ B and w : <ωλ→ A′
a(λ) such that

∀i ∈ ωλ
∧
n<ω

p
w(i�n)
i(n) = 0.

For all n ∈ ω and all s ∈ n2, let us define Qs = {
∧
k≤n bk : bk ∈ w(s �

k) for all k ≤ n} \ {0} and Pn =
⋃
s∈n2Qs. Clearly, since w(s � k) ∈ A′

a(λ)
for all s ∈ n2 and all k < n, each Pn is an antichain below a of cardinal-
ity at most λ. It is easy to prove by induction that Pn is a partition of
a and that Pn+1 is a refinement of Pn for n ∈ ω. Let pn ∈ Pn (n < ω)
be such that pn+1 ≤ pn for all n. For each n there are sn ∈ n2 such that
pn ∈ Qsn , and bn ∈ w(sn) such that pn = pn−1 ∧ bn. From the definition
of Qs it follows that sn = sn−1

aα, where bn is the α-th element in the
enumeration of w(sn−1) (otherwise, if sn(k) 6= sn−1(k) for some k < n, the
elements pn and pn−1 would be incompatible). Let i =

⋃
n<ω sn. Then∧

n∈ω pn ≤
∧
n<ω bn =

∧
n<ω p

w(sn)
sn+1(n) =

∧
n<ω p

w(i�n)
i(n) = 0, so by Theorem

1.59 B is not (ω, λ)-distributive. �

There are many variations of this game. In the first of them, the game
Gdist(ω,∞, 2), White is allowed to make partitions of any size. The proof of
the following theorem is analogous to the proof of Theorem 2.25.

Theorem 2.26 Let B be a complete Boolean algebra. White has a winning
strategy in the game Gdist(ω,∞, 2) iff B is not ω-distributive.

Thus White has a winning strategy in the game Gdist(ω,∞, 2) iff he has
one in Ginf(ω). The same holds for Black (the first implication was proved
by Jech, and the second by Veličković):

Theorem 2.27 Black has a winning strategy in Ginf(ω) played on a com-
plete Boolean algebra B iff he has a winning strategy in Gdist(ω,∞, 2) played
on B.
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Proof. (⇒) Let Σ :
⋃
n<ωD(2n+1B) → B be a winning strategy for Black

in Ginf(ω), and let a ∈ B+ be the first move of White in Gdist(ω,∞, 2). We
denote ν = c.c.(B) (a bound on the cardinality of partitions of a) and define
a function w :

⋃
n<ω

n+1A′
a(ν) → ν such that

∀i ∈ ωA′
a(ν)

∧
n<ω

p
i(n)
w(i�(n+1)) > 0. (2.11)

By Theorem 2.22 (applied for λ = ν) it will follow that Black has a winning
strategy in Gdist(ω,∞, 2).

We proceed by recursion. Assume that w has been defined for all se-
quences of length at most n of partitions of a, and let 〈W0, . . . ,Wn〉 ∈
n+1A′

a(ν). Let us define elements ak, bk, ck for k ≤ n as follows: first let
a0 = a. For 0 ≤ k ≤ n let bk = Σ(〈a0, b0, . . . , bk−1, ak〉). There is ck ∈ Wk

such that bk ∧ ck 6= 0; let ak+1 = bk ∧ ck. Finally, let w(〈W0, . . . ,Wn〉) = α,
where cn = pWn

α , i.e. cn is the α-th element in the enumeration of Wn.
Let us prove that (2.11) holds. Let i = 〈Wn : n ∈ ω〉 ∈ ωA′

a(ν). If
we construct an, bn, cn for n ∈ ω as above, it is easy to prove by induction
that pi(n)

w(i�(n+1)) = cn for all n. Furthermore, cn ≥ an+1 ≥ bn+1 holds, and
〈a0, b0, . . . , an, bn, . . .〉 is a play in the game Ginf(ω) in which Black follows
Σ, so we have

∧
n<ω bn > 0. It follows that

∧
n∈ω cn > 0 as well, which

completes the proof.
(⇐) Let a ∈ B+ be the first move of White in Ginf(ω). If we assume that

Black has a winning strategy in Gdist(ω,∞, 2), Theorem 2.22 implies the
existence of a function w :

⋃
n<ω

n+1A′
a(ν) → ν such that (2.11) holds. We

define a strategy Σ :
⋃
n<ωD(2n+1B) → B for Black in Ginf(ω) by recursion.

Assume that, for some n < ω, Σ has been defined for all sequences of
length 2k + 1 (k < n) of elements of B, and a sequence 〈a0, b0, . . . , an〉
is given (a0 = a). We define partitions Ak (k < n) as follows. First,
let S0 = {pAw(〈A〉) : A ∈ A′

a(ν)}. If S0 contains all nonzero elements
below b0 (including b0 itself), we let A0 be a partition of a such that
pA0

w(〈A0〉) = a1, otherwise let A0 be arbitrary. In the k-th step, we let
Sk = {pAw(〈A0,A1,...,Ak−1,A〉) : A ∈ A′

a(ν)}; if for all l ≤ k Sl contains
all nonzero elements below bl, we let Ak be a partition of a such that
pAk

w(〈A0,A1,...,Ak〉) = ak+1, otherwise let Ak be arbitrary. Finally, we claim
that there is nonzero bn ≤ an such that Sn contains all nonzero elements
below bn. Suppose not; then the set an ↓ \ Sn is dense below an. If A is
a maximal antichain of elements in an ↓ \Sn, then A is a partition of an
(otherwise there would be d ≤ (an↓ \

∨
A) that is not in Sn, a contradiction

with the maximality of A), and we would have pAw(〈A0,A1,...,An−1,A〉) ∈ A∩Sn,
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which is impossible. We let Σ(〈a0, b0, . . . , an〉) = bn.
Let us prove that Σ is a winning strategy. Let 〈a0, b0, . . . , an, bn, . . .〉 be

a play in which Black follows Σ. If we construct An for n ∈ ω as above and
define i ∈ ωA′

a(ν) by i(n) = An, we have pi(n)
w(i�(n+1)) = an+1 for all n < ω, so

by (2.11)
∧
n<ω an > 0. Hence Black wins Ginf(ω). �

It is now clear that the existence of a winning strategy for Black in
Ginf(ω) implies the existence of such strategy in Gdist(ω, 2, 2). Some results
concerning the reverse implication were obtained by Zapletal11:

Theorem 2.28 ([38]) If Black has a winning strategy in Gdist(ω, 2, 2) played
on a complete Boolean algebra B and B satisfies the c+ − c.c., then he also
has a winning strategy in Ginf(ω) played on B.

Theorem 2.29 ([38]) If 0] does not exist, and Black has a winning strategy
in Gdist(ω, 2, 2) played on a complete Boolean algebra B, then he also has a
winning strategy in Ginf(ω) played on B.

An example was provided (assuming there is a measurable cardinal) in
[38] showing that, in general, the existence of a winning strategy for Black
in Gdist(ω, 2, 2) does not imply the existence of a winning strategy for Black
in Ginf(ω).

We now turn to the generalized game Gdist(κ, λ, µ). We begin with noting
some obvious comparisons.

Lemma 2.30 (a) Let κ < κ1. If White has a winning strategy in Gdist(κ,
λ, µ), then he has a winning strategy in Gdist(κ1, λ, µ). If Black has a
winning strategy in Gdist(κ1, λ, µ), then he has a winning strategy in
Gdist(κ, λ, µ).

(b) Let λ < λ1. If White has a winning strategy in Gdist(κ, λ, µ), then he
has a winning strategy in Gdist(κ, λ1, µ). If Black has a winning strat-
egy in Gdist(κ, λ1, µ), then he has a winning strategy in Gdist(κ, λ, µ).

(c) Let µ < µ1. If White has a winning strategy in Gdist(κ, λ, µ1), then he
has a winning strategy in Gdist(κ, λ, µ). If Black has a winning strategy
in Gdist(κ, λ, µ), then he has a winning strategy in Gdist(κ, λ, µ1).

11Jindřih Zapletal, contemporary Czech matematician
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One direction of Theorem 2.25 can be obtained for any κ, λ by modifying
the proof:

Theorem 2.31 ([9], Theorem 1.3) If White does not have a winning strat-
egy in the game Gdist(κ, λ, 2) played on a complete Boolean algebra B, then
B is (κ, λ)-distributive.

Dobrinen12 also obtained a partial converse:

Theorem 2.32 ([9], Theorem 1.4) If White has a winning strategy in the
game Gdist(κ, λ, 2) played on a complete Boolean algebra B, then

(a) B is not (λ<κ, λ)-distributive;

(b) B is not (κ, λ<κ)-distributive.

Corollary 2.33 White has a winning strategy in the game Gdist(κ, 2, 2)
played on a complete Boolean algebra B iff B is not (κ, 2)-distributive.

Proof. (⇐) This part of the proof is essentially the same as in Theorem
2.25, and it follows from the more general Theorem 2.31, but it is given here
to show some special features of partitioning into two pieces. Thus, suppose
that B is not (κ, 2)-distributive. Let p ∈ B+. By Theorem 1.59 there are
partitions Wn of p for n ∈ ω such that |Wn| = 2, and if Wn = {an, bn}, then
for every nonzero q ≤ p there is n ∈ ω such that neither q ≤ an nor q ≤ bn
({an : n ∈ ω} is called a splitting family below p). A winning strategy for
White is to play first p, and then an in the n-th move.

(⇒) It follows from Theorem 2.32 that, if White has a winning strategy
in the game Gdist(κ, 2, 2), then B is not (κ, 2<κ)-distributive. But then, by
Lemma 1.60 it is not even (κ, 2)-distributive. �

By Theorem 2.10 the existence of an ω1-closed dense subset of B implies
that Black has a winning strategy in Gdist(ω,∞, 2). We have the analogous
result for Gdist(κ,∞, 2):

Theorem 2.34 If a complete Boolean algebra B contains a λ-closed dense
subset D, then for each infinite cardinal κ < λ Black has a winning strategy
in the game Gdist(κ,∞, 2).

12Natasha Dobrinen, contemporary American mathematician
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Proof. Let κ < λ. We describe a strategy Σ for Black. During the play
Black forms a sequence 〈iα : α < κ〉 in ν = c.c.(B) and a descending sequence
〈dα : α < κ〉 of elements of D as follows.

At the beginning, when White plays p ∈ B+ and A0 ∈ Ap(≤ν), Black
chooses ξ < ν such that pA0

ξ 6= 0, takes i0 = Σp(〈A0〉) = ξ and chooses
d0 ∈ D satisfying d0 ≤ pA0

ξ .
Let 0 < α < κ and let Aβ ∈ Ap(≤ν) (for β < α) be the first α moves of

White. Suppose the corresponding choices of Black, iβ and dβ , are defined
for β < α, so that d0 ≥ d1 ≥ . . . and dβ ≤ p

Aβ

iβ
. In the α-th move White

chooses Aα ∈ Ap(≤ν). Since the set D is λ-closed and α < λ, Black may
pick qα ∈ D such that qα ≤ dβ for all β < α and choose iα = Σp(〈〈〈Aβ, iβ〉 :
β < α〉, Aα〉) ∈ ν such that qα ∧ pAα

iα
> 0. The set D is dense, so Black

chooses dα ∈ D such that dα ≤ qα ∧ pAα
iα

.
Let us prove that 〈Σp : p ∈ B+〉 is a winning strategy for Black in

Gdist(κ,∞, 2). Let 〈p,A0, i0, . . . , Aα, iα, . . .〉 be an arbitrary play in which
Black follows Σp. If d0 ≥ d1 ≥ . . . are elements constructed as above, since
the set D is λ-closed there is d ∈ D such that d ≤ dα, for all α < κ. We
have dα ≤ pAα

iα
, for all α < κ, so

∧
α∈κ p

Aα
iα

≥
∧
α∈κ dα ≥ d > 0, thus Black

wins the game. �

In [16] Jech also introduced the games Gdist(ω, λ, ω) and Gdist(ω,∞, ω),
in which Black chooses a finite number of elements offered by White instead
of only one, as well as Gdist(ω, λ, ω1) and Gdist(ω,∞, ω1), in which Black
chooses a countable number of elements.

Theorem 2.35 ([16]) If White does not have a winning strategy in the
game Gdist(ω, λ, ω) played on a complete Boolean algebra B, then it is weakly
(ω, λ)-distributive.

Theorem 2.36 ([16]) If White does not have a winning strategy in the
game Gdist(ω,∞, ω) played on a complete Boolean algebra B, then B is weakly
ω-distributive.

Concerning the reverse implication of Theorem 2.35, the following theo-
rems were proved by Kamburelis13 and Jech:

Theorem 2.37 ([22] Proposition 1.2 and Corollary 1.6) White has a win-
ning strategy in the game Gdist(ω, λ, ω) played on a complete Boolean algebra
B iff B is not (ω, λ, ω)-distributive or ‖([λ]ω)V is non-stationary‖ > 0.

13Anastasis Kamburelis, contemporary Greek mathematician
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Theorem 2.38 ([22]) White has a winning strategy in the game Gdist(ω, ω1,
ω) played on a complete Boolean algebra B iff B is not (ω, ω1, ω)-distributive.

Theorem 2.39 ([16]) If White does not have a winning strategy in the
game Gdist(ω, λ, ω1) played on a complete Boolean algebra B, then it is
(ω, λ, ω1)-distributive.

Theorem 2.40 ([16]) If Black has a winning strategy in the game Gdist(ω,
∞, ω1) played on a complete Boolean algebra B, then B is proper.

Now we turn to various examples giving us better insight into possible
outcomes of the distributivity games.

Example 2.1 (A Boolean algebra on which White wins Ginf(ω) but Black
wins Gdist(ω, 2, 2).) Let κ be a measurable cardinal and F a normal ul-
trafilter on κ. Furthermore, let P be Prikry forcing (see Example 1.5)
and B = r.o.(P). Then Black has a winning strategy in Gdist(ω, 2, 2) on
B; let us describe this strategy briefly. In the beginning, if White chooses
a ∈ B+, Black chooses 〈s,A0〉 ∈ P such that 〈s,A0〉 ≤ a. In each of his next
moves Black chooses in ∈ {0, 1} and an element An+1 ∈ F as follows. Let
〈a, p0, i0, . . . , pn−1, in−1, pn〉 be a partial play; Black then takes in ∈ {0, 1}
and An+1 ∈ F such that An+1 ⊆ An and 〈s,An+1〉 ≤ pinn (this can be
done by Theorem 1.77). Since F is κ-complete,

⋂
n∈ω An ∈ F and we have

〈s,
⋂
n∈ω An〉 ∈ P . Thus

∧
n∈ω p

in
n ≥

∧
n∈ω〈s,An〉 = 〈s,

⋂
n∈ω An〉.

On the other hand, B is not (ω, κ)-distributive. Hence it is not ω-
distributive either, so White has a winning strategy in Ginf(ω). �

Example 2.2 Assume ♦. There is a Suslin algebra B (see Example 1.6)
such that neither player wins Gdist(ω, 2, 2) on B. We will generalize this
construction in Theorem 3.23. �

In [38] a ZFC example of a complete Boolean algebra on which the game
Gdist(ω, 2, 2) is undetermined was obtained.

Lemma 2.41 ([22], Corollary 2.3) There is a complete Boolean algebra that
is ω-distributive such that White wins the game Gdist(ω, ω2, ω1) played on
B.

Example 2.3 (A Boolean algebra on which Gdist(ω,∞, 2), Gdist(ω,∞, ω)
and Gdist(ω,∞, ω1) are all undetermined.) Let A be a stationary set in ω1

such that ω1 \ A is stationary too, and let PA be the partial order shoot-
ing a club (Example 1.4). PA is ω-distributive so by Theorem 2.26 and



64 Chapter 2. Cut-and-choose games on Boolean algebras

Lemma 2.30 White does not win either of games Gdist(ω,∞, 2) Gdist(ω,∞, ω)
or Gdist(ω,∞, ω1) on r.o.(P). But since forcing by PA causes the set ω1 \ A
to cease being stationary, PA is not proper and by Theorem 2.40 Black
does not have a winning strategy in Gdist(ω,∞, ω1), and hence neither in
Gdist(ω,∞, ω) and Gdist(ω,∞, 2). �

Example 2.4 (The existence of a winning strategy for Black in Gdist(ω,∞,
ω) does not imply ω-distributivity.) Let B be the random algebra (see Exam-
ple 1.3). B is not even (ω, 2)-distributive, but Black has a winning strategy
in Gdist(ω,∞, ω) (see [16]). �

Thus the game Gdist(ω,∞, ω) is strictly easier for Black than Gdist(ω,∞, 2)
(otherwise the existence of a winning strategy in Gdist(ω,∞, ω) for Black
would imply ω-distributivity) and strictly harder for White (otherwise ω-
distributivity would imply the existence of a winning strategy in Gdist(ω,∞,
ω) for Black).

