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Abstract

Context. Software networks are directed graphs of static dependencies between source code entities (func-
tions, classes, modules, etc.). These structures can be used to investigate the complexity and evolution
of large-scale software systems and to compute metrics associated with software design. The extraction of
software networks is also the first step in reverse engineering activities.
Objective. The aim of this paper is to present SNEIPL, a novel approach to the extraction of software
networks that is based on a language-independent, enriched Concrete Syntax Tree representation of the
source code.
Method. The applicability of the approach is demonstrated by the extraction of software networks repre-
senting real-world, medium to large software systems written in different languages which belong to different
programming paradigms. To investigate the completeness and correctness of the approach, class collabora-
tion networks (CCNs) extracted from real-world Java software systems are compared to CCNs obtained by
other tools. Namely, we used Dependency Finder which extracts entity-level dependencies from Java byte-
code, and Doxygen which realizes language-independent fuzzy parsing approach to dependency extraction.
We also compared SNEIPL to fact extractors present in language-independent reverse engineering tools.
Results. Our approach to dependency extraction is validated on six real-world medium to large-scale soft-
ware systems written in Java, Modula-2, and Delphi. The results of the comparative analysis involving
ten Java software systems show that the networks formed by SNEIPL are highly similar to those formed
by Dependency Finder and more precise than the comparable networks formed with the help of Doxygen.
Regarding the comparison with language-independent reverse engineering tools, SNEIPL provides both
language-independent extraction and representation of fact bases.
Conclusion. SNEIPL is a language-independent extractor of software networks and consequently enables
language-independent network-based analysis of software systems, computation of design software metrics,
and extraction of fact bases for reverse engineering activities.

Keywords: software networks, dependency extraction, enriched concrete syntax tree, software metrics,
fact extraction, reverse engineering

1. Introduction

Modern software systems consist of many hundreds or even thousands of interacting entities at different
levels of abstraction. For example, complex software systems written in Java consist of packages, packages
group related classes and interfaces, while classes and interfaces declare or define related methods and class
attributes. Interactions, dependencies, relationships, or collaborations between software entities form various
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types of software networks that provide different granularity views of corresponding software systems. In
the literature software networks are also known as software collaboration graphs [1], software architecture
maps [2], and software architecture graphs [3]. Depending on the level of abstraction specific software
networks, such as package, class and method collaboration networks [4], can be distinguished. Additionally,
different coupling types between entities of the same type determine different software networks [5]. Due to
the terminological and type diversity we use generic term “software network” to refer to any architectural
(entity-level) graph representation of real-world software systems, and to distinguish them from networks
representing other complex natural, social, conceptual or man-made systems.

Software networks can be viewed as the sub-notion of a more general notion of real-world complex
network, i.e. network representing a real and evolving system. Complex network theory [6, 7, 8, 9] provides
a set of techniques for statistical analysis and modeling of real-world networks. When applied to software
systems such techniques are able to identify and explain connectivity patterns and evolutionary trends in
dependency structures formed by software entities. Links in software networks denote various relationships
between software entities such as coupling, inheritance, and invocation. This means that software networks
can be used to compute software metrics related to software design. The first step in reverse engineering,
architecture recovery, and software comprehension activities is the identification of software entities and
relations among them [10]. Therefore, software networks can be also viewed as fact bases required for the
mentioned activities. Graphical representations of software entities and dependencies between them have
long been accepted as comprehension aids to support reverse engineering processes [11]. Moreover, the nodes
in a software network can be enriched with software metrics information in order to provide visual, polymetric
views (such as the system complexity view in [11] or the MettricAttitude view in [12]) of analyzed software
systems. Additionally, software networks can be exploited to identify and remove bad smells in a source
code [13], to support static concept location in the source code [14] and to support program comprehension
during incremental change [15].

This paper addresses the process of extraction of software networks. SNEIPL1, a tool that is able to
extract software networks at different levels of abstraction, will be presented. The main characteristic of
SNEIPL is that it uses the enriched Concrete Syntax Tree (eCST) representation [16, 17] of the source code
to form software networks. eCST is the language-independent source code representation, and consequently
makes SNEIPL independent of programming language. Therefore, the main contribution of SNEIPL is that
enables the language-independent analysis of software systems under the framework of complex network
theory, language-independent computation of software design metrics, and language-independent extraction
and representation of fact bases for reverse engineering activities.

The rest of the paper is structured as follows. The background and motivation for this study are given in
Section 2 focusing on the three fields of research and practice. The contributions of the paper are highlighted
in Section 3. In the next section software networks that can be extracted using SNEIPL are introduced
and defined. The overview of the eCST representation is given in Section 5. The next section covers the
architecture of SNEIPL. In the same section important details of the dependency extraction process are
discussed. The results of the experimental evaluation that demonstrate the validity of our approach are
given in Section 7. The comparative analysis of networks extracted by SNEIPL and networks formed using
two other tools is provided in Section 8. The related work is discussed in Section 9. The last section
concludes the paper.

2. Background and motivation

In this section we discuss the importance of the extraction of software networks focusing on the three
fields of research and practice: analysis of software networks under the framework of complex network theory,
computation of software design metrics, and reverse engineering of software systems.

1The source code of SNEIPL can be downloaded at http://ssqsa.googlecode.com/svn/trunk/sneipl/
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2.1. Analysis of software networks

In the past decade, a large and growing body of research investigated properties of complex real-world
networks representing various biological, social, technological, and conceptual systems, including also net-
works representing software systems [6, 7, 8]. Even though those networks represent totally different types of
systems, they share many common properties such as the small-world property [18], the scale-free property
reflected by a power-law degree distribution [19], higher degree of local clustering compared to a random
graph of the same size [18], the ”robust yet fragile” property [20], the absence of the propagation threshold in
spreading processes [21], and formation of highly modular or community structures [22, 23]. These studies
have served to draw together many disparate fields into an emerging theory of complex networks whose
focus is on statistical analysis techniques, organizational principles, evolutionary mechanisms, and mathe-
matical models that can reveal and explain frequently observed macroscopic and topological characteristics
of real-world networks [9, 24]. Empirical investigations of concrete software networks under the framework
of complex network theory [1, 2, 4, 25, 26, 27, 28] showed that their statistical properties can help us to
understand and quantify the complexity and evolution of corresponding software systems.