2.5 The distributivity game on partial orders

In this section we generalize the game Gdist(κ, 2, 2) to partial orders. To do
this we will combine two notions of a nice name introduced earlier (Definition
1.45).

Definition 2.42 A name τ ∈ V P of the form

τ =
⋃

〈α,β〉∈κ×λ

{ ˇ〈α, β〉} ×Aαβ ,

where for each α < κ⋃
β<λAαβ is a maximal antichain in P and

Aαβ1 ∩Aαβ2 = ∅ for β1 < β2 < λ (2.12)

will be called a nice name for a function from κ to λ. The set of all such
names will be denoted by NP

n(κλ).

Notice that (2.12) also implies that, if β1 6= β2, then Aαβ1 and Aαβ2 are
incompatible.

By A(P) we will denote the set of all antichains in P. For each A ∈ A(P)
we fix its “complement”, i.e. an antichain A′ ∈ A(P) such that A ∪ A′ is
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a maximal antichain and A ∩ A′ = ∅ (this also means that A ⊥ A′). For
n ∈ {0, 1} denote also

An =
{
A if n = 0
A′ if n = 1.

The following lemma is a modification of Lemma 1.48.

Lemma 2.43 Let P be a separative partial ordering, p ∈ P and σ ∈ V P.
Then there is τ ∈ NP

n(κλ) such that

1  σ is a function from κ̌ to λ̌⇒ σ = τ. (2.13)

Proof. We define Aαβ by recursion on 〈α, β〉 ∈ κ× (λ \ {0}): let Aαβ be an
antichain in P such that

∀p ∈ Aαβ p  ˇ〈α, β〉 ∈ σ (2.14)
∀p ∈ Aαβ ∀β1 (0 < β1 < β ⇒ p ⊥ Aαβ1) (2.15)

and Aαβ is maximal with respect to (2.14) and (2.15). For every α < κ let
Aα0 be (∪0<β<λAαβ)′. Finally, let

τ =
⋃

〈α,β〉∈κ×λ

{ ˇ〈α, β〉} ×Aαβ .

τ is a nice name: it is clear that Aαβ1 ∩ Aαβ2 = ∅ for all α < κ and
β1 < β2 < λ, and by definition of Aα0 we see that Bα =

⋃
β<λAαβ is a

maximal antichain.
Let G be a P-generic filter over V , and assume that σG is a function from κ
to λ. We will prove that σG = τG.

Claim. For all p ∈ Aα0 ∩ G there is q ∈ G such that q ≤ p and q 
ˇ〈α, 0〉 ∈ σ.
Proof. We use Lemma 1.35. Suppose that there exists p ∈ Aα0 ∩G that

does not satisfy the desired condition. Let p1 ∈ G be such that

p1  σ is a function from κ̌ to λ̌.

Let q ∈ G be such that q ≤ p and q ≤ p1. Then

q  σ is a function from κ̌ to λ̌ ∧ ¬q  ˇ〈α, 0〉 ∈ σ
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hence there is r ≤ q such that r  ˇ〈α, 0〉 /∈ σ. Since q  ∃β < λ̌ ˇ〈α, β〉 ∈ σ,
there are s ≤ r and β ∈ λ \ {0} such that s  ˇ〈α, β〉 ∈ σ. But s must
be incompatible with all antichains Aαγ for 0 < γ ≤ β (since p is), which
contradicts the maximality of Aαβ . This proves the claim.

Next, we prove that σG ⊆ τG. Let 〈α, β〉 ∈ σG; we will prove 〈α, β〉 ∈ τG.
It suffices to prove that there is p ∈ G ∩ Aαβ , which implies p ∈ G and
p  ˇ〈α, β〉 ∈ τ , and hence 〈α, β〉 ∈ τG. But, since Bα is a maximal antichain,
Bα↓ is dense, so there is p ∈ G ∩ Bα. If p would be in any Aαβ′ for some
β′ 6= β and β′ 6= 0, we would have p  ˇ〈α, β′〉 ∈ σ, and thus 〈α, β′〉 ∈ σG, a
contradiction. On the other hand, if p ∈ Aα0 and β 6= 0, then by Claim there
is q ∈ G such that q ≤ p and q  ˇ〈α, 0〉 ∈ σ, so 〈α, 0〉 ∈ σG, a contradiction
again. Hence p ∈ Aαβ and we proved σG ⊆ τG.

If β 6= 0, it is obvious that τG ⊆ σG: if 〈α, β〉 ∈ τG then there is
p ∈ G ∩ Aαβ , but then p  ˇ〈α, β〉 ∈ σ. If β = 0, again by Claim there is
q ∈ G such that q ≤ p and q  ˇ〈α, 0〉 ∈ σ. In both cases, we get 〈α, β〉 ∈ σG.�

Now, as in the corollary of Lemma 1.48 we conclude that every function
mapping κ to λ in V [G] has a name in NP

n(κλ).

In the proof of our first theorem we will need the following lemmas.

Lemma 2.44 Let τ =
⋃
〈α,β〉∈κ×λ{ ˇ〈α, β〉}×Aαβ ∈ NP

n(κλ). Then for every
r ∈ P the following conditions are equivalent:

(i) r  ˇ〈α, β〉 ∈ τ

(ii) the set Aαβ↓ is dense below r.

Proof. (i)⇒(ii) Suppose r  ˇ〈α, β〉 ∈ τ . Let s ≤ r and let G be a P-generic
filter over V such that s ∈ G. Then r ∈ G, so (i) implies 〈α, β〉 ∈ τG. This
means that there is a ∈ Aαβ ∩ G. Since s, a ∈ G, there is u ∈ G such that
u ≤ s and u ≤ a. Thus we found u ∈ Aαβ↓ such that u ≤ s.

(ii)⇒(i) Suppose Aαβ ↓ is dense below r. Let G be any P-generic filter
over V such that r ∈ G. Then there exists s ∈ G∩Aαβ↓ which implies there
is a ∈ Aαβ such that s ≤ a. Then a ∈ G as well, so 〈α, β〉 ∈ τG. We showed
that r ∈ G implies ‖ ˇ〈α, β〉 ∈ τ‖ ∈ G, so we have r  ˇ〈α, β〉 ∈ τ . �

Lemma 2.45 Let τ =
⋃
〈α,β〉∈κ×λ{ ˇ〈α, β〉}×Aαβ ∈ NP

n(κλ). Then for every
r ∈ P the following conditions are equivalent:
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(i) r  ˇ〈α, β〉 6∈ τ

(ii) the set Aαβ↓ is empty below r.

Proof. (i)⇒(ii) Let r  ˇ〈α, β〉 6∈ τ . Suppose there is s ≤ r such that s ∈
Aαβ↓. Then there is a ∈ Aαβ such that s ≤ a. This implies a  ˇ〈α, β〉 ∈ τ ,
and hence s  ˇ〈α, β〉 ∈ τ . On the other hand, s ≤ r and r  ˇ〈α, β〉 6∈ τ
implies s  ˇ〈α, β〉 6∈ τ , a contradiction.

(ii)⇒(i) Suppose Aαβ ↓ is empty below r and not r  ˇ〈α, β〉 6∈ τ . Then
there is q ≤ r such that q  ˇ〈α, β〉 ∈ τ . But then by Lemma 2.44 Aαβ ↓ is
dense below q, so there is s ∈ Aαβ↓ such that s ≤ q ≤ r, a contradiction. �

Lemma 2.46 Let A be an antichain in P and let p ∈ P . Then

A↓ is dense below p iff A′↓ is empty below p.

Proof. (⇒) Suppose A ↓ is dense below p, but there is q ≤ p such that
q ∈ A′↓. Then there is u ∈ A↓ such that u ≤ q, i.e. there is a ∈ A such that
u ≤ a, but also there is b ∈ A′ such that q ≤ b. We have u ≤ a and u ≤ b, a
contradiction with the fact that A ⊥ A′.

(⇐) Suppose A′↓ is empty below p, but there is q ≤ p such that there
are no elements of A↓ below q. But then A ∪ A′ ∪ {q} is an antichain, a
contradiction with the maximality of the antichain A ∪A′. �

Lemma 2.47 If S is any set and ϕ(x), ψ(x) are formulas, then the following
conditions are equivalent:

(i) ∀A ⊆ S (∃a ∈ A ϕ(a) ∨ ∃a ∈ S \A ψ(a))

(ii) ∃a ∈ S (ϕ(a) ∧ ψ(a)).

Proof. (i)⇒(ii) Let (i) hold, and A = {s ∈ S : ¬ϕ(s)}. By (i) there is
s0 ∈ S \A such that ψ(s0). But ϕ(s0) holds as well, since s0 6∈ A.

(ii)⇒(i) Let s0 ∈ S be such that ϕ(s0) and ψ(s0), and A ⊆ S. If s0 ∈ A
then ∃a ∈ A ϕ(a); otherwise ∃s ∈ S \A ψ(s). �

Theorem 2.48 Let P be a separative partial ordering. r.o.(P) is not (κ, λ)-
distributive iff there is a family {Aαβ : 〈α, β〉 ∈ κ×λ} such that (2.12) holds
and there is p ∈ P such that

∀q ≤ p ∃〈α, β〉 ∈ κ× λ (Aαβ↓ is neither dense nor empty below q). (2.16)
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Proof. From Theorem 1.59 it follows that r.o.(P) is not (κ, λ)-distributive
iff in some extension V [G] via P there is a new function from κ to λ.

(⇒) Let V [G] be a generic extension containing a new function from κ
to λ and let τ =

⋃
〈α,β〉∈κ×λ{ ˇ〈α, β〉} × Aαβ be its nice name. Then (2.12)

clearly holds, and there is p ∈ G such that p  ∀f ⊆ ((κ × λ)V )̌ f 6= τ (i.e.
p forces that τG is not in V ), so using Lemmas 2.47, 2.44 and 2.45 we have

p  ∀f ⊆ ((κ× λ)V )̌ f 6= τ

⇔ ∀f ⊆ κ× λ ¬∃q ≤ p q  f̌ = τ
⇔ ∀q ≤ p ∀f ⊆ κ× λ

¬q  (∀〈α, β〉 ∈ f̌ 〈α, β〉 ∈ τ ∧ ∀〈α, β〉 ∈ (κ̌× λ̌) \ f̌ 〈α, β〉 6∈ τ)
⇔ ∀q ≤ p ∀f ⊆ κ× λ ¬(∀〈α, β〉 ∈ f q  ˇ〈α, β〉 ∈ τ

∧ ∀〈α, β〉 ∈ (κ× λ) \ f q  ˇ〈α, β〉 6∈ τ)
⇔ ∀q ≤ p ∀f ⊆ κ× λ (∃〈α, β〉 ∈ f ¬q  ˇ〈α, β〉 ∈ τ

∨ ∃〈α, β〉 ∈ (κ× λ) \ f ¬q  ˇ〈α, β〉 6∈ τ)
⇔ ∀q ≤ p ∃〈α, β〉 ∈ κ× λ (¬q  ˇ〈α, β〉 ∈ τ ∧ ¬q  ˇ〈α, β〉 6∈ τ)
⇔ ∀q ≤ p ∃〈α, β〉 ∈ κ× λ

(Aαβ↓ is neither dense nor empty below q).

Thus condition (2.16) is satisfied.
(⇐) Suppose there are a family {Aαβ : 〈α, β〉 ∈ κ×λ} ⊆ A(P) and p ∈ P

satisfying (2.12) and (2.16). Then τ =
⋃
〈α,β〉∈κ×λ{ ˇ〈α, β〉} ×Aαβ ∈ NP

n(κλ).
From the equivalence proved in (⇒) we deduce that p forces that τG is not
in V . In other words, forcing with r.o.(P) can add a function mapping κ to
λ, so r.o.(P) is not (κ, λ)-distributive. �

Definition 2.49 A separative partial ordering P is (κ, λ)-distributive iff for
every family {Aαβ : 〈α, β〉 ∈ κ× λ} satisfying (2.12) the set

{p ∈ P : ∀〈α, β〉 ∈ κ× λ (Aαβ↓ is dense or empty below p)}

is dense in P.

By Theorem 2.48 we have a simple result that explains the definition
above:

Lemma 2.50 A partial order P is (κ, λ)-distributive iff r.o.(P) is.

Corollary 2.51 If P is (κ, 2)-distributive, then it is also (κ, 2κ)-distributive.
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Proof. If P is (κ, 2)-distributive, then r.o.(P) is (κ, 2)-distributive, so by
Lemma 1.60 r.o.(P) is also (κ, 2κ)-distributive. Thus P is (κ, 2κ)-distributive.
�

Now we define G′dist(κ), the distributivity game on partial orders:

Definition 2.52 The game G′dist(κ) is played in κ-many steps on a partial
order P as follows:

• first White chooses an element p ∈ P ; after that the players make their
moves subsequently:

• in his α-th move White chooses Aα ∈ A(P);

• in his α-th move Black chooses iα ∈ {0, 1}.

Black wins if

∃q ≤ p ∀α < κ (Aiαα ↓ is dense below q), (2.17)

and White wins otherwise.

Of course, we can also deal only with antichains below p, but it would
not make the situation any simpler.

A winning strategy for White consists of p ∈ P and a function mapping
every sequence of previous moves 〈〈Aα, iα〉 : α < µ〉 to an antichain in P.
However, it is easy to prove a theorem analogous to Theorem 2.21:

Theorem 2.53 For every partial order P the following conditions are equiv-
alent:

(a) White has a winning strategy in the game G′dist(κ) played on P;

(b) There are p ∈ P and w : <κ2 → A(P) such that

∀i ∈ κ2 ∀q ≤ p ∃α < κ (w(i � α))i(α)↓ is not dense below q). (2.18)

Definition 2.54 If A1 and A2 are antichains in P, let us say that A1 is
below A2 (and write A1 C A2) if for each a1 ∈ A1↓ there is a2 ∈ A2↓ such
that a2 ≤ a1.

The next lemma explains the term “below”:
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Lemma 2.55 A1 C A2 iff (in B = r.o.(P))
∨
A1 ≤

∨
A2.

Proof. Let A1 C A2, and suppose that
∨
A1 ≤

∨
A2 doesn’t hold. Then

the element b =
∨
A1∧ (

∨
A2)′ of B is compatible with at least one element

of A1, say a. Since P is dense in r.o.(P), there is p ∈ P such that p ≤ b ∧ a.
But then p ∈ A1↓ and p is incompatible with A2, a contradiction.
Now let

∨
A1 ≤

∨
A2 and a1 ∈ A1↓. It follows that a1 ≤

∨
A1 ≤

∨
A2, so

there is a2 ∈ A2 compatible with a1, which means that there is a3 such that
a3 ≤ a2 (so a3 ∈ A2↓) and a3 ≤ a1. �

Lemma 2.56 Let A1, A2, B1 and B2 be antichains in P.

(a) A1 and A2 are incompatible iff (in r.o.(P))
∨
A1 ∧

∨
A2 = 0.

(b) If A1 and A2 are incompatible, B1 C A1 and B2 C A2, then B1 and
B2 are incompatible.

Proof. (a) Applying distributivity laws in Boolean algebras, we get
∨
A1∧∨

A2 =
∨
a1∈A1

a1∧
∨
a2∈A2

a2 =
∨
a1∈A1

(a1∧
∨
a2∈A2

a2) =
∨
a1∈A1,a2∈A2

(a1∧
a2), which is 0 iff all elements a1 ∧ a2 are equal to 0, i.e. iff A1 and A2 are
incompatible.

(b) Follows directly from (a) and Lemma 2.55. �

Theorem 2.57 The following conditions are equivalent for every separative
partial ordering P:

(i) P is not (κ, 2)-distributive;

(ii) in some extension V [G] by P there is a new function f : κ→ 2;

(iii) White has a winning strategy in the game G′dist(κ) played on P.

Proof. (i)⇔(ii) Follows from Lemma 2.50 and Theorem 1.59.
(ii)⇒(iii) Let f : κ→ 2 be a new function in some extension V [G], and

let τ =
⋃
〈α,β〉∈κ×2{ ˇ〈α, β〉} × Bαβ be its nice name. This means that there

is p ∈ P such that for all g ∈ (κ2)V p  τ 6= ǧ. We define a function
w : <κ2 → A(P) by w(ϕ) = Bα0, where α = dom ϕ. (Thus the strategy
of White does not depend on Black’s previous moves.) We will prove that
(2.18) holds, so Theorem 2.53 will imply (iii). Suppose the opposite, that
(2.18) does not hold; then there are i : κ → 2 and q ≤ p such that for all
α < κ the set Bαi(α) ↓ is dense below q. Then Lemma 2.44 implies that
q  〈α, i(α)〉 ∈ τ holds for all α < κ. This means that q  τ = ǐ, and
therefore p  τ 6= ǐ doesn’t hold; a contradiction, since i is a function in V .
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(iii)⇒(i) In this part of the proof we modify the idea from Theorem 2.25.
Let p and w be the objects provided by Theorem 2.53. We define a family
{{B0

ϕ, B
1
ϕ} : ϕ ∈ <κ2} of pairs of antichains in P in the following way:

- first, let B0
∅ = w∅ and B1

∅ = w′∅;
- for each ϕ ∈ <κ2, if dom ϕ = α and we defined Bn

ϕ�β for all β < α

and n ∈ {0, 1}, let B0
ϕ be a maximal antichain in P such that B0

ϕ C wϕ

and B0
ϕ C B

ϕ(β)
ϕ�β for β < α. (If there is no such antichain, i.e. if in r.o.(P)∨

wϕ ∧
∧
β<α

∨
B
ϕ(β)
ϕ�β = 0, we take B0

ϕ = ∅.) We define B1
ϕ in a similar way:

it is a maximal antichain in P such that B1
ϕ C w′ϕ and B1

ϕ C B
ϕ(β)
ϕ�β for β < α.

Claim 1. Let α < κ, ϕ,ϕ′ ∈ α2 and ϕ 6= ϕ′. Then: (a) B0
ϕ ⊥ B1

ϕ; (b) if
n1, n2 ∈ {0, 1}, then Bn1

ϕ ⊥ Bn2
ϕ′ ; (c)

⋃
ϕ∈α2(B

0
ϕ ∪B1

ϕ) is an antichain in P.
Proof. (a) Since B0

ϕ C w0
ϕ and B1

ϕ C w1
ϕ and w0

ϕ and w1
ϕ are incompatible,

Lemma 2.56(b) implies that B0
ϕ and B1

ϕ are incompatible too.
(b) We prove this by induction on α. Assume it holds for all β < α.

If ϕ 6= ϕ′, let γ be the smallest ordinal such that ϕ(γ) 6= ϕ′(γ). Then
Bn1
ϕ C B

ϕ(γ)
ϕ�γ and Bn2

ϕ′ C B
ϕ′(γ)
ϕ′�γ . By (a) Bϕ(γ)

ϕ�γ and B
ϕ′(γ)
ϕ′�γ are incompatible,

so by Lemma 2.56(b) Bn1
ϕ and Bn2

ϕ′ are incompatible too.
(c) Now

⋃
ϕ∈α2(B

0
ϕ ∪ B1

ϕ) is union of pairwise incompatible antichains,
so it is an antichain too.

Claim 2. If α1 < α2 < κ, ϕ1 ∈ α12, ϕ2 ∈ α22 and n1, n2 ∈ {0, 1} then

Bn2
ϕ2

C Bn1
ϕ1

iff ϕ1 = ϕ2 � α1 and ϕ2(α1) = n1,

and if this is not the case, then Bn1
ϕ1

and Bn2
ϕ2

are incompatible.
Proof. First let ϕ1 = ϕ2 � α1 and ϕ2(α1) = n1. Then Bn2

ϕ2
is defined so

that Bn2
ϕ2

C Bn1
ϕ1

.
Now suppose ϕ1 6= ϕ2 � α1, and let γ < α1 be the smallest ordinal such
that ϕ1(γ) 6= ϕ2(γ). Then by the definition above Bn1

ϕ1
is below B

ϕ1(γ)
ϕ1�γ and

Bn2
ϕ2

is below B
ϕ2(γ)
ϕ2�γ , but Bϕ1(γ)

ϕ1�γ and Bϕ2(γ)
ϕ2�γ are incompatible by Claim 1(b),

since ϕ1 � γ = ϕ2 � γ and ϕ1(γ) 6= ϕ2(γ). Thus, by Lemma 2.56(b), Bn1
ϕ1

and Bn2
ϕ2

are incompatible as well.

Finally, let ϕ1 = ϕ2 � α1 and ϕ2(α1) 6= n1. Then Bn2
ϕ2

is below B
ϕ2(α1)
ϕ1 , so it

must be incompatible with Bn1
ϕ1

. The claim is proved.

There are two possibilities:
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1◦
⋃
ϕ∈α2(B

0
ϕ ∪ B1

ϕ) is a maximal antichain for every α < κ. Sup-
pose P is (κ, 2)-distributive. Then, by Corollary 2.51 it is also (κ, 2κ)-
distributive, and hence (κ, 2<κ)-distributive as well. For all α < κ enumerate
{Bn

ϕ : ϕ ∈ α2 ∧ n ∈ {0, 1}} as {Cαβ : β < 2|α|} and take Cαβ = ∅ whenever
2|α| ≤ β < 2<κ. Applying Theorem 2.48 to the family {Cαβ : α < κ, β <
2<κ} and p we deduce that there is q ≤ p such that for all 〈α, β〉 ∈ κ× 2<κ

the set Cαβ is either dense or empty below q.

Claim 3. For each α < κ there is exactly one β < 2<κ such that Cαβ↓
is dense below q.

Proof. Since
⋃
β<2<κ Cαβ is a maximal antichain, not all Cαβ ↓ can be

empty below q. On the other hand, if Cαβ0 ↓ is dense below q, then by
Lemma 2.46 (

⋃
β∈2<κ\{β0}Cαβ)↓ is empty below q.

For each α < κ let β(α) be such that Cαβ(α)↓ is dense below q.

Claim 4. If α1 < α2 < κ, then Cα2β(α2) is below Cα1β(α1).
Proof. Claim 2 implies that every two antichains Cα2β(α2) and and

Cα1β(α1) are either incompatible, or the former is below the latter. But it is
impossible that Cα2β(α2) and Cα1β(α1) are incompatible: take b1 ∈ Cα1β(α1)↓
such that b1 ≤ q and b2 ∈ Cα2β(α2)↓ such that b2 ≤ b1, then b2 ∈ Cα1β(α1)↓
∩ Cα2β(α2)↓. So Cα2β(α2) must be below Cα1β(α1).

Finally, define a function i : κ → 2 and a sequence 〈ϕα : α < κ〉 in
the following way: if α < κ, let ϕα ∈ α2 and i(α) ∈ {0, 1} be such that
Cαβ(α) = B

i(α)
ϕα . We prove by induction that ϕα = i � α for all α < κ. For

ϕ0 = 〈〉 this is obvious. Suppose ϕγ = i � γ for all γ < α. By Claims
4 and 2, if Bi(γ)

ϕγ = Cγβ(γ) and B
i(α)
ϕα = Cαβ(α), then ϕγ = ϕα � γ. Thus,

ϕγ = i � γ implies ϕα � γ = i � γ. If α is a limit ordinal, it follows that
ϕα =

⋃
γ<α(ϕα � γ) =

⋃
γ<α(i � γ) = i � α. If α = γ + 1, then by definition

of i and Claim 2, ϕγ = i(γ). Hence ϕα = i � α.
Furthermore, from the definition of the family {{B0

ϕ, B
1
ϕ} : ϕ ∈ <κ2} we

see that Bi(α)
i�α is below w

i(α)
i�α . Thus wi(α)

i�α is also dense below q for α < κ, so
White doesn’t win the game, a contradiction.

2◦
⋃
ϕ∈α2(B

0
ϕ ∪ B1

ϕ) is not maximal for some α < κ. Let α0 be the
least such α and D =

⋃
ϕ∈α02(B

0
ϕ ∪ B1

ϕ). We prove that then P is not even
(|α0|, 2<κ)-distributive.
Suppose it is not so. Let p′ ∈ P be such that p′ is incompatible with D.
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After defining Cαβ for α < α0 and β < 2<κ as in 1◦, we then apply Theorem
2.48 to family {Cαβ : α < α0 ∧ β < 2<κ} and p′, and find q ≤ p′ such
that all Cαβ are either dense or empty below q. Again, as in 1◦, we find
Cαβ(α) for α < α0, all dense below q, and a function i : α0 → 2 such that

Cαβ(α) = B
i(α)
i�α for all α < α0. Since w0

i�α0
∪w1

i�α0
is a maximal antichain, q

can not be incompatible with both w0
i�α0

and w1
i�α0

, so it is compatible with
at least one of the antichains B0

i�α0
and B1

i�α0
. This means that p′ is not

incompatible with all antichains constructed in α-th step, a contradiction.�

2.6 The games Gsp, Gb and Glp

Now we consider three more cut-and-choose games, introduced by Kada14 in
[21], where he stated all the results stated here. We provide detailed proofs
of these results.

Definition 2.58 Gsp is the cut-and-choose game of type (ω, ω, µ), where
µ(n) = n + 2 for n < ω, such that White wins the play 〈p,A0, a0, . . . , An,
an, . . .〉 iff

∧
n<ω

∨
j∈an

pAn
j = 0.

From Theorem 2.20 we have (reminding the reader that by S we denoted
the set of slaloms)

Theorem 2.59 For every complete Boolean algebra B the following condi-
tions are equivalent:

(a) White has a winning strategy in the game Gsp on B;

(b) there are p ∈ B+ and w :
⋃
n<ω

∏
k<n[ω]≤k+1 → Ap(≤ω) such that

∀ϕ ∈ S
∧
k<ω

∨
j∈ϕ(k)

p
w(ϕ�k)
j = 0; (2.19)

(c) there are p ∈ B+ and w :
⋃
n<ω

∏
k<n[ω]≤k+1 → Ap(ω) such that

(2.19) holds.

Definition 2.60 By P we denote the set of all functions mapping <ωω to
ω, and by P∗ the set of all functions mapping

⋃
n<ω

∏
i<n[ω]≤i+1 to ω. The

elements of both these sets are called predictors.

14Masaru Kada, contemporary Japanese mathematician
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Theorem 2.61 For every complete Boolean algebra B the following condi-
tions are equivalent:

(i) B has the Sacks property, i.e. in every generic extension V [G], for every
f ∈ ωω there is ϕ ∈ SV such that f(n) ∈ ϕ(n) for all n < ω;

(ii) in every generic extension V [G], for every predictor π ∈ P∗ there is
ϕ ∈ SV such that π(ϕ � n) ∈ ϕ(n) for all n < ω;

(iii) White does not have a winning strategy in Gsp played on B.

Proof. (i)⇒(ii) Suppose that (i) holds; let V [G] be a generic extension and
π ∈ (P∗)V [G]. In V , let {σj : j < ω} be an arbitrary enumeration of the
set

⋃
n<ω

∏
i<n[ω]≤i+1 (this set is same in V and in V [G], and contains ∅

as the product of empty family). Furthermore, let h : ω → ω be a function
given by h(j) = π(σj) (since π ∈ V [G], h is also in V [G]). Since B has the
Sacks property, it is also ωω-bounding, so there is h′ : ω → ω in V such that
h′(j) ≥ h(j) for all j ∈ ω. Using recursion on n we define d(n) = max{h′(j) :
σj ∈

∏
i<n[d(i)]

≤i+1}+ 1. Then we define kn = |
⋃
m<n

∏
i<m[d(i)]≤i+1| and

enumerate each set
∏
i<n[d(i)]

≤i+1 as {τj : kn−1 ≤ j < kn}. We obtain an
enumeration τ = {τj : j < ω} of

⋃
n<ω

∏
i<n[d(i)]

≤i+1 such that i < j ⇒
|τi| ≤ |τj |. Clearly, this enumeration is itself in V .

Now define g(n) = |τn|+ 1; this is a nondecreasing function unbounded
in ω. Let f(j) = π(τj), and let ψ be the slalom in (Sg)V such that for all
j ∈ ω holds f(j) ∈ ψ(j), provided by (i) and Lemma 1.72. Since f(j) =
π(τj) = π(σk) for some k ∈ ω, and π(σk) = h(k) ≤ h′(k) < d(|σk|) =
d(|τj |), we can assume ψ(j) ⊆ d(|τj |) (if not, we take ψ(j) ∩ d(|τj |) instead
of ψ(j)). We define ϕ by recursion: ϕ(n) = ψ(j), where j ∈ ω is such that
τj = ϕ � n. In order to justify this definition, we prove by induction that
ϕ � n ∈

∏
i<n[d(i)]

≤i+1 for all n < ω. Suppose this holds for some n. ϕ(n) is
equal to some ψ(j) such that kn−1 ≤ j < kn. But then ϕ(n) = ψ(j) ⊆ d(n).
Since we also have |ϕ(n)| = |ψ(j)| < g(j) = |τj | + 1 = n + 1, we conclude
that ϕ � (n+ 1) ∈

∏
i<n+1[d(i)]

≤i+1.
We already saw that |ϕ(n)| ≤ n + 1 for all n ∈ ω, so ϕ ∈ S. ϕ is in V

since it is defined by means of ψ and τ , both belonging to V . Let us prove
that ϕ satisfies (ii). Let n ∈ ω, and let j ∈ ω be such that τj = ϕ � n. Then
π(ϕ � n) = π(τj) = f(j) ∈ ψ(j) = ϕ(n).

(ii)⇒(i) Suppose (ii) holds and let f ∈ ωω be a function in V [G]. We
define π ∈ P∗ by π(τ) = f(|τ |). Now let ϕ be the slalom provided by (ii).
Then f(n) = π(ϕ � n) ∈ ϕ(n) holds for all n ∈ ω, so ϕ satisfies (i) as well.
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(ii)⇒(iii) Assume (ii) and let p ∈ B+ and Σ make a strategy for White
in Gsp. We remind the reader that for every countable maximal antichain
A in p ↓ an enumeration A = {pAj : j < ω} is fixed. For each τ ∈∏
i<n[ω]≤i+1 we define by recursion on i ≤ n antichains Ai as follows:

Ai = Σ(〈A0, τ(0), . . . , Ai−1, τ(i− 1)〉), and let bτ,k = pAn
k .

Now, since {bτ,k : k < ω} is a maximal antichain in p ↓ for every τ ,
π = {〈〈τ, k〉, bτ,k〉 : τ ∈

⋃
n<ω

∏
i<n[ω]≤i+1, k ∈ ω} is a nice name for a

predictor in V [G]. Now, (ii) states that (in V )

∀π ∈ Nn(P∗) ∀p ∈ B+ ∃q ≤ p ∃ϕ ∈ S ∀n ∈ ω q  π(ϕ̌ � ň) ∈ ϕ̌(ň). (2.20)

Hence there are q ≤ p and ϕ ∈ S such that for all n ∈ ω ‖π(ϕ̌ � ň) ∈
ϕ̌(ň)‖ ≥ q, i.e.

∨
k∈ϕ(n) bϕ�n,k =

∨
k∈ϕ(n) ‖π(ϕ̌ � ň) = ǩ‖ ≥ q. It follows that∧

n∈ω

∨
k∈ϕ(n)

bϕ�n,k ≥ q

which means that 〈ϕ(n) : n ∈ ω〉 is a sequence of Black’s moves which
ensures that, if White follows Σ, then Black wins. Thus, White does not
have a winning strategy in Gsp played on B.

(iii)⇒(ii) Suppose (iii) holds. Let p ∈ B+ and let π ∈ Nn(P∗). We define
a function w :

⋃
n<ω

∏
k<n[ω]≤k+1 → Ap(≤ω): for τ ∈

⋃
n<ω

∏
i<n[ω]≤i+1,

let w(τ) = {‖π(τ̌) = ǩ‖ ∧ p : k < ω}. Since π is a nice name, w(τ) is a
partition of p for each τ . Without loss of generality we can assume that
p
w(τ)
k = ‖π(τ̌) = ǩ‖∧p (i.e. this is the k-th element of the enumeration fixed

for w(τ)). Since a winning strategy for White does not exist, by Theorem
2.59 there is a slalom ϕ such that for some q > 0

∧
n<ω

‖π(ϕ̌ � ň) ∈ ϕ̌(ň)‖ ∧ p =
∧
n<ω

∨
k∈ϕ(n)

(‖π(ϕ̌ � ň) = k‖ ∧ p)

=
∧
n<ω

∨
k∈ϕ(n)

p
w(ϕ�n)
k = q.