2.2. Software design metrics

Software engineering practice or even the application of simple software metrics such as LOC, can show
us that modern software systems are complex artifacts. An essential complexity of software is a conse-
quence of a high number of software entities defined in the source code and the complex interactions among
them [29]. Most of traditional software metrics used for the estimation of software complexity (such as
LOC, Cyclomatic complexity, Halstead metrics, etc.) are mainly oriented towards the internal complexity of
software entities. They are used to identify algorithmically complex entities that should be re-decomposed
into the sets of smaller, less complex, easily maintainable entities that can be reused later as the software
system evolves. The main characteristic of the metrics of internal complexity is that they do not take into
account existing interactions between software entities. The complexity of interactions among software en-
tities can be quantified by the class of software design metrics that reflect coupling, cohesion, inheritance,
and invocation, to mention a few. Widely known and used metrics from this category are those introduced
in the Chidamber-Kemerer metric suite [30]: CBO (Coupling between objects), DIT (Depth of inheritance
tree), NOC (Number of children), LCOM (Lack of cohesion of methods), and RFC (Response for a class).
In order to calculate the metrics of software design, source code entities and relations between them have
to be identified, which means that network representations of the software system have to be extracted.

2.3. Reverse engineering

The primary goal of a reverse engineering activity is to identify system’s components and relationships
among them in order to create the representation of the system at a higher level of abstraction [31]. A typical
reverse engineering activity starts with the extraction of fact bases [32]. Source code is the most popular,
valuable, and trusted source of information for fact extraction because other artifacts (documentation, release
notes, information collected from version management, bug tracking systems, etc.) may be missing, outdated,
or unsynchronized with the actual implementation. Fact extraction is an automatic process during which the
source code is analyzed to identify software entities and their mutual relationships. This process results in an
abstract representation (model) of the extracted information [10]. In syntactic fact extraction the exported
facts include variable and class references, procedure calls, use of packages, association and inheritance
relationships among classes [33]. Software networks are used as a part of input for computing reflection
models in software reflexion analysis [34]. Architecture recovery techniques usually perform software network
partitioning [35, 36, 37, 38, 39] or cluster software entities according to feature vectors that can be constructed
from software networks [40, 41, 42].

3. Contributions

The first prototype of SNEIPL was described in [43], where basic principles of the extraction of software
networks based on the eCST representation of the source code are explained. In the same article it was also
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shown that the prototype of SNEIPL extracted isomorphic software networks representing two small, but
structurally and semantically equivalent software systems written in different programming languages (Java
and C#).

This paper extends the work presented in [43] and its contributions can be summarized as follows. Firstly,
the applicability of SNEIPL is demonstrated by the extraction of software networks that represent real-world,
medium to large-scale software systems written in Java, Modula-2, and Delphi. Mentioned languages are
characteristic representatives of three programming paradigms: object-oriented (Java), procedural (Modula-
2), and mix of these two (Delphi). Therefore, the demonstration of the applicability on these languages can
express applicability of the approach in a broad range of languages. Also, we demonstrate that SNEIPL is
able to identify dependencies at different levels of abstraction, thus providing different granularity views of
analyzed software systems.

Secondly, in this paper we investigate the correctness and completeness of our dependency extraction
approach. Class collaboration networks (CCNs) associated with ten real-world Java software systems are
extracted using SNEIPL and then compared to CCNs extracted by Dependency Finder, a language-specific
tool which forms CCNs from Java bytecode. In the comparative analysis we also include CCNs formed
with the help of Doxygen, a language-independent documentation generator tool. Doxygen is able to form
local class collaboration graphs in a language-independent way that is based on the unified fuzzy parsing
approach, i.e. there is one unified but light-weight parser providing dependency extraction for several
languages. Results of the comparative analysis show that dependency networks extracted by SNEIPL are
highly close to those extracted by the language-dependent tool, and that the eCST-based approach to
language-independent, entity-level dependency extraction provides far more precise results than the unified
fuzzy parsing approach realized by Doxygen. Moreover, we investigated how differences between networks
obtained by SNEIPL and Dependency Finder affect the analysis of design complexity of real-world software
systems and computation of software metrics.

Finally, we compared our dependency extraction approach to the fact extractors of relevant language-
independent reverse engineering tools and frameworks. It is shown that language-independent reverse engi-
neering tools provide language-independent representations of fact bases, but their extraction is mostly done
in a language-dependent way. On the other side, SNEIPL provides language-independent representation of
fact bases in terms of General Dependency Networks, as well as their language-independent extraction.

4. Software networks

High-level programming languages enable declaration or definition of different types of entities at different
levels of abstraction. In general, the following groups of referable software entities can be distinguished:

• function-level entities (functions and variables) that are at the lowest level of abstraction,

• class-level entities (modules in procedural languages; classes and interfaces in OO languages) that
group related function-level entities, but can also contain nested class-level entities, and

• package-level entities (packages, namespaces, units) which group related entities from the lower levels
of abstraction.

Software networks can be either homogeneous (networks connecting software entities of the same type by
links denoting the same kind of relationships) or heterogeneous (entities and/or connections are of different
types). Links in software networks that connect entities from the same level of abstraction will be called
“horizontal”. On the other hand, links in heterogeneous software networks that connect entities appearing
at different levels of abstraction will be called “vertical”.

4.1. Function-level networks

Most programs written in a procedural programming language consists of procedures (also called sub-
routines or functions) which collaborate using the call-return mechanism provided by the language. In
object-oriented software systems, software entities known as methods collaborate using the same mechanism.
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From this point on, we do not make the explicit distinction between functions, procedures and methods -
the mentioned constructs will be used interchangeably since they are function-level entities representing
the same concept across different programming paradigms. Call-return relationships between procedures
define a software network that is often referred to as a static call graph (SCG). In this kind of network two
nodes A and B, which represent two different procedures A and B defined in a program, are connected
by the directed link A → B if A explicitly calls B. Static call graphs for object-oriented (OO) software
systems are also known as method collaboration networks [4]. It is important to observe that function calls
through a reflection mechanism, if it is present in a language, do not form static (structural, compile-time)
dependencies between functions, but run-time dependencies.

FUGV (Function Uses Global Variable) networks are heterogeneous software networks that describe
dependencies between function-level entities. Similarly as for procedures and methods, we do not make the
explicit distinction between global variables in procedural style and class member variables (class attributes)
in OO style. FUGV networks are bipartite directed graphs. The nodes in a FUGV network represent
functions and global variables. Function A is directly connected to global variable B, if B is used (read or
written) in the statements that constitute the body of A. FUGV networks can be used to compute metrics
measuring lack of cohesion in methods because in those metrics we are interested to know if two different
methods access the same class attribute (global variable) [44].