This proves (2.20), so (ii) holds. �

The following two games are similar to Gsp, and they characterize the
property of being ωω-bounding and the Laver property.

Definition 2.62 Gb is the cut-and-choose game of type (ω, ω, ω), such that
White wins the play 〈p,A0, a0, . . . , An, an, . . .〉 iff

∧
n<ω

∨
j∈an

pAn
j = 0.
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Theorem 2.63 For every complete Boolean algebra B the following condi-
tions are equivalent:

(i) B is ωω-bounding, i.e. in every generic extension V [G], for every f ∈ ωω
there is g ∈ (ωω)V such that f(n) ≤ g(n) for all n < ω;

(ii) in every generic extension V [G], for every predictor π ∈ P there is
g ∈ (ωω)V such that π(g � n) ≤ g(n) for all n < ω;

(iii) White does not have a winning strategy in Gb played on B.

Proof. (i)⇒(ii) Suppose that (i) holds; let V [G] be a generic extension
and π ∈ PV [G]. In V , let {σj : j < ω} be an arbitrary enumeration of
the set <ωω. Furthermore, let h : ω → ω be a function (in V [G]) given by
h(j) = π(σj). Since B is ωω-bounding, there is h′ : ω → ω in V such that
h′(j) ≥ h(j) for all j ∈ ω. Using recursion on n we define d(n) = max{h′(j) :
σj ∈

∏
i<n d(i)} + 1. Then we fix an enumeration τ = {τj : j < ω} of the

set
⋃
n<ω

∏
i<n d(i) such that i < j ⇒ |τi| ≤ |τj |.

Now let f(j) = π(τj), and let f ′ ∈ (ωω)V be such that f(j) ≤ f ′(j)
holds for all j ∈ ω. Since f(j) = π(τj) = π(σk) for some k ∈ ω, and
π(σk) = h(k) ≤ h′(k) < d(|σk|) = d(|τj |), we can assume that f ′(j) < d(|τj |).
We define g by recursion: g(n) = f ′(j), where j ∈ ω is such that τj = g � n.
Again, as in the proof of Theorem 2.61, we can prove that g � n ∈

∏
i<n d(i)

for all n < ω, which justifies the definition of g.
g is in V and satisfies (ii): if n ∈ ω, let j ∈ ω be such that τj = g � n;

then π(g � n) = π(τj) = f(j) ≤ f ′(j) = g(n).
(ii)⇒(iii) Assume (ii) and let p ∈ B+ and Σ make a strategy for White

in Gb. Let τ ∈
∏
i<n[ω]≤i+1. For i ≤ n we define by recursion: for i = 0 let

A0 = Σ(∅), and for i > 0 let Ai = Σ(〈A0, τ(0), . . . , Ai−1, τ(i− 1)〉). We also
denote bτ,k = pAn

k . Again, π = {〈〈τ, k〉, bτ,k〉 : τ ∈
⋃
n<ω

∏
i<n[ω]≤i+1, k ∈ ω}

is a nice name for a predictor in V [G]. By (ii) in V holds

∀π ∈ Nn(P∗) ∀p ∈ B+ ∃q ≤ p ∃g ∈ ωω ∀n ∈ ω q  π(ǧ � ň) ≤ ǧ(ň). (2.21)

Hence,
∨
k≤g(n) bg�n,k =

∨
k≤g(n) ‖π(ǧ � n) = k‖ ≥ q, which implies that∧

n∈ω
∨
k≤g(n) bg�n,k ≥ q. This means that 〈g(n) : n ∈ ω〉 is a sequence

of Black’s moves which ensures that Black wins if White follows Σ. Thus,
White does not have a winning strategy in Gb played on B.

The rest of the proof (implications (ii)⇒(i) and (iii)⇒(ii)) is completely
analogous to the proof of Theorem 2.61. �
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Definition 2.64 Glp is the cut-and-choose game of type (ω,< ω, µ), where
µ(n) = n + 1 for n ∈ ω, such that White wins the play 〈p,A0, a0, . . . , An,
an, . . .〉 iff

∧
n<ω

∨
j∈an

pAn
j = 0.

Denoting Ap(< ω) =
⋃
n∈ωAp(n) and applying Theorem 2.20 once more

we get

Theorem 2.65 For every complete Boolean algebra B the following condi-
tions are equivalent:

(a) White has a winning strategy in the game Glp on B;

(b) there are p ∈ B+ and w :
⋃
n<ω

∏
k<n[ω]≤k+1 → Ap(< ω) such that

∀ϕ ∈ S
∧
k<ω

∨
j∈ϕ(k)

p
w(ϕ�k)
j = 0 (2.22)

Theorem 2.66 For every complete Boolean algebra B the following condi-
tions are equivalent:

(i) B has the Laver property, i.e. in every generic extension V [G], for every
f ∈ ωω for which there is f ′ ∈ (ωω)V such that f(n) < f ′(n) for all
n ∈ ω, there is ϕ ∈ SV such that f(n) ∈ ϕ(n) for all n < ω;

(ii) in every generic extension V [G], for every predictor π ∈ P∗ for which
there is θ ∈ (P∗)V such that π(τ) < θ(τ) for all τ ∈ dom π, there is
ϕ ∈ SV such that π(ϕ � n) ∈ ϕ(n) for all n < ω;

(iii) White does not have a winning strategy in Glp played on B.

Proof. (i)⇒(ii) Suppose that (i) holds; let V [G] be a generic extension, π ∈
(P∗)V [G] and θ ∈ (P∗)V such that π(σ) < θ(σ) for all σ ∈ dom π. Using re-
cursion on n we define d(n) = max{θ(σ) : σ ∈

∏
i<n[d(i)]

≤i+1}+1. As in the
proofs of the previous two theorems we denote km = |

⋃
n<m

∏
i<n[d(i)]

≤i+1|
and obtain an enumeration (in V ) τ = {τj : j < ω} of

⋃
n<ω

∏
i<n[d(i)]

≤i+1

such that i < j ⇒ |τi| ≤ |τj |.
Now we define g(n) = |τn|+1, f(n) = π(τn) and h(n) = θ(τn) for n ∈ ω.

Obviously, h is in V and f(j) < h(j) for all n ∈ ω. Let ψ ∈ (Sg)V be such
that f(n) ∈ ψ(n) holds for all n < ω, provided by (i) and Lemma 1.75.

Since f(j) = π(τj) < θ(τj) < d(|τj |), we can assume that ψ(j) ⊆ d(|τj |).
We define ϕ by recursion: ϕ(n) = ψ(j), where j ∈ ω is such that τj = ϕ � n.
We have ϕ ∈ SV ; let us prove that ϕ satisfies (ii). Let n ∈ ω, and let j ∈ ω
be such that τj = ϕ � n. Then π(ϕ � n) = π(τj) = f(j) ∈ ψ(j) = ϕ(n).
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(ii)⇒(iii) Assume (ii) and let p ∈ B+ and Σ make a strategy for White
in Glp. Let τ ∈

∏
i<n[ω]≤i+1. For i ≤ n we define, by recursion, Ai =

Σ(〈A0, τ(0), . . . , Ai−1, τ(i − 1)〉, and let bτ,k = pAn
k . The antichain An is

finite so we can define θ(τ) = |An|. To simplify the notation, we can
assume that pAn

k = 0 for k ≥ |An|. Again, π = {〈〈τ, k〉, bτ,k〉 : τ ∈⋃
n<ω

∏
i<n[ω]≤i+1, k ∈ ω} is a nice name for a predictor in V [G], and we

have 1  ∀τ ∈ (
∏
i<n[ω]≤i+1)ˇ π(τ) ≤ θ̌(τ). Now, (ii) claims that

∀π ∈ Nn(P∗) ∀θ ∈ P∗ ∀p ∈ B+ (∀τ ∈
∏

i<n
[ω]≤i+1 p  π(τ) ≤ θ(τ) ⇒

∃q ≤ p ∃ϕ ∈ S ∀n ∈ ω q  π(ϕ̌ � ň) ∈ ϕ̌(ň)) (2.23)

so we can find q ≤ p and ϕ ∈ S such that for all n ∈ ω ‖π(ϕ̌ � ň) ∈
ϕ̌(ň)‖ ≥ q, i.e.

∨
k∈ϕ(n) bϕ�n,k =

∨
k∈ϕ(n) ‖π(ϕ̌ � ň) = ǩ‖ ≥ q. It follows

that
∧
n∈ω

∨
k∈ϕ(n) bϕ�n,k ≥ q which means that 〈ϕ(n) : n ∈ ω〉 is a sequence

of Black’s moves which ensures that, if White follows Σ, then Black wins.
Thus, White does not have a winning strategy in Glp played on B.

(iii)⇒(ii) Suppose (iii) holds and let p ∈ B+. Let π be a name for a set in
V [G] such that 1  π ∈ P∗ and let θ ∈ P∗ be such that for τ ∈

∏
i<n[ω]≤i+1

p  π(τ̌) ≤ θ̌(τ̌), i.e. p ∧ ‖π(τ̌) ≤ θ̌(τ̌)‖ = p. We define a function w :⋃
n<ω

∏
i<n[ω]≤i+1 → Ap(< ω): w(τ) = {‖π(τ̌) = ǩ‖∧p : k ∈ θ(τ)}. Clearly,

w(τ) is an antichain in p↓ of cardinality at most θ(τ) for each τ ; it is maximal
because

∨
k<θ(τ) ‖π(τ̌) = ǩ‖ ∧ p = p. Without loss of generality we can

assume that pw(τ)
k = ‖π(τ̌) = ǩ‖ ∧ p. By Theorem 2.65 there is ϕ ∈ S such

that
∧
n<ω

∨
k∈ϕ(n) p

w(ϕ�n)
k > 0. But

∨
k∈ϕ(n) p

w(ϕ�n)
k = ‖π(ϕ̌ � ň) ∈ ϕ̌(ň)‖,

so there is q ≤ p such that
∧
n<ω ‖π(ϕ̌ � ň) ∈ ϕ̌(ň)‖ ≥ q. We proved (2.23),

so (ii) holds.
The rest of the proof (implications (ii)⇒(i) and (iii)⇒(ii)) is completely

analogous to the proof of Theorem 2.61. �
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A power collapsing game

We define another game, first introduced in [25] (for κ = ω), and further
investigated in [26].

Definition 3.1 The game Gls(κ) is the cut-and-choose game of type (κ, 2, 2)
such that White wins the play 〈p, p0, i0, . . . , pα, iα, . . .〉 if and only if∧

β∈κ

∨
α≥β

piαα = 0.

(For κ = ω the left-hand side of the equation above is called “the limit
superior” of the sequence 〈piαα : α < ω〉 and denoted lim supα<ω piαα ; hence
the notation Gls.)

First we compare Gls(κ) to Gdist(κ, 2, 2).

Lemma 3.2 Let κ ≥ ω be a cardinal, B a complete Boolean algebra, 〈bα :
α < κ〉 a κ-sequence in B and σ = {〈α̌, bα〉 : α ∈ κ} the corresponding nice
name for a subset of κ. Then

(a)
∧
α∈κ bα = ‖σ = κ̌‖.

(b)
∧
β∈κ

∨
α≥β bα = ‖σ is unbounded in κ̌‖.

(c)
∧
α∈κ bα ≤

∧
β∈κ

∨
α≥β bα.

Proof. (a)
∧
α∈κ bα =

∧
α∈κ ‖α̌ ∈ σ‖ = ‖∀α ∈ κ̌ α ∈ σ‖ = ‖σ = κ̌‖.

(b)
∧
β∈κ

∨
α≥β bα = ‖∀β ∈ κ̌ ∃α ≥ β α ∈ σ‖ = ‖σ is unbounded in κ̌‖.

(c) Obvious. �

Using Lemma 3.2 it is easy to prove

79
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Lemma 3.3 For every cardinal κ ≥ ω and every complete Boolean algebra
B:

(a) If White has a winning strategy in Gls(κ), then White has a winning
strategy in Gdist(κ, 2, 2) as well.

(b) If Black has a winning strategy in Gdist(κ, 2, 2), then Black has a win-
ning strategy in Gls(κ) as well.

3.1 The game Gls(κ) from White’s point of view

Theorem 3.4 For every infinite cardinal κ and every complete Boolean
algebra B the following conditions are equivalent:

(a) White has a winning strategy in the game Gls(κ) on B;

(b) there are p ∈ B+ and w : <κ2 → (0, p)B such that

∀i : κ→ 2
∧
β<κ

∨
α≥β w

i(α)
i�α = 0; (3.1)

(c) there are p ∈ B+ and w : <κ2 → [0, p]B such that (3.1) holds;

(d) there are p ∈ B+ and ρ ∈ V B such that

p  ρ ⊆ ((<κ2)V )ˇ ∧ ∀ϕ ∈ ((<κ2)V )ˇ (ϕa0̌ ∈ ρ ∨̇ ϕa1̌ ∈ ρ)
∧ ∀i ∈ ((κ2)V )ˇ ∃β ∈ κ̌ ∀α ≥ β i � α 6∈ ρ;

(e) in some generic extension, VB[G], there is a subset R of the tree (<κ2)V ,
containing either ϕa0 or ϕa1 for each ϕ ∈ (<κ2)V and such that for
each i ∈ (κ2)V the set {α ∈ κ : i � α ∈ R} is bounded in κ.

Proof. (a)⇔(b)⇔(c) follows from Theorem 2.21.
(b)⇒(d). In V , let p ∈ B+ and w : <κ2 → (0, p)B be the objects provided

by (b). We define vϕ ∈ [0, p]B for ϕ ∈ <κ2, as follows. For ϕ = ∅ let v∅ = p,
for ϕ ∈ <κ2 of limit height let vϕ = 0 and for ϕ ∈ <κ2 and k ∈ 2 let
vϕak = wkϕ. Then ρ = {〈ϕ̌, vϕ〉 : ϕ ∈ <κ2} is a nice name for a subset of
(<κ2)V and clearly

1  ∀γ ∈ (κ ∩ Lim)ˇ ρ ∩ ((γ2)V )ˇ = ∅̌. (3.2)

Let G be a B-generic ultrafilter over V containing p. If ϕ ∈ (<κ2)V , then
either wϕ or p \ wϕ belongs to G. Since wϕ = w0

ϕ = vϕa0 = ‖ϕ̌a0̌ ∈ ρ‖
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and p \ wϕ = w1
ϕ = vϕa1 = ‖ϕ̌a1̌ ∈ ρ‖ we have that either ϕa0 ∈ ρG or

ϕa1 ∈ ρG.
Let i ∈ (κ2)V . Since ‖(i � (α+ 1))ˇ ∈ ρ‖ = vi�(α+1) = v(i�α)ai(α) = w

i(α)
i�α ,

according to (3.1) we have ‖∀β ∈ κ̌ ∃α ≥ β ǐ � (α + 1) ∈ ρ‖ = 0, that is
1  ∃β ∈ κ̌ ∀α ≥ β ǐ � (α+ 1) 6∈ ρ. This and (3.2) implies 1  ∃β ∈ κ̌ ∀α ≥
β ǐ � α 6∈ ρ, so (d) is true.

(d)⇒(c). Let p ∈ B+ and ρ ∈ V B be the objects provided by (d). In V
for each ϕ ∈ (<κ2)V we define wϕ = ‖(ϕa0)ˇ ∈ ρ‖ ∧ p and verify (3.1). Let
i ∈ (κ2)V . By (d), p  ((i � α)a0)ˇ ∈ ρ ∨̇ ((i � α)a1)ˇ ∈ ρ holds for each
α ∈ κ, that is p ≤ a0∨a1 and p∧a0∧a1 = 0, where ak = ‖((i � α)ak)ˇ ∈ ρ‖,
k ∈ {0, 1}, which clearly implies p ∧ a′0 = p ∧ a1, that is

p ∧ ‖((i � α)a0)ˇ ∈ ρ‖′ = p ∧ ‖((i � α)a1)ˇ ∈ ρ‖. (3.3)

Let us prove that for each α ∈ κ

w
i(α)
i�α = ‖(i � (α+ 1))ˇ ∈ ρ‖ ∧ p. (3.4)

If i(α) = 0, then wi(α)
i�α = wi�α = ‖((i � α)a0)ˇ ∈ ρ‖ ∧ p = ‖((i � α)ai(α))ˇ ∈

ρ‖∧ p = ‖(i � (α+ 1))ˇ ∈ ρ‖∧ p and (3.4) holds. If i(α) = 1, then according
to (3.3), wi(α)

i�α = p\wi�α = p∧ (‖((i � α)a0)ˇ ∈ ρ‖∧p)′ = p∧‖((i � α)a0)ˇ ∈
ρ‖′ = p ∧ ‖((i � α)a1)ˇ ∈ ρ‖ = p ∧ ‖((i � α)ai(α))ˇ ∈ ρ‖ and (3.4) holds
again.