4.2. Class-level networks

Collaborations of classes and interfaces in an OO software system constitute a class collaboration network
(CCN). By the term class collaboration network will be also assumed the term module collaboration network
that denotes collaborations of modules in procedural programming languages. Classes and modules represent
the concept of grouping related function-level entities in different programming paradigms. Similarly, we do
not make the explicit distinction between interfaces and definition modules.

Two nodes A and B contained in a CCN are connected by the directed link A → B if the class or interface
represented by node A references the class or interface represented by node B. A can reference B in many
ways: by extending the functionality of B, defining a member variable whose type is B, realizing a method
which calls some method defined in B, etc. Class collaboration networks can be viewed as simplified class
diagrams that preserve only the existence of relations between classes, and discard other types of information
about nodes (classes) and links (OO relations). By the definition given in [30], the coupling between objects
(CBO) metric for a class is the number of other classes that the class is coupled to (the number of unique
classes referenced by the class plus the number of classes that refer to the class). In other words, the CBO
is the total degree of a node representing the class in appropriate class collaboration network. Additionally,
homogeneous software networks that represent different forms of class coupling, such as inheritance trees or
aggregation networks, can be isolated from class collaboration networks [5].

4.3. Package-level networks

At the highest level of abstraction, package-level entities form package collaboration networks (PCN).
Two packages PA and PB are connected by the directed link PA → PB if package PA contains a class or
interface that references at least one class or interface from package PB. Similarly as for class collaboration
networks, PCNs can be used to calculate coupling metrics at the package level. Afferent coupling [45] of a
package is the number of incoming links attached to the node representing the package in the PCN. The
number of outgoing links measures efferent coupling of the corresponding package.

4.4. Vertical dependencies

Hierarchy tree is a heterogeneous software network that contains all entities defined in a software system.
This type of network captures vertical dependencies between entities. Two entities A and B are connected
by the directed link A → B if entity A defines or declares entity B. Hierarchy tree can be used when we are
interested to know where an entity is defined (the parent of the entity), and which other entities it defines
(the children of the entity). It also enables the calculation of software metrics such as NOC for packages (the
number of classes and interface contained in a package), NOM/NOA (the number of methods/attributes
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defined in a class) and abstractness (the number of abstract classes divided by the total number of classes
in a package). Hierarchy trees are also often used together with other software networks. For example, the
computation of RFC (response for a class) metric requires information contained in the static call graph
and hierarchy tree of the system.

4.5. General Dependency Network

From the eCST representation of the source code [16, 17] SNEIPL forms a heterogeneous software network
called General Dependency Network (GDN). GDN is a directed and attributed multigraph: the nodes have
type and name, while the links have type and weight (the strength of connection) as attributes. Also, a
pair of nodes can be connected by parallel links denoting different coupling types. GDN nodes represent
package-, class- and function-level entities defined in the corresponding software system. GDN links represent
various types of relations: CALLS relations between functions, REFERENCES relations between package-
level entities, REFERENCES relations between class-level entities, USES relations between functions and
variables, and CONTAINS relations that reflect the hierarchy of entities. There are also seven types of
relations that represent different forms of coupling between class-level entities:

• EXTENDS relation A → B denotes that A extends the functionality of B,

• IMPLEMENTS relation A → B denotes that A implements the declarations contained in B,

• INSTANTIATES relation A → B denotes that A instantiates the objects of B,

• AGGREGATES relation A → B denotes that A contains a global variable whose type is B,

• WEAK AGGREGATION relation A → B denotes that A contains at least one function that declares
local variable whose type is B,

• PARAMETER TYPE relationA → B denotes thatA contains at least one function that has parameter
whose type is B,

• RETURN TYPE relation A → B denotes that A contains at least one function whose return type is
B.

It can be observed that GDN is designed to represent a union of collaboration networks at different levels of
abstractions with incorporated CONTAINS links that maintain the hierarchy of entities. Thus, all software
networks introduced in the previous subsections can be obtained by GDN filtration, i.e. by the selection of
nodes of specified types that are connected by links of specified types.

Figure 1 shows the GDN representation of a simple software system written in Java that consists of two
classes (A and B) contained in two packages (PA and PB). The selection of nodes representing packages
connected by REFERENCES isolates the package collaboration network of the system. Similarly, the class
collaboration network is the sub-network of the GDN induced by nodes representing classes connected by
REFERENCES links. The static call graph can be obtained by the selection of nodes representing functions
connected by CALLS links (m → f). The FUGV network consists of USES links connecting functions to
global variables (m → b). The hierarchy tree has the same set of nodes as the GDN, but the set of links is
restricted to CONTAINS links. AGGREGATES and INSTANTIATES links appear in the networks showing
specific forms of coupling between classes.
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Source code:

package PA;

class A {

  B b = new B();

  void m() {

    b.f();  

  }

}

package PB;

class B {

   void f() {

   }

}

PA PB

A B

fmb

REFERENCES

CONTAINSCONTAINS

CONTAINS CONTAINS CONTAINS

REFERENCES

INSTATIATES

AGGREGATES

CALLSUSES

Figure 1: General Dependency Network for a software system consisting of two classes.

5. Enriched Concrete Syntax Tree representation of source code

The main characteristic of SNEIPL is that it uses the enriched Concrete Syntax Tree representation [16]
of the source code as the starting point to identify source code entities and dependencies between them. The
development of the eCST representation started with SMIILE [46], a language-independent tool for comput-
ing software metrics that reflect the internal complexity of software entities (metrics such as LOC, Cyclomatic
complexity, Halstead complexity metrics, etc.). In [16] the authors of the eCST representation identified
other fields of the research where the eCST representation can be utilized to construct language-independent
tools which solve particular language processing problems. This research also lead to the constitution of the
SSQSA framework [17, 47], a set of language-independent tools that operate on the eCST representation
produced by the SSQSA front-end known as eCST Generator. Besides SMIILE, SSQSA currently contains
two other back-ends: SSCA [48] which enables language-independent metric-based analysis of evolutionary
changes in the hierarchical structure of software systems, and SNEIPL, the tool that is subject of this paper.

5.1. Fundamentals of eCST representation

As the name of the representation suggests, eCST is a tree representation of the source code. In this
subsection of the paper we will explain the principal differences between eCST and two other widely used
tree representations of source code: concrete syntax tree (CST) and abstract syntax tree (AST).

The concrete syntax tree (CST) representation shows how a programming language construct is derived
according to the context-free grammar of the language. The root node of a CST represents starting non-
terminal symbol of the grammar, interior nodes in CST correspond to syntactical categories of the language
identified by non-terminal symbols of the grammar, while leaf nodes represent tokens of the construct.
Abstract syntax tree (AST) is an alternative and more compact way to represent language constructs. The
AST representation retains the hierarchical structure of language constructs, while omitting details that are
either visible from the structure of AST or unimportant for a language processing task.

Figure 2 shows the CST, AST and eCST representation of a simple Java source code fragment (“class
A extends B { }”). As it can be observed, all tokens present in the fragment are leaf nodes of the CST
and eCST. On the other side, tokens representing keywords (“class” and “extends”) appear as the interior
nodes in the AST. Separator tokens are not present in AST since grouping parentheses are implicit in the
tree structure. All interior nodes in the CST are non-terminal symbols from the Java grammar, while the
interior nodes in the eCST are different eCST universal nodes. Clearly, CST is the language-dependent
source code representation, since it is closely connected to the grammar of a language. On the contrary,
AST abstracts away from the concrete syntax. However, interior nodes of ASTs are keywords and operators
of the language, or imaginary tokens introduced to enable tree representation of constructs that can not
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be adopted to the “operator-operands” scheme. The usage of lexical elements of the language as interior
nodes in the intermediate representation makes the representation language-dependent. The concept of
universal nodes introduced in the enriched Concrete Syntax tree (eCST) representation is what makes it
substantially different from the AST and CST representations. Universal nodes contained in eCSTs, such
as CONCRETE UNIT DECL (CUD) in Figure 2, are language-independent markers of semantic concepts
expressed by language constructs. One universal node denotes particular semantic concept realized by the
syntax construction embedded into the eCST sub-tree rooted at the universal node. For example, CUD
universal node in Figure 2 denotes that the sub-tree rooted at CUD contains the definition of a concrete
class-level entity. Nodes of eCST can be divided into three categories:

• Universal nodes with predefined, language-independent meanings which denote semantic concepts
expressed by language constructs.

• Imaginary nodes with language-dependent meanings which correspond to a subset of non-terminal
symbols in the grammar. Those nodes serve only to retain natural hierarchical structure of language
constructs in case that there is no universal node that correspond to some non-terminal symbol.

• Tokens that are leaf nodes of eCSTs.

typeDeclaration

classTypeDeclaration

classExtendsClause

type

objectType

qualifiedTypeIdent

typeIdent

B

Aclass

extends

classBody

{ } CONCRETE_UNIT_DECL

EXTENDS

TYPE

NAME

B

Aclass

extends

BLOCK_SCOPE

{ }

KEYWORD

SEPARATOR

NAME

KEYWORD SEPARATOR

extends

class

A

B

(a) CST (b) AST

(c) eCST

Figure 2: Concrete syntax tree (a), abstract syntax tree (b), and enriched concrete syntax tree (c) representing Java fragment
“class A extends B { }”.

An eCST is usually more compact than the corresponding CST: one universal or imaginary node can
substitute a chain of non-terminal symbols in the CST that is derived through a sequence of unary produc-
tions. As it can be observed from Figure 2 the TYPE universal node substituted the chain of three unary
productions (type → objectType → qualifiedTypeIdent). On the other hand, the eCST is more volumi-
nous than the corresponding AST, because the eCST includes all tokens present in the source code, while
imaginary tokens in the AST are either universal or imaginary nodes in the eCST.

Each eCST universal node expresses some general concept of high-level programming languages. The
main design intention is to keep the set of universal nodes as small as possible in order to avoid the re-
dundancy of equivalent concepts that are differently expressed in different programming languages. The set
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of universal nodes and the dependency constraints among them are determined by the problems solved by
existing SSQSA back-ends, not by the syntactical structures of supported languages. When a new language
processing problem is stated, the schema of eCST universal nodes is explored in order to determine if it
can support the development of a new SSQSA back-end which solves the problem. This analysis may result
in the introduction of new universal nodes in the schema. The support for a new programming language
is achieved through the alignment of the schema with the grammar of the language. In this process each
eCST universal node is mapped to one or more syntactical categories of the language that are represented
by non-terminal symbols of the grammar.

For turning source code into a representation suitable for analysis, comprehension, and transformation
in the process of modernization of legacy systems, the OMG group advocates the usage of two metamodels:
ASTM (Abstract Syntax Tree Metamodel [49]) and KDM (Knowledge Discovery Metamodel [50]). ASTM
is composed of GASTM (Generic Abstract Syntax Tree Metamodel) and SASTM (Specific Abstract Syntax
Tree Metamodel). GASTM gives a specification of the common concepts of general purpose programming
languages in the form of metatypes. The concept of GASTM metatype is similar to the concept of eCST
universal node: the key idea of both concepts is to mark concrete language constructs with generic, con-
ceptual and language-agnostic denotations. However, the similarities between eCST and AST conforming
the GASTM are only at the conceptual level. The set of eCST universal nodes is drastically smaller than
the set of GASTM metatypes, and evolves together with the development of SSQSA back-ends. Therefore,
the SSQSA back-ends which solved concrete language processing problems directly validate the existence,
usefulness, and the size of the set of language-independent concepts that are introduced in the eCST repre-
sentation.

Unlike ASTM, KDM covers not only the source code, but also the operational environment and the
domain-specific knowledge integrated in a system. While ASTM is oriented to the specification of ASTs,
the program elements layer of KDM establishes a specification for language-independent abstract semantic
graphs (ASG). GDNs extracted from the eCST representation show dependencies between software entities,
and can be viewed as subgraphs of ASG induced by the nodes representing software entities. Similarly as
ASG, GDN provides a higher-level, architectural view of represented code in comparison with eCST/AST
conforming ASTM. The difference is that GDN does not contain low-level behavioural details (control
and data flows) present in ASG. In other words, the GDN representation is more compact than the ASG
representation, since it ignores details which do not reflect design aspects of represented systems.

5.2. Universal nodes used by SNEIPL

Currently the set of eCST universal nodes contains 33 different nodes that can be classified into three
groups:

• Lexical-level eCST universal nodes mark individual tokens with appropriate lexical category (keywords,
separators, identifiers, etc.).

• Statement-level eCST universal nodes mark individual statements, groups of statements or parts of
statements with appropriate concept expressed by them (jump statement, loop statement, branch
statement, condition, import statement, block scope, etc.)