Now
∧
β<κ

∨
α≥β w

i(α)
i�α = p ∧ ‖∀β < κ̌ ∃α ≥ β ǐ � (α+ 1) ∈ ρ‖ = 0, since

by (d) p ≤ ‖∃β < κ̌ ∀α ≥ β ǐ � α 6∈ ρ‖. Thus (c) is proved.
(d)⇒(e) is obvious and (e)⇒(d) follows from The Maximum Principle

(Theorem 1.36). �

Now we turn to the main theorem of this section.

Theorem 3.5 Let κ be an infinite cardinal and B a complete Boolean al-
gebra. Then (a)⇒(b)⇒(c), where

(a) In some generic extension, VB[G], κ is a regular cardinal and the car-
dinal (2κ)V is collapsed to κ;

(b) White has a winning strategy in the game Gls(κ) played on B;

(c) in some generic extension, VB[G], the sets (κ2)V and (<κ2)V are of the
same size.
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Proof. (a)⇒(b). Let V [G] |= |(2κ)V | = κ ∈ Reg. We will prove that (e)
of Theorem 3.4 holds. By the assumption, in V [G] there is an enumeration
(κ2)V = {iξ : ξ < κ}. Clearly, for all ξ < κ and all α < κ we have
iξ � α ∈ (<κ2)V . Moreover, giξ = {iξ � α : α < κ} ∈ V and⋃

ξ<κ g
iξ = (<κ2)V . (3.5)

In V [G], for each ξ < κ let Sξ = {ϕak : ϕ ∈ giξ ∧ k ∈ 2} and Tξ =
Sξ \

⋃
ζ<ξ Sζ . Then giξ \

⋃
γ∈κ∩Lim(γ2)V ⊆ Sξ ⊆ (<κ2)V \

⋃
γ∈κ∩Lim(γ2)V for

each ξ ∈ κ, which together with (3.5) implies⋃
ξ<κ Sξ =

⋃
β∈κ\Lim(β2)V . (3.6)

Clearly,
⋃
ξ<κ Tξ =

⋃
ξ<κ Sξ. In V [G], for ξ < κ let

Rξ = Tξ \ giξ = Sξ \ (
⋃
ζ<ξ Sζ ∪ giξ).

We show that the set R =
⋃
ξ<κRξ satisfies conditions of (e) of Theorem

3.4. First, since Rξ ⊆ Sξ for all ξ < κ, we have R ⊆
⋃
ξ<κ Sξ, so, by (3.6),

R ⊆ (<κ2)V and the elements of R are not of limit height.
Secondly, let i ∈ (κ2)V . Then i = iξ for some ξ < κ and we prove

∀ζ ≥ ξ Rζ ∩ giξ = ∅. (3.7)

By definition, for ζ = ξ we have Rζ ∩ giξ = ∅ and if ζ > ξ, then Rζ ∩Sξ = ∅.
Thus, since the elements of giξ of successor height are in Sξ and since Rζ
does not contain elements of limit height, it follows that Rζ ∩ giξ = ∅.

According to (3.7) we have R ∩ giξ =
⋃
ζ<κRζ ∩ giξ =

⋃
ζ<ξ Rζ ∩ giξ

which implies
R ∩ giξ ⊆

⋃
ζ<ξ Sζ ∩ giξ . (3.8)

Now for ζ < ξ, let βζ = min{α ∈ κ : iζ(α) 6= iξ(α)}. Then iξ � α 6∈ Sζ for
α > βζ + 1, so Sζ ∩ giξ ⊆ {iξ � α : α ≤ βζ + 1}. Thus, according to (3.8),
R ∩ giξ ⊆ {iξ � α : α < β}, where β = sup{βζ + 1 : ζ < ξ} + 1. Since κ
is a regular cardinal in V [G], we have β < κ and {α ∈ κ : i � α ∈ R} is a
bounded subset of κ.

Finally, for an arbitrary ϕ ∈ (<κ2)V we prove ϕa0 ∈ R ∨̇ ϕa1 ∈ R.
According to (3.5), there is ξ = min{ζ < κ : ϕ ∈ giζ}. Then ϕ ∈ giξ , hence
ϕa0, ϕa1 ∈ Sξ and for ζ < ξ we have ϕa0, ϕa1 6∈ Sζ , thus ϕa0, ϕa1 ∈ Tξ.
Since ϕ ∈ giξ , either ϕa0 or ϕa1 belongs to giξ .

If ϕa0 ∈ giξ , then ϕa0 6∈ Rξ 3 ϕa1, thus ϕa1 ∈ R. Since ϕa0 ∈ Tξ and
R ∩ Tξ =

⋃
ζ<κ(Tζ \ giζ ) ∩ Tξ = Tξ \ giξ = Rξ, we have ϕa0 6∈ R. Similarly,

ϕa1 ∈ giξ implies ϕa0 ∈ R 63 ϕa1.
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(b)⇒(c). Suppose White has a winning strategy in the game Gls(κ)
played on B. Let p ∈ B+ and ρ ∈ V B be the objects provided by (d) of
Theorem 3.4. We prove that

p  |((2κ)V )ˇ| = |((<κ2)V )ˇ|. (3.9)

Let G be a B-generic filter over V such that p ∈ G. In V [G], for β ∈ κ let

Sβ = {i ∈ (κ2)V : ∀α ≥ β i � α 6∈ ρG}.

If i ∈ (κ2)V , then, according to (d) of Theorem 3.4, there is β < κ such that
i � α 6∈ ρG for all α ≥ β, which implies i ∈ Sβ . Thus

(κ2)V =
⋃
β<κ Sβ. (3.10)

If i ∈ Sβ , then i ∈ V and, hence, i � β ∈ (β2)V . Consequently, the function
f : Sβ → (β2)V given by f(i) = i � β is well-defined and we prove f is an
injection. Let i, j ∈ Sβ, where i 6= j and suppose i � β = j � β. Then
α0 = min{α ∈ κ : i(α) 6= j(α)} ≥ β. According to (d) of Theorem 3.4, for
ϕ = i � α0 = j � α0 we have ϕa0 ∈ ρG ∨̇ ϕa1 ∈ ρG and, since i(α0) 6= j(α0),
it follows that i � (α0 + 1) ∈ ρG or j � (α0 + 1) ∈ ρG which is impossible
because i, j ∈ Sβ and α0 + 1 > β. Thus f is an injection and, hence,
|Sβ|V [G] ≤ |(β2)V |V [G] ≤ |(<κ2)V |V [G]. Now (3.10) implies |(2κ)V |V [G] ≤
|κ|V [G]|(<κ2)V |V [G] = |(<κ2)V |V [G] and (3.9) is proved. �

Theorem 3.6 Let κ ≥ ω be a regular cardinal satisfying 2<κ = κ and
B a complete Boolean algebra such that 1 B κ̌ ∈ Reg. Then White has a
winning strategy in the game Gls(κ) played on B iff in some generic extension
the cardinal (2κ)V is collapsed to κ.

For κ = ω we get the main result of [25].

Corollary 3.7 White has a winning strategy in the game Gls(ω) played on
a complete Boolean algebra B iff in some generic extension cV is collapsed
to ω.

We will prove in Theorem 3.21 that h2(B) is the minimal cardinal κ such
that White can have a winning strategy in the game Gls(κ). In Theorem
3.11 below we give an analogue of Corollary 3.7 for h2(B). To do this we
need the following three statements.

Lemma 3.8 If in some generic extension V [G] a cardinal κ is collapsed to
λ, then λ obtains a new subset in V [G].
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Proof. In V , let X ⊆ P (λ) where |X| = λ+ and let f : λ+ → X be a
bijection. Since |(λ+)V |V [G] = λ, in V [G] there is a bijection ϕ : λ → λ+.
Suppose that the set Y =

⋃
α∈λ({α}×f(ϕ(α))) ⊆ λ×λ belongs to V . Since

for each α < λ we have ϕ(α) = f−1(π2[Y ∩({α}×λ)]) (where π2 : λ×λ→ λ
is defined by π2(〈α, β〉) = β) and since f, π2, Y ∈ V , we would have ϕ ∈ V ,
which is impossible. Thus the set λ × λ obtains a new subset Y in V [G].
But then λ obtains one too: if g : λ × λ → λ is a bijection in V , g[Y ] can
not be in V , since Y = g−1[g[Y ]] would then be in V too. �

Lemma 3.9 Suppose 0] does not exist and let V [G] be a generic extension.
Then

(a) For each X ∈ V [G] satisfying X ⊆ V there is A ∈ V such that X ⊆ A
and

|X|V [G] ≤ |A|V [G] ≤ |X|V [G] + ω
V [G]
1 ; (3.11)

(b) If κ is a regular cardinal and cfV [G](κ) = λ < κ, then

|κ|V [G] = λ ∨ (λ = ω ∧ |κ|V [G] = ω
V [G]
1 < κ). (3.12)

Consequently, κ is collapsed in V [G].

Proof. (a) In V [G], let ξ = sup{rank(x) : x ∈ X}. Since rank is an
absolute function we have X ⊆ (Vξ+1)V . Let |(Vξ+1)V |V = κ and let f :
Vξ+1 → κ be a bijection belonging to V . Then f [X] is a set of ordinals
in V [G] and, since 0] 6∈ V [G] as well, applying Jensen’s Covering Theorem
1.8 in V [G] and taking into account that the constructible universe is also
absolute (so LV [G] = LV = L), we obtain C ∈ L such that f [X] ⊆ C and
|C|V [G] = |f [X]|V [G] + ω

V [G]
1 . Now A = f−1[C ∩ κ] ∈ V , X ⊆ A and, since

|A|V [G] ≤ |C|V [G] we have (3.11).
(b) Let f : λ → κ be a cofinal increasing function belonging to V [G].

Then X = f [λ] ⊆ κ and |X|V [G] = λ so, by (a), there is A ∈ V such that
X ⊆ A and λ ≤ |A|V [G] ≤ λ + ω

V [G]
1 . Without loss of generality we can

suppose A ⊆ κ. Now, since A is unbounded in κ, we have |A|V = κ, which
implies |A|V [G] = |κ|V [G] and, hence,

λ ≤ |κ|V [G] ≤ λ+ ω
V [G]
1 . (3.13)

If |κ|V [G] = λ, then (3.12) is proved. Otherwise λ < ω
V [G]
1 , which together

with the fact that λ is a regular cardinal in V [G] implies λ = ω. Now (3.13)
implies |κ|V [G] = ω

V [G]
1 and, since cfV [G](κ) = ω we have κ 6= ω

V [G]
1 . Thus

κ > ω
V [G]
1 and (3.12) holds again. �
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Lemma 3.10 Suppose 0] does not exist. If B is a atomless complete Boolean
algebra and κ0 = h2(B), then

(a) forcing by B preserves cardinals ≤ κ0;

(b) κ0 is a regular cardinal in V ;

(c) forcing by B preserves cofinalities ≤ κ0;

(d) forcing by B preserves the regularity of κ0.

Proof. (a) Suppose that λ < κ ≤ κ0 and that in some generic extension
V [G] by B κ is collapsed to λ. Then, according to Lemma 3.8, P V [G](λ) 6=
P V (λ), which is impossible by Theorem 1.59 because the algebra B is (λ, 2)-
distributive.

(b) The case κ0 = ω is trivial, so we can assume κ0 ≥ ω1. Suppose that
cfV (κ0) = λ < κ0 and let f : λ → κ0 be a cofinal increasing function. B is
not (κ0, 2)-distributive, so by Theorem 1.59 there is a set X ⊆ κ0 in some
extension V [G] by B such that X 6∈ V . Since κ0 is a limit cardinal and
P V [G](κ) = P V (κ) for each κ < κ0 we have Y = {X ∩ f(α) : α < λ} ⊂ V
so, by Lemma 3.9(a), there is A ∈ V such that Y ⊆ A and |A|V [G] ≤
|Y |V [G]+ωV [G]

1 . According to (a) we have ωV [G]
1 = ωV1 and |Y |V [G] ≤ λ which

implies |A|V [G] < κ0. Since |A|V ≥ κ0 would imply that κ0 is collapsed which
is not the case by (a), we have |A|V < κ0 as well. Clearly X =

⋃
Y and,

hence, Y 6∈ V . Thus the set A and, consequently, the cardinal |A|V < κ0

obtains a new subset in V [G]. Hence B is not (|A|V , 2)-distributive, which
is impossible by the minimality of κ0.

(c) According to Lemma 1.33 it is sufficient to prove that each regular
cardinal κ ≤ κ0 remains regular in every extension V [G] by B. Suppose
cfV [G](κ) < κ. Then, by Lemma 3.9(b), κ is collapsed in V [G], which is
impossible by (a).

(d) follows from (c). �

Using the previous lemma and Theorem 3.5 we obtain

Theorem 3.11 Assume that 0] does not exist, and let B be a complete
Boolean algebra and 2<h2(B) = h2(B). Then White has a winning strategy in
Gls(h2(B)) iff forcing by B collapses 2h2(B) to h2(B) in some generic extension.

Now, for a singular cardinal κ, we compare the games Gls(κ) and Gls(cf(κ))
from the aspect of White.



86 Chapter 3. A power collapsing game

Theorem 3.12 Let κ ≥ ω be a cardinal, λ = cf(κ) < κ and B a complete
Boolean algebra. If White has a winning strategy in the game Gls(κ) played
on B, then White has a winning strategy in Gls(λ) as well.

Proof. Suppose White has a winning strategy in Gls(κ). Then, according
to Theorem 3.4, there are p ∈ B+ and w : <κ2 → [0, p]B satisfying (3.1).
Let 〈αξ : ξ < λ〉 be an increasing and cofinal sequence in κ and let us define
αλ = κ. We define a function f : ≤λ2 → ≤κ2 as follows. For ϕ : ζ → 2,
where ζ ≤ λ, let f(ϕ) : αζ → 2 be defined by:

f(ϕ)(α) =
{
ϕ(ξ) if α = αξ, for some ξ < ζ,
0 if α ∈ αζ \ {αξ : ξ < ζ}.

Let the function v : <λ2 → [0, p]B be defined by v(ϕ) = w(f(ϕ)). According
to Theorem 3.4 it remains to be proved that

∀j : λ→ 2
∧
ζ<λ

∨
ξ≥ζ v

j(ξ)
j�ξ = 0. (3.14)

Let j : λ→ 2. Then i = f(j) : κ→ 2 and it is easy to check that f(j � ξ) =
i � αξ, for all ξ < λ. Hence for each ξ < λ we have vj(ξ)j�ξ = w

j(ξ)
f(j�ξ) = w

i(αξ)
i�αξ

.

Consequently,
∨
ξ≥ζ v

j(ξ)
j�ξ =

∨
ξ≥ζ w

i(αξ)
i�αξ

≤
∨
α≥αζ

w
i(α)
i�α holds for each ζ < λ.

So, according to (3.1),∧
ζ<λ

∨
ξ≥ζ v

j(ξ)
j�ξ ≤

∧
ζ<λ

∨
α≥αζ

w
i(α)
i�α =

∧
β<κ

∨
α≥β w

i(α)
i�α = 0,

and (3.14) is proved. �

However, we don’t know is it possible at all for White to have a winning
strategy on a singular cardinal.

Lemma 3.13 For every complete Boolean algebra B we have (a)⇒(b)⇒(c),
where

(a) White has a winning strategy in the game Gls(ω);
(b) White has a winning strategy in the game Gdist(ω, ω1, ω1);
(c) White has a winning strategy in the game Gdist(ω, ω1, ω).

Proof. The implication (b)⇒(c) is evident. Suppose that (a) holds. Then,
by Theorem 3.7, ‖|(ωV1 )ˇ| = ω̌‖ > 0 and, consequently, in some generic ex-
tension VB[G], there is a bijection x : ω → ωV1 . In V , for each s : ω → [ω1]<ω1

the set
⋃
n∈ω s(n) is a bounded subset of ω1 so there is n ∈ ω such that
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x(n) /∈ s(n). Thus the algebra B is not (ω, ω1, ω1)-distributive and, by The-
orem 2.39, we have (b). �

We remark that in Gdist(ω, ω1, ω1) Black has a winning strategy on every
c.c.c. Boolean algebra, since he can choose all elements White offers him.
The game Gdist(ω, ω1, ω) can not be equivalent to either of the games Gls(ω)
and Gdist(ω, ω1, ω1), from the aspect of either of the players. This is because
on the Cohen algebra B White wins Gdist(ω, ω1, ω) (since forcing with B
adds an unbounded real, and therefore B is not even (ω, ω, ω)-distributive),
and Black wins Gls(ω) (by Corollary 3.15) and Gdist(ω, ω1, ω1) (because B is
c.c.c.). Also, the games Gls(ω) and Gdist(ω, ω1, ω1) are not equivalent from
the aspect of Black, since on the Suslin algebra constructed in Theorem
3.23 Black does not have a winning strategy in Gls(ω), and he has one in
Gdist(ω, ω1, ω1) (again because the algebra is c.c.c.).