• Entity-level eCST universal nodes mark definitions and declarations of package, class and function
level entities, and explicitly stated relations between them (such as inheritance, instantiation, imple-
mentation, etc.).

SNEIPL naturally relies on the entity-level eCST universal nodes to extract software networks. Table 1
shows the list of all eCST universal nodes used by SNEIPL. All universal nodes listed in the table, except
FUNCTION CALL universal node, where introduced before SNEIPL was designed, implemented, and in-
cluded in the SSQSA framework, and already used by the two previously created SSQSA back-ends (SMIILE
and SSCA).

Figure 3 shows a part of the eCST representation for two structurally equivalent code fragments written
in Modula-2 and Java, respectively. The definition of class/implementation module A is marked with the
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Table 1: List of eCST universal nodes used to extract software networks.
Universal node Abbr. Marks
COMPILATION UNIT CU Root of each eCST
PACKAGE DECL PD Declaration of packages, namespaces and units
CONCRETE UNIT DECL CUD Declaration of classes and implementation modules
INTERFACE UNIT DECL IUD Declaration of interfaces and definition modules
TYPE DECL TD User-defined data types that are not CUDs and IUDs
ATTRIBUTE DECL AD Declaration of class attributes, class fields, global variables
FUNCTION DECL FD Declaration of functions, procedures, methods
FORMAL PARAM LIST FPL List of parameters in FD definition
PARAMETER DECL PAR One parameter in FPL
VAR DECL VD Declaration of local variables in FD
IMPORT DECL ID Import statements
BLOCK SCOPE BS Block scope within a FD or another BS
FUNCTION CALL FC Function call statements
ARGUMENT LIST AL List of parameters passed to FC
ARGUMENT ARG One argument in AL
EXTENDS EXT CUD/IUD inheritance
IMPLEMENTS IMP IUD implementation
INSTANTIATES INST instantiation of objects
TYPE TYPE identifiers representing types
NAME NAME identifiers

CUD universal node. Entity A contains the definition of global variable/class attribute gv whose type is T ,
and the definition of procedure/method p. Therefore, the definitions of both mentioned entities are located
in the sub-tree rooted at CUD A, and marked with appropriate eCST universal nodes (AD for gv and FD
for p, see Table 1). Each identifier is marked with NAME universal node. The parent of NAME universal
node determines what the identifier actually represents. If the parent is the TYPE universal node then the
identifier represents a type (RT and T ).

As already mentioned, SNEIPL is one of the back-ends present in the SSQSA framework. The SSQSA
front-end, known as eCST Generator, produces the eCST representation for a given source code [17]. There-
fore, the set of programming languages supported by eCST Generator entirely determines the set of pro-
gramming languages supported by SNEIPL and other SSQSA back-ends. Based on the extension of an
input compilation unit, eCST Generator recognizes programming language and instantiates appropriate
parser which forms the eCST representation. eCST Generator uses parsers generated by the ANTLR parser
generator [51]. The advantage of using ANTLR to describe languages supported by SSQSA is the ANTLR
grammar notation itself. This notation enables syntax tree modifications specified by tree-rewrite rules at-
tached to grammar productions. Therefore, when we want to extend SSQSA to support a new language, we
have to make the ANTLR grammar for the language and use ANTLR tree-rewrite syntax to specify how ex-
isting eCST universal nodes are embedded into produced syntax trees. In other words, the support for a new
language is done in a purely declarative way. For example, Listing 1 shows how CONCRETE UNIT DECL
universal node is incorporated in the grammar productions which describe declarations of Modula-2 im-
plementation modules and Java classes. The extensibility of the SSQSA framework is in details discussed
in [52].
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Modula-2:

IMPLEMENTATION MODULE A;

  VAR

     gv: T;

  PROCEDURE p(fp: T): RT;

  BEGIN

   ]

  END p;

END A.

Java:

class A 

{

  T gv;

  RT p(T fp) 

  {

    ]

  }

}

CONCRETE_UNIT_DECL

NAME

NAME

NAME

NAME

NAME NAME

FUNCTION_DECL

FORMAL_PARAM_LIST

NAME

TYPE TYPE BLOCK_SCOPE

PARAMETER_DECL

TYPE

ATTRIBUTE_DECL

...

A

gv

RT

P

T

fp

T

Figure 3: Two code fragments in Modula-2 and Java with the same structure of eCST universal nodes in the eCST representation
(only universal nodes and tokens that represent identifiers are shown). Universal nodes are drawn as rectangles while tokens
(leaf nodes) are shown as circles. Only eCST universal nodes relevant to dependency extraction are shown.

Listing 1. CONCRETE UNIT DECL universal node in ANTLR grammar rules describing the declaration of

Modula-2 implementation modules and Java classes, respectively.

// excerpt from Modula-2 grammar

moduleDeclaration : ’IMPLEMENTATION’? ’MODULE’ ident priority? ’;’

importList* export* block ident

-> ^(CONCRETE_UNIT_DECL

^(KEYWORD ’IMPLEMENTATION’)? ^(KEYWORD ’MODULE’) ^(NAME ident)

priority? ^(SEPARATOR ’;’) importList* export* block

);

// excerpt from Java grammar

classDeclaration : ’class’ ident genTypes? extClause? impClause? classBody

-> ^(CONCRETE_UNIT_DECL

^(KEYWORD ’class’) ^(NAME ident) genTypes? extClause? impClause? classBody

);

6. SNEIPL architecture and the extraction process

SNEIPL consists of two components: GDN Extractor and GDN Filter (see Figure 4). From a set of
eCSTs produced by eCST Generator, GDN Extractor constructs the General Dependency Network (GDN)
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representation of a software system. GDN Filter, as the name of the component suggests, filters extracted
GDN to form the output set of software networks.

Source 
code

eCST 
Generator

SNEIPL

GDN 
Extractor

Set of 
eCSTs

GDN
GDN 
Filter

Software
networks

Figure 4: Data flow in software networks extraction process.

GDN is incrementally built in two phases, where both phases analyze each eCST in the input set. Phase
1 recognizes declarations of software entities and creates GDN nodes. To recognize software entities SNEIPL
relies on the following subset of universal nodes

UPhase1 = {PD, CUD, IUD, FD, TD, AD}.

Each universal node from the UPhase1 set has NAME universal node in the sub-tree which contains the
name of the software entity, while universal nodes themselves determine the type of newly created GDN
nodes (see Table 1).