3.2 The game Gls(κ) from Black’s point of view

Theorem 3.14 If B is a complete Boolean algebra and κ ≥ π(B), then
Black has a winning strategy in the game Gls(κ) played on B.

Proof. Let λ = π(B) and let D ∈ [B+]λ be dense in B. We define a strategy
Σ for Black. At the beginning White chooses p ∈ B+ and Black takes a (not
necessarily one-to-one) enumeration of the members of D which are below
p, {d ∈ D : d ≤ p} = {dδ : δ ∈ λ} and makes a sequence 〈eα : α < κ〉 of
elements of the set {dδ : δ ∈ λ} in which each dδ appears κ-many times. (For
example, Black can take a bijection f : κ→ λ× κ and define eα = dπ1(f(α)),
for α ∈ κ. Then eα = dδ for all α ∈ f−1[{δ} × κ] ∈ [κ]κ.) In the α-th move,
when White plays pα ∈ (0, p)B, Black responds choosing iα ∈ 2 such that
eα ∧ piαα > 0.

We prove that Σ is a winning strategy for Black. Let us consider a
play 〈p, p0, i0, . . . , pα, iα, . . .〉 in which Black follows Σ. For β ∈ κ let qβ =∨
α≥β p

iα
α . Let us prove

∀δ ∈ λ ∀β ∈ κ dδ ∧ qβ > 0. (3.15)

Let δ ∈ λ and β ∈ κ. Since dδ appears in the sequence 〈eα〉 κ-many times,
there is α ≥ β such that eα = dδ, thus dδ∧piαα > 0, which implies dδ∧qβ > 0
and (3.15) is proved.

Let β ∈ κ. For each q ∈ (0, p]B there is δ ∈ λ such that dδ ≤ q and since
by (3.15) dδ ∧ qβ > 0, we have q ∧ qβ > 0. Thus q ∧ qβ > 0 for all q ∈ (0, p]B,
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which implies qβ = p. So qβ = p for all β ∈ κ, hence
∧
β∈κ

∨
α≥β p

iα
α = p > 0

and Black wins the game. �

Taking into account Lemma 1.76, for κ = ω the previous theorem takes
the following form:

Corollary 3.15 Black has a winning strategy in the game Gls(ω) played on
the Cohen algebra.

Theorem 3.16 If a complete Boolean algebra B contains a λ-closed dense
subset D ⊆ B+, then for each infinite cardinal κ < λ Black has a winning
strategy in the game Gls(κ).

Proof. Follows from Theorem 2.34 and Lemma 3.3.

Theorem 2.23 applied to the game Gls(κ) gives us

Theorem 3.17 Let κ ≥ ω be a cardinal and B a complete Boolean algebra.
Then the following conditions are equivalent:

(a) Black has a winning strategy in the game Gls(κ) played on B;

(b) for each p ∈ B+ there is i :
⋃
α<κ

α+1(0, p)B → 2 such that for each
sequence 〈pα : α < κ〉 in (0, p)B∧

β<κ

∨
α≥β p

i(〈pδ :δ≤α〉)
α > 0; (3.16)

(c) for each p ∈ B+ there is i :
⋃
α<κ

α+1[0, p]B → 2 such that for each
sequence 〈pα : α < κ〉 in [0, p]B (3.16) holds.

As in Theorem 3.12 we compare the games Gls(κ) and Gls(cf(κ)), where
κ is a singular cardinal, but now from Black’s point of view.

Theorem 3.18 Let κ ≥ ω be a cardinal, λ = cf(κ) < κ and B a complete
Boolean algebra. If Black has a winning strategy in the game Gls(λ) played
on B, then Black has a winning strategy in the game Gls(κ) as well.

Proof. According to Theorem 3.17, for arbitrary p ∈ B+ it suffices to
construct a function i :

⋃
α<κ

α+1(0, p)B → 2 such that for each sequence
〈pα : α < κ〉 in (0, p)B (3.16) holds. By the assumption and according to
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Theorem 3.17 there is j :
⋃
ξ<λ

ξ+1(0, p)B → 2 such that for each sequence
〈qξ : ξ < λ〉 in (0, p)B ∧

ζ<λ

∨
ξ≥ζ q

j(〈qγ :γ≤ξ〉)
ξ > 0. (3.17)

Let 〈αξ : ξ < λ〉 be an increasing sequence cofinal in κ. Using the function
j we define i by

i(〈pδ : δ ≤ α〉) =
{

0 if α /∈ {αξ : ξ < λ},
j(〈pαγ : γ ≤ ξ〉) if α = αξ for some ξ < λ.

Now we prove (3.16) for an arbitrary sequence 〈pα : α < κ〉 in (0, p)B. Since
the sequence 〈αξ : ξ < λ〉 is unbounded in κ we have (introducing qξ = pαξ

for ξ < λ) ∧
β<κ

∨
α≥β p

i(〈pδ :δ≤α〉)
α =

∧
ζ<λ

∨
α≥αζ

p
i(〈pδ :δ≤α〉)
α

≥
∧
ζ<λ

∨
ξ≥ζ p

i(〈pδ :δ≤αξ〉)
αξ

=
∧
ζ<λ

∨
ξ≥ζ p

j(〈pαγ :γ≤ξ〉)
αξ

=
∧
ζ<λ

∨
ξ≥ζ q

j(〈qγ :γ≤ξ〉)
ξ .

Now (3.17) implies (3.16). �

The following theorem considers only the game Gls(ω), and it is related
to Maharam1 algebras.

Definition 3.19 A submeasure on a complete Boolean algebra B is a func-
tion ν : B → [0,∞) satisfying:

(i) ν(0) = 0;
(ii) a ≤ b⇒ ν(a) ≤ ν(b)
(iii) ν(a ∨ b) ≤ ν(a) + ν(b).
A submeasure ν is strictly positive if
(iv) a > 0 ⇒ ν(a) > 0.
A submeasure ν is a Maharam (also called continuous) submeasure if
(v) for each sequence 〈an : n ∈ ω〉 in B, if a0 ≥ a1 ≥ . . . and

∧
n∈ω an = 0

then limn→∞ ν(an) = 0.
A complete Boolean algebra is called a Maharam algebra if it carries a

strictly positive Maharam submeasure.

1Dorothy Maharam Stone (b. 1917), American mathematician



90 Chapter 3. A power collapsing game

Theorem 3.20 If B is a Maharam algebra, then Black has a winning strat-
egy in the game Gls(ω) played on B.

Proof. Let ν be a strictly positive Maharam submeasure on B. We define
a strategy Σ for Black. At the beginning White plays p ∈ B+ and, by (iv),
ν(p) > 0. If in the n-th move White plays pn ∈ (0, p)B then by (iii), ν(p) ≤
ν(pn) + ν(p \ pn) and consequently ν(pn) ≥ ν(p)/2 or ν(p \ pn) ≥ ν(p)/2.
Then Black plays in ∈ 2 such that ν(pinn ) ≥ ν(p)/2.

Let us show that Σ is a winning strategy for Black. Let 〈p, p0, i0, . . .〉 be
an arbitrary play in which Black follows Σ and for k ∈ ω let qk =

∨
n≥k p

in
n .

Then, according to (ii) we have ν(qk) ≥ ν(pikk ) ≥ ν(p)/2. Suppose
∧
k∈ω qk =

0. Then, since q0 ≥ q1 ≥ . . . and (v) holds, we obtain limn→∞ ν(qk) = 0,
which is impossible because ν(qk) ≥ ν(p)/2 > 0. So

∧
k∈ω

∨
n≥k p

in
n > 0 and

Black wins. �

It is well-known that every Maharam algebra is c.c.c. and weakly dis-
tributive. So, concerning Theorem 3.20, it is natural to ask whether Black
has a winning strategy on each weakly distributive c.c.c. complete Boolean
algebra. The answer “Yes” is consistent. Namely, Balcar2, Jech and Pazák3

in [2] and, independently, Veličković in [37] proved that the P-ideal di-
chotomy (a principle formulated by Abraham4 and Todorčević5 in [1] and
extended by Todorčević in [35]) implies each weakly distributive c.c.c. com-
plete Boolean algebra is a Maharam algebra. Similar results are also ob-
tained by Farah6 and Zapletal in [11]. But the answer “No” is consistent as
well since in the following section we construct a c.c.c. ω-distributive algebra
without a winning strategy for Black in the game Gls(ω).

3.3 Some additional results

For a complete Boolean algebra B, we define

White(B) = {κ ∈ Card \ ω : White has a winning strategy in Gls(κ) on B}

Black(B) = {κ ∈ Card \ ω : Black has a winning strategy in Gls(κ) on B}.

2Bohuslav Balcar (b. 1943), Czech mathematician
3Tomáš Pazák, contemporary Czech mathematician
4Uri Abraham, contemporary Israeli mathematician
5Stevo Todorčević (b. 1955), Serbian mathematician
6Ilias Farah, contemporary Serbian mathematician



3.3. Some additional results 91

In contrast to Lemma 2.30(a) for Gdist(κ, 2, 2), Theorems 3.16 and 3.14
imply that Black has a winning strategy in Gls(κ) for both small and large
values of κ, and the cardinals κ for which White has a winning strategy in
Gls(κ) belong to a bounded interval determined by some cardinal invariants
of B:

Theorem 3.21 White(B) ⊆ [h2(B), π(B)) holds for every complete Boolean
algebra B.

Proof. The inequality κ ≥ h2(B) follows from Corollary 2.33 and Lemma
3.3(a) and κ < π(B) from Theorem 3.14. �

Example 3.1 (The converse of neither Theorem 3.12 nor Theorem 3.18 is
true.) Let V |= CH and, in V , let B = Col(ω, ω1) (Example 1.2). Since
1 B |((2ω)V )ˇ| = ω̌, according to Corollary 3.7, White has (thus, Black
has not) a winning strategy in the game Gls(ω) played on B. But, since
ℵω ≥ π(B) = ω1, according to Theorem 3.14, Black has a winning strategy
in Gls(ℵω). �

Example 3.2 (Black can have a winning strategy on a collapsed cardinal.)
Let V |= MA + 2ω = ℵω+1 (see Theorem 1.81). Then, by Lemma 1.25,
in V we have 2κ = ℵω+1 for each infinite cardinal κ ≤ ℵω. In V , let
B = Col(ω1,ℵω+1). Then 1 B |((2ω1)V )ˇ| = (ωV1 )ˇ ∈ Reg so by Theorem
3.5 White has a winning strategy in the game Gls(ω1). On the other hand,
B has an ω1-closed dense subset <ω1ωω+1, so, according to Theorem 3.16,
Black has a winning strategy in the game Gls(ω) and, according to Theorem
3.18, in the game Gls(ℵω), although the cardinal ℵω is collapsed to ℵ1 in
each generic extension by B. �

Example 3.3 (The implication (c)⇒(b) in Theorem 3.5 does not hold.)
Let V and B be as in Example 3.2. Then in V , for κ = ℵω we have 2ℵω =
2<ℵω = c = ℵω+1, so the sets (κ2)V and (<κ2)V are equipotent in VB[G] as
well. But White does not have a winning strategy in the game Gls(ℵω), since
Black has one. �

Example 3.4 (The games Gls(ω) and Gdist(ω, c, ω) are never equivalent for
Black.) Let B be the Cohen algebra. By Corollary 3.15 Black has a winning
strategy in the game Gls(ω) played on B. Suppose Black has a winning
strategy Σ in Gdist(ω, c, ω) on B. Then Σ is also a winning strategy for
Black in the game Gdist(ω, ω, ω) so White does not have a winning strategy
in Gdist(ω, ω, ω) According to Theorem 2.39 this implies that B is weakly
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distributive. But this contradicts Corollary 1.66 since the Cohen algebra
adds an unbounded real. Thus Black does not have a winning strategy in
the game Gdist(ω, c, ω). �

In the following theorem we show that the set White(B) need not be
convex. Moreover, under some additional assumptions, regarding the set
White(B) ∩ Reg “everything is possible”.

Theorem 3.22 (GCH) For each set S of regular cardinals there is a com-
plete Boolean algebra B such that

(a) White(B) = S;

(b) Black(B) = Card \ (S ∪ ω).

Proof. If S = ∅, let B = r.o.(〈<ω2,⊇〉) (the Cohen algebra). Since h2(B) =
π(B) = ω, according to Theorem 3.21 we have White(B) = ∅. On the other
hand, by Theorem 3.14, Black(B) = Card \ ω.

If S 6= ∅, for each κ ∈ S let Bκ = Col(κ, κ+) = r.o.(〈<κκ+,⊇〉). The
regularity of κ implies that <κκ+ is a κ-closed dense subset of Bκ, and thus,
according to Corollary 1.58,

1Bκ Bκ κ̌ ∈ Reg (3.18)

and by Lemma 1.62 h2(Bκ) ≥ κ. On the other hand 1Bκ Bκ |(κ+)V ˇ| = κ̌;
by Lemma 3.8 κ obtains new subsets in each generic extension by Bκ, which
by Theorem 1.59 implies

h2(B) = κ. (3.19)

GCH implies |<κκ+| = κ+, hence π(Bκ) ≤ κ+. But Bκ is not κ+-c.c. so

π(B) = κ+. (3.20)

According to (3.19), (3.20) and Theorem 3.21 we have White(Bκ) ⊆ {κ}.
Since 1Bκ Bκ |((2κ)V )ˇ| = κ̌ and (3.18) holds, Theorem 3.6 implies κ ∈
White(Bκ) so

White(Bκ) = {κ}. (3.21)

We prove that the algebra B =
∏
κ∈S Bκ (the usual direct product of algebras

Bκ) satisfies the required properties. It suffices to prove that (1) White(B) ⊇
S; (2) Black(B) ⊇ Card \ (S ∪ ω).

(1) Let κ ∈ S. By (3.21) κ ∈ White(Bκ) and, according to (3.18) and
Theorem 3.6 there is an extension VBκ [H] such that

|(2κ)V |VBκ [H] = κ ∈ RegVBκ [H]. (3.22)
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By Lemma 1.50(b) there is a B-generic filter G over V such that VBκ [H] =
VB[G] so, by (3.22), |(2κ)V |VB[G] = κ ∈ RegVB[G] so, according to Theorem
3.5, κ ∈ White(B).

(2) Let λ ∈ Card \ (S ∪ ω). We define a strategy Σ1 for Black in the
game Gls(λ) played on B =

∏
κ∈S Bκ, as follows.

Let p = 〈bκ : κ ∈ S〉 ∈ B+ be an initial move of White. Then bκ > 0Bκ

for some κ ∈ S, so for κ0 = min{κ ∈ S : bκ > 0Bκ} we have bκ0 > 0Bκ0
and,

since λ /∈ S, λ 6= κ0. Now there are two cases.
1◦ λ < κ0. Since the algebra Bκ0 contains a dense κ0-closed subset,

according to Theorem 3.16 Black has a winning strategy in the game Gls(λ)
played on Bκ0 .

2◦ λ > κ0. Then, according to (3.20), λ ≥ π(Bκ0) so, by Theorem 3.14,
Black has a winning strategy Σ in the game Gls(λ) on Bκ0 .

Let i′ :
⋃
α<κ

α+1[0, p]B → 2 be the function provided by Theorem
3.17(c). We define

i(〈pβ : β ≤ α〉) = i′(〈πκ0(pβ) : β ≤ α〉),

where πκ0 :
∏
κ∈S Bκ → Bκ0 is the projection of B onto its factor Bκ0 .

We prove that i satisfies (3.16) as well. Let 〈pα : α < λ〉 ∈ λ[0, p]B and
iα = i(〈pβ : β ≤ α〉) for α < λ. By the choice of i′ we have∧

β<κ

∨
α≥β πκ0(pα)iα > 0. (3.23)

(we remind the reader that πκ0(pα)0 = πκ0(pα) and πκ0(pα)1 = πκ0(p) \
πκ0(pα)). Now since πκ0 is a homomorphism, we have πκ0(p

0
α) = πκ0(pα) =

πκ0(pα)0 and πκ0(p
1
α) = πκ0(p ∧ p′α) = πκ0(p) \ πκ0(pα) = πκ0(pα)1, thus we

have πκ0(p
iα
α ) = πκ0(pα)iα . Now, according to (3.23) and the fact that πκ0

is a complete homomorphism, we have

πκ0(
∧
β<λ

∨
α≥β

piαα ) =
∧
β<λ

∨
α≥β

πκ0(pα)iα > 0

which implies that
∧
β<λ

∨
α≥β p

iα
α > 0 in B, so Black wins the game. Thus

Σ1 is indeed a winning strategy for Black. �

3.4 The indeterminacy

We already mentioned that Jech, under assumption of ♦, found a Boolean
algebra on which the game Gdist(ω, 2, 2) is undetermined. Dobrinen in [9]
and [10] generalized his result to the game Gdist(κ, 2, 2) assuming κ<κ = κ
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and ♦κ+(E(κ)). Modifying her proof, we will obtain a similar result for
Gls(κ). It was first proved in [25] for κ = ω and then generalized in [26].

Theorem 3.23 For each κ ∈ Reg satisfying κ<κ = κ and ♦κ+(E(κ)), there
is a κ+-Suslin tree T such that the game Gls(κ) is undetermined on the
algebra B = r.o.(T∗).

By Lemma 1.80 the reversed tree of every well-pruned κ+-Suslin tree T is
κ-distributive, so Theorem 3.21 implies that White does not have a winning
strategy in the game Gls(κ) played on B. Thus, after constructing the tree
our main task will be to show that Black does not have a winning strategy
either. For both the construction and the proof we will need some auxiliary
lemmas.

First we introduce the game G′′ls(κ) in which White’s initial move must
be p = 1 and all other rules are the same as in the game Gls(κ). This game
is easier for Black:

Lemma 3.24 Let κ ≥ ω be a cardinal and B a complete Boolean algebra.
If Black has a winning strategy in the game Gls(κ) played on B, then he has
a winning strategy in the game G′′ls(κ) as well.

Proof. Applying Theorem 3.17 with p = 1 we easily obtain the existence
of a winning strategy for Black in G′′ls(κ). �

Thus it suffices to construct a well-pruned κ+-Suslin tree T such that
Black does not have a wining strategy in the game G′′ls(κ) played on B =
r.o.(T∗). Our construction will follow the standard construction of a κ+-
Suslin tree, in which the set of nodes is κ+. In order to provide a convenient
coding of moves and strategies, we will construct our tree T so that for each
β < κ+ the β-th level of T, Levβ(T), is the set Lβ = {κβ + γ : γ < κ} =
κ(β + 1) \ κβ.

We begin by coding all possible moves of White. Suppose that the
intended well-pruned κ+-Suslin tree T is constructed. Then each move p of
White in the game G′′ls(κ) played on the algebra B = r.o.(T∗) is an element
of the set B+ and, according to the following elementary fact, is determined
by a subset of some level of T.

Lemma 3.25 Let T = 〈T,<〉 be a separative reversed well-pruned κ+-
Suslin tree and B = r.o.(T∗). Then
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(a) if t ∈ T and ht(t) < β < κ+, then (in B) t =
∨
{s ∈ Levβ(T) : s < t};

(b) for each p ∈ B+ there are β < κ+ and W ⊆ Levβ(T) such that
p =

∨
W and p′ =

∨
(Levβ(T) \W ).

So the moves of White in the game G′′ls(κ) can be regarded as elements
of the set

⋃
β<κ+ P (Levβ(T)) \ {∅,Levβ(T)} which is, by Lemma 1.7(b), of

size κ+. Since the levels Levβ(T) of our tree will be the sets Lβ, we can fix
a bijection

W : κ+ →
⋃
β<κ+ P (Lβ) \ {∅, Lβ}

which codes every move of White by some element of κ+. (In fact each
p ∈ B+ is coded by κ+-many subsets of levels and, consequently, by κ+-
many elements of κ+, but this is irrelevant for the construction.)

Now we code the strategies of Black. According to Theorem 3.17 and
using the bijection W fixed above, to each strategy Σ of Black for the game
G′′ls(κ) on B = r.o.(T∗) we can adjoin a mapping Σ̄ :

⋃
α<κ

α+1κ+ → 2,
defined by

Σ̄(〈ξδ : δ ≤ α〉) = Σ(〈
∨
Wξδ : δ ≤ α〉). (3.24)

Then clearly Σ̄ ⊆
⋃
α<κ

α+1κ+ × 2 and, under ♦κ+(E(κ)), |
⋃
α<κ

α+1κ+ ×
2| = Σα<κ2κ|α+1| = κ+. Now we fix a bijection

Φ :
⋃
α<κ

α+1κ+ × 2 → κ+

and in this way each strategy Σ of Black is coded by the subset Φ[Σ̄] of κ+.

Lemma 3.26 Let κ be a regular cardinal satisfying κ<κ = κ and♦κ+(E(κ))
and let CΦ = {δ < κ+ : Φ[

⋃
α<κ

α+1δ × 2] ⊆ δ}. Then there is a club subset
C∗ of κ+ such that C∗ ∩ E(κ) ⊆ CΦ.

Proof. If ξ < κ+ we have |
⋃
α<κ

α+1(ξ + 1) × 2| ≤ Σα<κκ
<κ = κ. Hence

Φ[
⋃
α<κ

α+1(ξ+1)×2] is a bounded subset of κ+ so the function f : κ+ → κ+

given by f(ξ) = supΦ[
⋃
α<κ

α+1(ξ + 1) × 2] is well-defined and C∗ = {δ <
κ+ : f [δ] ⊆ δ} is a club subset of κ+ by Lemma 1.4.

Let δ ∈ C∗ ∩ E(κ). If 〈ϕ, k〉 ∈
⋃
α<κ

α+1δ × 2, then there is α < κ such
that ϕ : α + 1 → δ. Since cf(δ) = κ > α + 1 we have ξ = supϕ[α + 1] < δ
and δ ∈ C∗ implies f(ξ) < δ. Clearly ϕ : α + 1 → ξ + 1 so 〈ϕ, k〉 ∈⋃
α<κ

α+1(ξ + 1) × 2 and, by definition of f , Φ(〈ϕ, k〉) ≤ f(ξ) ∈ δ. Thus
Φ[

⋃
α<κ

α+1δ × 2] ⊆ δ, that is δ ∈ CΦ. �
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Now we turn to describing the possible counter-moves of White. We
will construct a κ+-Suslin tree T = 〈κ+,C〉 such that for each β < κ+

Levβ(T) = Lβ. For β < κ+ let Pβ be the set of even elements of the set Lβ ,
that is Pβ = {α ∈ Lβ : ∃η ∈ Lim ∃n ∈ ω α = η + 2n}. Then clearly Pβ
determines a move

∨
Pβ of White in the game G′′ls(κ) played on the algebra

B = r.o.(T∗) and the sequence 〈Pβ : β < κ+〉 can be regarded as a function

P : κ+ →
⋃
β<κ+ P (Lβ) \ {∅, Lβ}.

If W is the bijection fixed above and g : κ+ → κ+ is defined by g = W−1◦P ,
then {α < κ+ : g[α] ⊆ α} is a club subset of κ+ by Lemma 1.4. Since
g[α] ⊆ α if and only if P [α] ⊆ W [α], that is {Pβ : β < α} ⊆ {Wβ : β < α},
we have

Lemma 3.27 CP = {α < κ+ : P [α] ⊆W [α]} is a club subset of κ+.

According to the definition of the function g, Pβ = Wg(β) for each β <
κ+. So if in the first α+1 moves of the game G′′ls(κ) White plays the sequence
〈
∨
Pβδ

: δ ≤ α〉, then Black, following a strategy Σ, responds by∨
P

Σ̄(〈g(βδ):δ≤α〉)
βα

(3.25)

where Σ̄ is defined by (3.24) and for W ⊆ Levβ(T), by definition, W 0 = W
and W 1 = Levβ(T) \W .

In our construction we will frequently use the following facts.

Lemma 3.28 If κ is an uncountable cardinal, then κ = {ωζ + n : ζ <
κ ∧ n ∈ ω}. Consequently, Lβ = {κβ + ωζ + n : ζ < κ ∧ n ∈ ω} and
Pβ = {κβ + ωζ + 2n : ζ < κ ∧ n ∈ ω}.

Lemma 3.29 Let γ be a limit ordinal and let 〈T,C〉 be a tree of height γ
such that T =

⋃
θ<κ bθ, where bθ, θ < κ, are different branches of height γ

and let Kθ, θ < κ, be disjoint nonempty sets such that T ∩
⋃
θ<κKθ = ∅. If

T1 = T ∪
⋃
θ<κKθ and C1=C ∪

⋃
θ<κ(bθ ×Kθ), then

(a) C=C1 ∩ T 2;

(b) 〈T1,C1〉 is a well-pruned tree of height γ + 1;

(c) Levβ(〈T1,C1〉) = Levβ(〈T,C〉) for all β < γ;

(d) Levγ(〈T1,C1〉) =
⋃
θ<κKθ.
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Lemma 3.30 Let κ be a regular cardinal, T = 〈κ+,C〉 a well-pruned κ+-
tree, where Levβ(T) = Lβ , for all β < κ and let the functions Φ and g be
defined as above. Let γ ∈ Ord be such that g[γ] ⊆ γ and Φ[

⋃
α<κ

α+1γ×2] ⊆
γ and let 〈βγδ : δ < κ〉 be an increasing sequence in γ, cofinal in γ. If functions
Σ,Σ1 :

⋃
α<κ

α+1κ+ → 2 are such that

Φ[Σ] ∩ γ = Φ[Σ1] ∩ γ (3.26)

then Σ(〈g(βγδ ) : δ ≤ α〉) = Σ1(〈g(βγδ ) : δ ≤ α〉) for each α < κ.

Proof. By (3.26), since Φ[
⋃
α<κ

α+1γ×2] ⊆ γ, we have Φ[Σ]∩Φ[
⋃
α<κ

α+1γ×
2] = Φ[Σ1]∩Φ[

⋃
α<κ

α+1γ×2]. Now, since Φ is a bijection, Σ∩
⋃
α<κ

α+1γ×
2 = Σ1 ∩

⋃
α<κ

α+1γ × 2, that is Σ �
⋃
α<κ

α+1γ = Σ1 �
⋃
α<κ

α+1γ. For
each α < κ we have 〈βγδ : δ ≤ α〉 ∈ α+1γ and since g[γ] ⊆ γ, we have
〈g(βγδ ) : δ ≤ α〉 ∈ α+1γ. Now, the equality of the restrictions of Σ and Σ1 to
α+1γ gives the desired equality. �

Now we are ready for the construction itself. Let 〈Aγ : γ ∈ E(κ)〉 be a
♦κ+(E(κ))-sequence and let the functions W,P, g and Φ be fixed as above
and Tα =

⋃
β<α Lβ. For each γ ∈ Lim ∩ κ+ we fix an increasing sequence

of successor ordinals 〈βγδ : δ < cf(γ)〉 cofinal in γ. We construct a tree
T = 〈κ+,Cκ+〉 constructing by recursion a sequence 〈Cα: α ≤ κ+〉 such that
Cα is a strict order on the set Tα. The corresponding inductive property is
expressed by the formula

F(〈Cα: α < ξ〉) ≡ ∀α < ξ Q(α,Cα, 〈Cβ: β < α〉),

where Q(α,Cα, 〈Cβ: β < α〉) is the conjunction of the following conditions:

(Iα) 〈Tα,Cα〉 is a well-pruned tree of height α, such that Levβ(〈Tα,Cα〉) =
Lβ , for all β < α.

(IIα) Cβ=Cα ∩ T 2
β , for all β < α.

(IIIα) If α = β + 2, then

Cβ+2 = Cβ+1 ∪
⋃
ζ<κ

⋃
n<ω

(
{κβ + ωζ + n} ∪ {κβ + ωζ + n}↓

)
×

×
{
κ(β + 1) + ωζ + 2n, κ(β + 1) + ωζ + 2n+ 1

}
. (3.27)

(IVα) If α = γ + 1 for some γ ∈ E(κ), then (A) implies (A1), where

Tγ = γ ∧ Aγ is a maximal antichain in 〈Tγ ,Cγ〉 (A)

∀t ∈ Lγ ∃s ∈ Aγ s Cα t. (A1)
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(Vα) If α = γ + 1 for some γ ∈ E(κ), then for every Σ :
⋃
α<κ

α+1κ+ → 2
(B) implies (B1), where

g[γ] ⊆ γ ∧ Φ[
⋃
α<κ

α+1γ × 2] ⊆ γ ∧ Φ[Σ] ∩ γ = Aγ (B)

∀t ∈ Lγ ∃β < κ ∀δ′ ≥ β t↓ ∩PΣ(〈g(βγ
δ ):δ≤δ′〉)

βγ

δ′
= ∅. (B1)

(VIα) If α = γ + 1, for some γ ∈ κ+ ∩ Lim \ E(κ), then for each branch b
of the tree Tγ such that ht(b) = γ there is s ∈ Lγ such that t Cγ+1 s, for all
t ∈ b.

In order to show that the recursion works, we take ξ ≤ κ+ and assuming
there is a sequence 〈Cα: α < ξ〉 in P (κ+ × κ+) such that F(〈Cα: α < ξ〉),
we construct Cξ⊆ T 2

ξ such that Q(ξ,Cξ, 〈Cβ: β < ξ〉) distinguishing the
following cases:

Case 1: ξ = 0. Then T0 = ∅ and C0= ∅ satisfies (Iξ)-(VIξ) trivially.
Case 2: ξ = 1. Then T1 = L0 = κ. Let C1= ∅, then 〈T1,C1〉 is an

antichain and clearly (Iξ)-(VIξ) hold.
Case 3: ξ = β + 2, for some β < κ+. Since (Iβ+1) holds, 〈Tβ+1,Cβ+1〉 is

a κ-sized, well-pruned tree of height β + 1, hence Tβ+1 =
⋃
ζ<κ

⋃
n<ω{κβ +

ωζ + n} ∪ {κβ + ωζ + n} ↓. Let Cξ=Cβ+2 be defined by formula (3.27).
Now (Iξ) follows from Lemma 3.29, (IIIξ) is provided by definition of Cξ

and (IVξ), (Vξ) and (VIξ) are satisfied trivially. Since Cβ+1=Cβ+2 ∩T 2
β+1

and (IIβ+1) holds, we have (IIξ).
Case 4: ξ = γ + 1, for some γ ∈ κ+ ∩ Lim \ E(κ). Let cf(γ) = λ. We

define an order Cγ+1 on the set Tγ+1 = Tγ ∪ {κγ + θ : θ < κ}.
First we show that each t ∈ Tγ belongs to a branch b ⊆ Tγ of height γ.

Since the sequence 〈βγδ : δ < λ〉 is cofinal in γ, there is δ0 < λ such that
htTγ (t) < βγδ0 and, using recursion, we define the sequence 〈tδ : δ ∈ [δ0, λ)〉
such that

(i) t Cγ tδ0 ;
(ii) δ′ < δ′′ ⇒ tδ′ Cγ tδ′′ ;
(iii) tδ ∈ Lβγ

δ
.

By (Iγ), the tree Tγ is well-pruned, hence there is tδ0 ∈ Lβγ
δ0

such that
t Cγ tδ0 .

Let δ < λ and let tη, η < δ, be defined such that (i)-(iii) hold. If δ = η+1,
then tη ∈ Lβγ

η
and, since Tγ is well-pruned, we can choose tη+1 ∈ Lβγ

η+1
such

that tη Cγ tη+1. If δ ∈ λ∩Lim, then 〈βγη : η < δ〉 is an increasing sequence of
ordinals and for β = sup{βγη : η < δ} we have cf(β) ≤cf(δ) ≤ δ < κ. Thus,
since (VIβ+1) holds, there is s ∈ Lβ such that tη Cγ s, for all η < δ. Clearly
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β ≤ βγδ and, since βγδ is a successor, β < βγδ . Since Tγ is well-pruned, we
can choose tδ ∈ Lβγ

δ
such that s Cγ tδ.

Now, the branch bt containing the chain {tδ : δ ∈ [δ0, λ)} is of height γ
and contains t.