Vertical dependencies (CONTAINS links) are also created in Phase 1. This means that Phase 1 results
in the hierarchy tree representation of analyzed software system. Vertical dependencies are induced from
the structure of UPhase1 nodes in eCST. Let a and b denote two software entities declared in the same
compilation unit represented by eCST e. Let A and B (A,B ∈ UPhase1) denote universal nodes that marks
the declaration of a and b in e, respectively. Entity a is declared in the body of entity b, and connected
by the CONTAINS link b → a in GDN, if B is the first universal node from the UPhase1 set found on the
backwards path connecting A with the root of e.

Phase 2 creates the rest of GDN links, which means that in this phase SNEIPL identifies horizontal
dependencies. The extraction of horizontal dependencies is much harder task than the extraction of vertical,
CONTAINS links. In order to deduce horizontal dependencies identifiers have to be matched with their
definitions. SNEIPL realizes the name resolution algorithm based on information contained in import
statements (marked with the IMPORT DECL universal node), lexical scoping rules (BLOCK SCOPE and
universal nodes in UPhase1 reflect different lexical scopes), and rapid type analysis that is adopted for the
eCST representation. Rapid type analysis [53] is the extension of class hierarchy analysis [54] that takes
class instantiation information into account. Class hierarchy analysis is the name resolution algorithm
based on the hierarchy-tree representation extended with inheritance relations between classes. EXTENDS,
IMPLEMENTS, and INSTANTIATES universal nodes in the eCST representation enable that rapid type
analysis can be adopted for the eCST representation. Since the extraction of horizontal dependencies is
the most critical and complex part of GDN extraction, the most important details of this procedure are
discussed in Subsection 6.1.

Figure 5 ilustrates the extraction of GDN when two simple eCSTs are provided as the input. The first
eCST represents a compilation unit which defines the class-level entity A contained in the package-level
entity P . A declares the global variable b whose type is the class-level entity B imported from the second
eCST. The declaration of software entities P , A, Q, B and b are recognized in Phase 1 of GDN extraction and
appropriate GDN nodes are created. From the structure of UPhase1 universal nodes in eCSTs CONTAINS
links are induced, and fully qualified names are assigned to each GDN node. The TYPE universal node in
the first eCST indicates that there is a potential REFERENCES link between A and some other class-level
entity. The name of the TYPE universal node in the first eCST is matched with the CUD universal node
in the second eCST (according to the import statement in the first eCST, since the definition of B is not
present in the first compilation unit), and the REFERENCES link P.A → Q.B is established. The parent of
the TYPE universal node (ATTRIBUTE DECL) gives the context in which B is referenced by A: b is the
global variable in A which means that A aggregates B. Since A and B are contained in P and Q respectively,
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PACKAGE_DECL

NAME

P

CONCRETE_UNIT_DECL

NAME

A

ATRIBUTE_DECL

NAME

b

GDN in Phase 1

IMPORT_DECL

NAME

Q . B TYPE

NAME

B

PACKAGE_DECL

NAME

Q

CONCRETE_UNIT_DECL

NAME

B

Input eCST trees

P.A.b

P.A

P

GDN in Phase 2

Q

Q.B

CONTAINSCONTAINS

CONTAINS

REFERENCES

REFERENCES

AGGREGATES

P.A.b

P.A

P Q

Q.B

CONTAINSCONTAINS

CONTAINS

package P;

import Q.B;

class A {

   B b;

   ...

} 

package Q;

class B {

   ...  

} 

Figure 5: Two phases in GDN extraction: Phase 1 forms hierarchy tree while Phase 2 creates horizontal dependencies.

the REFERENCES link between package-level entities P and Q is induced from the REFERENCES link
P.A → Q.B.

GDN Filter takes extracted GDN and executes a sequence of parameterized ”Select NT Connected by
LT” queries to isolate software networks. Parameters NT and LT specify node and link types, respectively.
For example, the query ”select {FD} connected by {CALLS}” forms a static call graph, while the query
”select {CUD, IUD} connected by {REFERENCES}” isolates a class/module collaboration network. Table 2
shows the parametrization of queries that are executed by GDN Filter.

6.1. Extraction of horizontal dependencies

The extraction of horizontal dependencies in the second phase of GDN extraction is based on the following
principles:

• Horizontal dependencies between class-level entities are determined before horizontal dependencies
between other types of software entities. This principle enables rapid type analysis when resolving
horizontal dependencies between function-level entities, because EXTENDS and IMPLEMENTS rela-
tions among class-level entities are already identified.

• Horizontal dependencies between function-level entities are resolved in the bottom-up manner: function
calls that appear as arguments of other function calls are evaluated first. When a FUNCTION CALL
subtree is evaluated it is rewritten by a single node which contains the return type of called function.
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Table 2: Software networks extracted by SNEIPL and the parameterization of ”select-connected by” queries.

Software network Select Connected by

Package collaboration network PD REFERENCES
Class collaboration network CUD, IUD REFERENCES
Static call graph FD CALLS
FUGV network FD, AD USES
Aggregation network CUD, IUD AGGREGATES
Weak aggregation network CUD, IUD WEAK AGGREGATION
Inheritance network CUD EXTENDS
Bipartite network of implemented interfaces CUD, IUD IMPLEMENTS
Instantiate network CUD INSTANTIATES
Parameter type network CUD, IUD PARAMETER TYPE
Return type network CUD, IUD RETURN TYPE
Hierarchy network PD, CUD, IUD, FD, AD, TD CONTAINS

• Horizontal dependencies between function-level entities can induce additional, “hidden” horizontal
dependencies between class-level entities. Those are dependencies induced from function calls and
statements in which a global variable from some other compilation unit is accessed. In both cases
appropriate entities are referenced by fully qualified names, which means that they are not explicitly
imported,

• Horizontal dependencies between package-level entities are directly induced from horizontal dependen-
cies between class-level entities.

In order to match an identifier with its definition SNEIPL internally maintains two data structures:
import list and symbol space.

Import list is a list of GDN nodes that represent imported (visible) names declared outside an eCST that
is currently processed. There is one import list per eCST (compilation unit). The import list is populated
by the analysis of subtrees rooted at IMPORT DECL universal nodes. Software entities declared in the
scope of one PACKAGE DECL are mutually visible without explicit import statements. Those entities are
automatically added to the import list using the hierarchy tree formed in the first phase of GDN extraction.

An identifier marked with TYPE universal node represents some class-level entity. The hierarchy tree
extracted in Phase 1 is used to determine if the class-level entity corresponding to the type identifier is
declared in the same eCST. If the type identifier is not declared in the currently processing eCST then
the type identifier is matched against the import list in order to determine the corresponding GDN node
(if exists). The TYPE universal node also indicates that there is a horizontal dependency between the
GDN node corresponding to the first enclosing class-level universal node (CUD, IUD) and the GDN node
corresponding to the type identifier. Thus, REFERENCES links between class-level entities are created by
the analysis of of eCST subtrees rooted at TYPE universal nodes. The parent of TYPE universal node
determines the form of coupling between two class-level entities. It is important to notice that class-level
REFERENCES links are not established by connecting class-level entities declared in the compilation unit
with all entities contained in the import list. This means that SNEIPL discards unused imports. Also, it is
possible to have definitions of two or more class-level entities in one eCST (for example, two or more Java
classes can be defined in one .java file). In other words, different class-level entities may share the same
import list. The analysis of eCST subtrees rooted at TYPE universal nodes ensures that the REFERENCES
link between class-level entity A and imported class-level entity B is created if and only if B is referenced
in the body of A.

SNEIPL attaches a local symbol table to each BLOCK SCOPE and FUNCTION DECL universal nodes
in eCST. Local symbol table is the list of tuples (name, type) describing local variables declared in the scopes
that are determined by the mentioned eCST universal nodes. They are created by the analysis of subtrees
rooted at VAR DECL and PARAMETER DECL universal nodes. Variables contained in those subtrees are
added to the local symbol table of the first enclosing BLOCK SCOPE or FUNCTION DECL universal node.
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Each identifier introduced in the source code will be located either in some of local symbol tables or in the
hierarchy tree extracted in Phase 1. Thus, local symbol tables together with the set of GDN nodes formed
in Phase 1 constitute the symbol space structure of the whole program. Symbol space is searched during
the analysis of subtrees rooted at NAME and FUNCTION CALL universal nodes. NAME subtrees are
analyzed to identify USES links between functions and global variables. The analysis of FUNCTION CALL
subtrees yields to the creation of CALLS links between functions. The search of symbol space is used when
it is necessary to determine the following:

• if some variable is locally declared when there is the global variable (ATTRIBUTE DECL) with the
same name,

• the class or package-level entity which defines a function,

• the type of a object calling a function, or

• the type of a variable that is passed as the argument to a function call in case that the function call can
not match the function definition relying solely on the function name and the number of arguments.

Let v be an arbitrary NAME universal node in some eCST. The search of the symbol space starts with
the local symbol table attached to the first enclosing BLOCK SCOPE universal node with respect to v. If
the name marked with v is not found in the current local symbol table, then the symbol table attached to
the next enclosing BLOCK SCOPE is examined. In case that the symbol is not present in local symbol
tables of all enclosing BLOCK SCOPEs, the search is continued in the symbol tables attached to enclosing
FUNCTION DECLs in order to determine whether the symbol is a formal parameter of enclosing functions.
This means that SNEIPL relies on basic lexical scoping rules when trying to match identifiers with their
definitions. Additionally, the INSTANTIATES subtrees located under the universal node that marks the
current scope are analyzed in order to check whether the type of v is contained in instantiate statements.
If the identifier is not found in local symbol tables or instantiate statements search is continued using
GDN. Starting from the CUD/IUD that declares the last enclosing FD, the search is backwards propagated
according to the EXTENDS and IMPLEMENTS GDN links. For each visited GDN node, entities defined
in the body of the node (accessible via GDN CONTAINS links) are inspected in order to check if there is a
node whose name matches the name of v.

Implicit castings are handled by rapid type analysis (RTA) which assumes that variable y of type Y can
be assigned to variable x (x := y) of type X, where X is supertype of Y (then Y is subtype of X). Let
t denote variable of type T in CUD U on which function f is called, i.e. class-level entity U in one of its
functions contains the function call statement “t.f(...)”. RTA searches for the definition of f in super and
subtypes of T which are instantiated in U and all CUDs directly or indirectly coupled to U . Since RTA is
flow-insensitive and does not keep per-statement information there can be multiple targets for f after the
analysis. In such cases SNEIPL does not create CALLS links in order to prevent Type I errors (creation of
non-existent or false positive CALLS links). Supertypes of T are all GDN nodes reachable from GDN node
representing T via EXTENDS or IMPLEMENTS GDN links. Consequently, if GDN node representing T is
reachable via EXTENDS or IMPLEMENTS links from GDN node S then S is the subtype of T . Another
situation relevant to implicit castings occurs after the call to f is matched with the definition of f . Then U
references all types present in the list of formal arguments in the definition of f , since arguments in the call
of f may be implicitly casted to the types requested by the definition of f .

Every type identifier is marked with TYPE eCST universal node. Therefore, the explicit cast of variable
v to type T is represented by an eCST tree rooted at NAME universal node which contains two children: (1)
token representing the name of variable v, and (2) the TYPE sub-tree containing the name of type T . The
explicit cast statement, due to the existence of the TYPE universal node, causes the creation of the explicit
class-level dependency between the class-level entity containing the cast statement and the class-level entity
representing type T . Additionally, TYPE information in the NAME sub-tree determines the type of variable
v when the explicit cast is the part of a function call statement.

In programming languages that support function overloading it is possible that a function call can not be
uniquely matched with the definition of called function using only the name and the number of arguments. In
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such cases SNEIPL tries to determine the type of each argument in order to select the appropriate definition
from a set of candidates that are obtained by rapid type analysis. However, this process may result in
unresolved types for arguments if an argument itself is the call to a function imported from a library, and
consequently not present in analyzed eCSTs. In case that the successfully resolved types of arguments do
not contain enough information to choose the right candidate, CALLS link can not be created. This means
that SNEIPL extracts optimistic call graphs where non-existent (false positive) CALLS links are not present,
but missing (false negative) CALLS link can occur. The typical example is illustrated by the following Java
class:

class UnmatchedCallDef {

void f(int a) { }

void f(String b) { }

void caller() {

f(Integer.parseInt("15"));

}

}

In the example, we can see that the method caller calls the method f, but the argument of the call can not
be resolved (Integer.parseInt is the method from the standard Java library). This means that SNEIPL
has two candidates for the destination node of existing CALLS link, but can not determine which of them
is the right one.