Since the tree Tγ contains antichains of size κ, we have |B| ≥ κ, where
B = {b ⊆ Tγ : b is a branch of height γ}. On the other hand, the function
f : B → λ([Tγ ]1) defined by f(b) = 〈b ∩ Lβγ

δ
: δ < λ〉 is an injection and,

since |Tγ | = κ, we have |B| ≤ κλ ≤ κ<κ = κ and, consequently, |B| = κ.
Let {bθ : θ < κ} be an enumeration of B. Then, as we proved above,

Tγ =
⋃
θ<κ bθ and we define the order on the set Tξ = Tγ ∪ Lγ by Cξ=Cγ

∪
⋃
θ<κ(bθ×{κγ+θ}). Now, since (IIγ) holds, according to Lemma 3.29, we

have (Iξ) and (IIξ). Conditions (IIIξ), (IVξ) and (Vξ) are satisfied trivially
and (VIξ) follows from the construction.

Case 5: ξ = γ + 1 for some γ ∈ E(κ). We define an order Cγ+1 on
the set Tγ+1 = Tγ ∪ {κγ + θ : θ < κ}. Using (Iγ) we will choose different
branches of height γ, bθ, θ < κ, in Tγ such that Tγ =

⋃
θ<κ bθ and define

Cγ+1=Cγ ∪
⋃
θ<κ(bθ × {κγ + θ}). Then, by Lemma 3.29, condition (Iξ)

will be satisfied. Condition (IIξ) will hold since Cγ=Cγ+1 ∩ T 2
γ and (IIγ)

is true by the assumption. Thus, since conditions (IIIξ) and (VIξ) will be
satisfied trivially, only conditions (IVξ) and (Vξ) will remain for verification.
Depending of whether conditions (A) and (B) are satisfied, we distinguish
the following four subcases.

Subcase 5.1: (A) holds and there is Σ :
⋃
α<κ

α+1κ+ → 2 such that (B)
holds. By Lemma 3.30 it suffices to prove (B1) for that σ.

Let x ∈ Tγ . Since Aγ is a maximal antichain in Tγ , there exists s ∈ Aγ
comparable with x and we define y = max{x, s}. Then htTγ (y) < γ, so there
is δ0 < κ such that htTγ (y) < βγδ0 . Using recursion we define a sequence
〈yδ : δ ∈ [δ0, κ)〉 such that

(i) y Cγ yδ0 ;
(ii) δ′ < δ′′ ⇒ yδ′ Cγ yδ′′ ;

(iii) yδ′ ∈ Lβγ

δ′
\ PΣ(〈g(βγ

δ ):δ≤δ′〉)
βγ

δ′
.

Since the tree Tγ is well-pruned, there is z ∈ Lβγ
δ0
−1 such that y Eγ z

and since (IIIβγ
δ0

+1) holds, z has both an even and an odd successor on the
level Lβγ

δ0
. Now we choose the successor yδ0 of z such that yδ0 ∈ Lβγ

δ0
\

P
Σ(〈g(βγ

δ ):δ≤δ0〉)
βγ

δ0

.

Let δ′ < κ and let the sequence 〈yδ : δ ∈ [δ0, δ′)〉 satisfy (i)-(iii).
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If δ′ = η + 1, since the tree Tγ is well-pruned, there is z ∈ Lβγ

δ′−1 such
that yη Eγ z and, since (IIIβγ

δ′+1) holds, z has both an even and an odd
successor on the level Lβγ

δ′
. Now we choose the successor yδ′ of z such that

yδ′ ∈ Lβγ

δ′
\ PΣ(〈g(βγ

δ ):δ≤δ′〉)
βγ

δ′
, and the sequence 〈yδ : δ ∈ [δ0, δ′]〉 satisfies

(i)-(iii).
If δ′ ∈ Lim and β = sup{βγδ : δ < δ′}, then cf(β) ≤ δ′ < κ. Since

{yδ : δ ∈ [δ0, δ′)} is an increasing chain and yδ ∈ Lβγ
δ
, there is a branch b of

height β in Tβ containing yδ, δ ∈ [δ0, δ′), thus, by (VIβ+1), there is t ∈ Lβ
such that yδ Cγ t, for all δ < δ′. Clearly β ≤ βγδ′ , but, since βγδ′ is a successor
ordinal, we have β ≤ βγδ′ − 1. Now we take z ∈ Lβγ

δ′−1 satisfying t Eγ z

and define yδ′ as in the previous cases. So, the sequence 〈yδ : δ ∈ [δ0, κ)〉
satisfying (i)-(iii) is defined.

Let bx be the branch in Tγ such that yδ ∈ bx for all δ ∈ [δ0, κ). In this way
to each x ∈ Tγ we adjoin a branch bx ⊆ Tγ of height γ and Tγ =

⋃
x∈Tγ

bx.
Since |Tγ | = κ, there is an 1-1 enumeration {bx : x ∈ Tγ} = {bθ : θ < κ}.
Then Tγ =

⋃
θ<κ bθ and we define the order Cξ=Cγ+1 on Tγ ∪ Lγ by

Cγ+1=Cγ ∪
⋃
θ<κ(bθ × {κγ + θ}).

For the proof of (IVξ) and (Vξ) we check (A1) and (B1). Let t = κγ+θ ∈ Lγ .
Then in the tree 〈Tγ+1,Cγ+1〉 we have t ↓= bθ. By the construction, the
branch bθ contains an element s of Aγ . Clearly s Cξ t and (A1) is proved.

Also there exists δ0 < κ such that bθ∩Lβγ

δ′
⊆ Lβγ

δ′
\PΣ(〈g(βγ

δ ):δ≤δ′〉)
βγ

δ′
is satisfied

for each δ′ ∈ [δ0, κ) so (B1) holds.
The other three subcases are similar to 5.1. Namely, in the construction

of the branch bx (for x ∈ Tγ) if ¬(A)∧∃Σ(B), we start from y = x (ignoring
Aγ); if (A)∧¬∃Σ(B), then we choose arbitrary yδ ∈ Lβγ

δ
for δ ≥ δ0 such that

the sequence 〈yδ〉 is increasing and, finally, if ¬(A)∧¬∃Σ(B) then we start
from y = x and choose yδ like in subcase (A)∧¬(B).

Case 6: ξ ∈ Lim. (The case ξ = κ+ is included here.) Let the order
Cξ on Tξ =

⋃
β<ξ Lβ =

⋃
α<ξ Tα be defined by Cξ=

⋃
α<ξ Cα. Then (IIIξ),

(IVξ), (Vξ) and (VIξ) hold trivially. By the assumption β ≤ α < ξ implies
Cβ=Cα ∩ T 2

β , thus for β < ξ, since the sequence 〈Cα: α < ξ〉 is increasing,
we have Cξ ∩ T 2

β =
⋃
β≤α<ξ Cα ∩ T 2

β =Cβ and (IIξ) is proved. Consequently,
〈Tξ,Cξ〉 is a strict order since it is the union of the chain of strict orders
〈Tα,Cα〉, α < ξ. It is easy to check that for each β < ξ and each t ∈ Lβ

pred〈Tξ,Cξ〉(t) = pred〈Tβ+1,Cβ+1〉(t) (3.28)

Cξ ∩ pred〈Tξ,Cξ〉(t)
2 = Cβ+1 ∩ pred〈Tβ+1,Cβ+1〉(t)

2 (3.29)
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so, by the assumption (Iβ+1), the set pred〈Tξ,Cξ〉(t) is well-ordered by Cξ,
thus 〈Tξ,Cξ〉 is a tree. By (3.28), (3.29) and (Iβ+1) we have

ht〈Tξ,Cξ〉(t) = ht〈Tβ+1,Cβ+1〉(t) = β,

thus Levβ(Tξ,Cξ) = Lβ for all β < ξ. Since Tξ =
⋃
β<ξ Lβ, the tree 〈Tξ,Cξ〉

is of height ξ. If α < β < ξ and s ∈ Lα, then s ∈ Tβ+1 = Tβ ∪ Lβ so, by
(Iβ+1), there is t ∈ Lβ such that s Cβ+1 t, which implies s Cξ t. Thus the
tree 〈Tξ,Cξ〉 is well-pruned and (Iξ) holds.

According to the Recursion Principle there is a sequence 〈Cα: α ≤ κ+〉
satisfying F . It is easy to show that Tκ+ = κ+. Since (Iκ+) holds, T =
〈κ+,Cκ+〉 is a well-pruned tree of height κ+ such that Levβ(T) = Lβ, for all
β < κ+. Consequently T is a well-pruned κ+-tree. T is also ever-branching:
let t = κβ + ωζ + n ∈ Lβ and α = β + 2. (IIIα) implies that in the tree
Tβ+2 t has two incomparable successors and by (IIκ+) this holds in T as well.

The following two lemmas are generalizations of Lemmas II 7.6 and II
7.7 from [24].

Lemma 3.31 Let T = 〈κ+,C〉 be a κ+-tree and A a maximal antichain in T.
Then the set CA = {γ < κ+ : Tγ = γ ∧ A∩Tγ is a maximal antichain in Tγ}
contains a club subset of κ+.

Proof. We define functions f, g, h : κ+ → κ+ as follows: f(ξ) = ht(ξ),
g(ξ) = supLξ and h(ξ) = the element of antichain A comparable to ξ. Now
the sets Cf = {ξ < κ+ : ξ ⊆ Tξ}, Cg = {ξ < κ+ : Tξ ⊆ ξ} and Ch = {ξ <
κ+ : A∩Tξ is a maximal antichain in Tξ} are clubs in κ+ by Lemma 1.4, so
by Lemma 1.5 CA = Cf ∩ Cg ∩ Ch is a club in κ+ as well. �

Lemma 3.32. Let κ be a regular cardinal satisfying ♦κ+(E(κ)), let 〈Aγ :
γ ∈ E(κ)〉 be a ♦κ+(E(κ))-sequence and let T = 〈κ+,C〉 be an ever-
branching κ+-tree such that for each γ ∈ E(κ) (A) implies (A1), where

Tγ = γ ∧ Aγ is a maximal antichain in Tγ (A)

∀s ∈ Levγ(T) ∃a ∈ Aγ a C s. (A1)

then T is a κ+-Suslin tree.

Proof. Let A ⊆ κ+ be a maximal antichain in T. Then S = {γ ∈ E(κ) : A∩
γ = Aγ} is a stationary subset of κ+ so, by Lemma 3.31, there is γ ∈ S∩CA.
Now A ∩ Tγ = A ∩ γ = Aγ so γ satisfies (A) and, by the assumption, (A1)
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as well. Let t ∈ T and ht(t) ≥ γ. Then there is s ∈ Levγ(T) such that s C t
so, by (A1), there is a ∈ Aγ = A∩ γ such that a C s. This implies a C t and
therefore t /∈ A. Thus A ⊆ Tγ and A = A∩ Tγ = A∩ γ = Aγ , which implies
|A| ≤ κ.

Suppose B is a κ+-sized branch of T. Using recursion we define a se-
quence 〈aα : α < κ+〉 of incomparable elements of T \ B. Let α < κ+ and
suppose aβ are defined for β < α. Then ξα = sup{ht(aβ) : β < α} < κ+

and we choose bα ∈ B such that ht(bα) > ξα. Since the tree T is ever-
branching we can choose aα ∈ T \B such that bα C aα. Clearly, aα and aβ
are incomparable, for each β < α.

Now {aα : α < κ+} is an antichain in T of cardinality κ+. Since we
previously showed that such antichain can not exist, this is a contradiction.
�

In order to apply Lemma 3.32 we suppose γ ∈ E(κ) satisfies (A). Then
(IVα) holds for α = γ + 1, so (A) implies (A1), that is for each t ∈ Lγ there
is s ∈ Aγ satisfying s Cα t which, by (IIκ+), implies s Cκ+ t. Thus all the
assumptions of Lemma 3.32 are satisfied, T is a well-pruned κ+-Suslin tree
and, by Lemma 1.80, White does not have a winning strategy in the game
Gls(κ) played on B.

Now we isolate from the construction above the property which ensures
that Black does not have a winning strategy in the game G′′ls(κ).

Theorem 3.33 Let κ be a regular cardinal and for each γ ∈ E(κ) let
〈βγδ : δ < κ〉 be an increasing sequence in γ, cofinal in γ. Let ♦κ+(E(κ))
hold and let 〈Aγ : γ ∈ E(κ)〉 be a ♦κ+(E(κ))-sequence. Let T = 〈κ+,C〉
be a well-pruned κ+-tree, where Levβ(T) = Lβ , for all β < κ and let the
functions W,Φ, P and g be defined as above. If for every γ ∈ E(κ) and every
Σ :

⋃
α<κ

α+1κ+ → 2

g[γ] ⊆ γ ∧ Φ[
⋃
α<κ

α+1γ × 2] ⊆ γ ∧ Φ[Σ] ∩ γ = Aγ (B)

implies that

∀t ∈ Lγ ∃β < κ ∀α ≥ β t↓ ∩PΣ(〈g(βγ
δ ):δ≤α〉)

βγ
α

= ∅, (B1)

then Black does not have a winning strategy in the game G′′ls(κ) played on
the algebra B = r.o.(T∗).

Proof. Let Σ be a strategy for Black in the game G′′ls(κ) on the algebra
B and let Σ̄ :

⋃
α<κ

α+1κ+ → 2 be the corresponding function defined by
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(3.24). Then Φ[Σ̄] ⊆ κ+ and, by ♦κ+(E(κ)), the set S = {γ ∈ E(κ) :
Φ[Σ̄] ∩ γ = Aγ} is a stationary subset of κ+. According to Lemmas 3.26
and 3.27 the sets CP = {γ < κ+ : P [γ] ⊆ W [γ]} = {γ < κ+ : g[γ] ⊆ γ} and
CΦ = {γ < κ+ : Φ[

⋃
α<κ

α+1γ × 2] ⊆ γ} are club subsets of κ+ and, hence,
there exists γ ∈ CP ∩ CΦ ∩ S. This implies g[γ] ⊆ γ, Φ[

⋃
α<κ

α+1γ × 2] ⊆ γ
and Φ[Σ̄] ∩ γ = Aγ thus (B) holds. By the assumption (B1) holds as well.

Let us consider the play in which White plays 〈
∨
Pβγ

δ
: δ < κ〉 and Black

follows Σ. According to (3.25) in the α-th move, when the sequence of

White’s previous moves is 〈
∨
Pβγ

δ
: δ ≤ α〉, Black chooses

∨
P

Σ̄(〈g(βγ
δ ):δ≤α〉)

βγ
α

.
Suppose Black wins the play, that is∧

β<κ

∨
α≥β

∨
P

Σ̄(〈g(βγ
δ ):δ≤α〉)

βγ
α

= b > 0. (3.30)

Let ≤ denote the corresponding order on the algebra B = r.o.(T∗). Then,
because of (3.30) there is s ∈ T such that s ≤ b and, since the tree is well-
pruned, there is v ∈ T satisfying v ≤ s and ht(v) ≥ γ. Let t ∈ Lγ be such
that v ≤ t. Since v ≤ b, by (3.30) for each β < κ there are α ≥ β and

u ∈ P
Σ̄(〈g(βγ

δ ):δ≤α〉)
βγ

α
such that u ∧ v > 0 which implies u ∧ t > 0. But this

means that u and t are comparable elements of T , thus, since ht(u) = βγα <

γ = ht(t), we have u C t, which implies u ∈ t↓ ∩P Σ̄(〈g(βγ
δ ):δ≤α〉)

βγ
α

. Thus

∃t ∈ Lγ ∀β < κ ∃α ≥ β t↓ ∩P Σ̄(〈g(βγ
δ ):δ≤α〉)

βγ
α

6= ∅.

A contradiction, since Σ̄ satisfies (B1). So White wins the play and Σ is not
a winning strategy for Black. �

In order to apply Theorem 3.33 suppose γ ∈ E(κ) satisfies condition (B).
Then α = γ + 1 < κ+. Condition (Vα) holds so, because of (B),

∀t ∈ Lγ ∃β < κ ∀δ′ ≥ β t↓ ∩PΣ(〈g(βγ
δ ):δ≤δ′〉)

βγ

δ′
= ∅.

So all the assumptions of Theorem 3.33 are satisfied and Black does not
have a winning strategy in the game G′′ls(κ) played on B = r.o.(T∗). This
concludes the proof of Theorem 3.23.

The question remains: is there a ZFC example of a Boolean algebra on
which the game is undetermined, or at least: can the assumption ♦κ+(E(κ))
be weakened to ♦κ+? Perhaps this could be done by modifying the example
of a Boolean algebra on which Gdist(ω, 2, 2) is undetermined, described in
[38].
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