SNEIPL currently extracts only direct function calls, i.e. those calls where the name of the function is
used to reference the function. Indirect function calls via function pointers or variables of procedural data
types are not yet supported. Those features, when they exist in a language, are mostly extensively used in
system programming, and have to be taken into account when extracting call graphs for the optimization
tasks done by compilers. The aim of SNEIPL is to extract architectural graph representations of software
systems that can be used for software engineering purposes: in the statistical analysis of design complexity of
software systems, computation of design software metrics, and to serve humans which want to get insights
into the internal organization of systems under investigation. As pointed out in [55], the requirements
placed on tools that compute call graphs for software engineering purposes are typically more relaxed than
for compilers, and those tools usually ignore rarely used language features which drastically increase the
complexity of static code analysis.

7. Extraction of software networks from real-world software systems

The first extraction of software networks using SNEIPL was described in [43]. Namely, we designed two
small programs written in different programming languages (Java and C#) that have the same require-
ments specification (administration of typical student activities) and the same design, i.e. the same set and
structure of software entities. Then we employed SNEIPL to obtain software networks representing software
systems under the investigation and compared them. The conclusion derived from the comparison is that
SNEIPL extracts the same networks up to isomorphism from structurally and semantically equivalent soft-
ware systems written in different programming languages. In other words, the experiment in [43] showed
that eCST is a suitable representation for the language-independent extraction of software networks.

The aim of experiments conducted in this paper are different: we want to demonstrate that SNEIPL
is able to identify dependencies in real-world software systems written in different programming languages
which belong to different language paradigms. Therefore, in this paper we present and discuss software
networks extracted from the following software projects written in Java, Modula-2, and Delphi (two projects
per language):

• Commons-IO2 (CIO), an open-source Java library of utilities to assist with developing IO functionality,

• Apache Tomcat3, an open-source web server and Java servlet container written in Java,

2http://commons.apache.org/io/
3http://tomcat.apache.org/
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• Modula-2 Algebra System4 (MAS), an open-source computer algebra system written in Modula-2,

• Lumos5, an open-source operating system for a computer called Stride 440 written in Modula-2,

• Model Scene Editor (MSE)6, an open-source 3D scene editor written in Delphi,

• A proprietary, database-oriented Delphi application which realizes management, accounting and re-
porting functionalities for a company employing direct sellers organized into a multi-level marketing
compensation hierarchy (we will use the term “DelPro” to denote this software). One of the authors
of this paper took a part in the development of DelPro. Due to the familiarity with this software, we
were in the position to verify that SNEIPL produces meaningful results when it is employed to identify
dependencies in a large-scale software system.

It can be seen that our experimental corpus consists of both open-source and proprietary software
systems. Three of six products (MAS, Lumos and MSE) can be considered as “orphaned” software since
they are not maintained anymore. Software systems written in Java were selected randomly from the list
of Apache Software Foundation open-source projects. Additionally, software networks associated with eight
more Java software systems from the same list are extracted for the purpose of the comparative analysis
presented in the next section of the paper. The Modula-2 projects from the corpus are the largest two open-
source Modula-2 programs listed in Free Modula-2 Pages web site7. Selected Delphi projects are compatible
with Delphi 6 which is the dialect of Delphi currently supported by eCST Generator (SSQSA component
which forms the eCST representation). Four projects from the corpus (CIO, Tomcat, MAS, DelPro) are
products of a team effort, while the other two (Lumos and MSE) are one-man projects. Table 3 summarizes
software systems used in the experiment, and for each system shows the number of lines of code (LOC), the
number of eCSTs produced by eCST Generator (this number is equal to the number of compilation units in
the source code distribution), and the total number of eCST nodes in produced eCSTs. It can be seen that
for each programming language we have one large size (more than 105 LOC) and one medium size (more
than 104 LOC) software system in the corpus.

Table 3: The summary of software systems used in the extraction experiment.

Software system CIO Tomcat MAS Lumos DelPro MSE

Version 2.4 7.0.29 1.01 2 - 0.13
Language Java Java Modula-2 Modula-2 Delphi Delphi
LOC 25663 329924 100546 37250 104438 41858
#eCSTs 103 1083 329 297 491 113
#eCST nodes 88063 1650355 824043 297095 1151923 466061

Table 4 summarizes the properties of extracted General Dependency Networks for software systems from
the corpus. Links representing self references are excluded from the counts. The distribution of GDN nodes
per type shows us how many nodes will appear in a particular software network. For example, GDNs
extracted from Commons IO and MSE contains 6 and 113 nodes, respectively. Those nodes correspond to
different PACKAGE DECL (PD) universal nodes in appropriate eCST representations. With PD universal
nodes are marked declarations of packages in Java and units in Delphi code (there is no Modula-2 entity
type that corresponds to PD universal node, see Section 4). Therefore, the package collaboration network
associated with Commons IO contains 6 nodes that represent 6 different Java packages, while the unit
collaboration network associated with MSE contains 113 nodes that represent 113 different Delphi units.

4http://krum.rz.uni-mannheim.de/mas/
5http://www.uranus.ru/download/lumos.zip
6http://mse.sourceforge.net/
7http://freepages.modula2.org/
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Table 4: The number and distribution of nodes and links in extracted General Dependency Networks.

Software system CIO Tomcat MAS Lumos DelPro MSE

#nodes 1518 24287 6857 4104 13721 8359
PD - packages/units 6 97 0 0 491 113
CUD - classes/imp. modules 104 1351 163 193 501 156
IUD - interfaces/def. modules 4 143 166 115 0 22
TD - other user-defined types 0 21 66 293 43 1061
AD - class attrs./global vars. 328 7364 1128 1475 9846 4252
FD - methods/functions 1076 15311 5334 2028 2840 2755

#links 3001 71093 31558 12174 18267 11630
vertical dependencies 1517 24270 6528 3807 13230 8246
horizontal dependencies 1484 46823 25030 8367 5037 3384

package-level dependencies 9 493 0 0 895 268
class-level dependencies 341 13962 3024 1559 965 692
method-level dependencies 1134 32368 22006 6808 3177 2424

calls dependencies 611 20831 17456 3738 1522 772
access dependencies 523 11537 4450 3070 1655 1652

7.1. Vertical dependencies

From extracted GDNs SNEIPL form the set of software networks at different levels of abstraction, thus
providing different granularity views of the organizational structure of software systems under investigation.
Vertical dependencies (CONTAINS links) reflect the hierarchy of software entities, and together with the set
of GDN nodes constitute hierarchy tree view of analyzed source code. Characteristics of hierarchy networks
for examined systems are shown in Table 5. IN0 denotes the number of nodes whose in-degree is equal to
zero. Those nodes represent software entities which are not contained in other entities. Hierarchy network
is a disjoint union of hierarchy trees, and each zero in-degree node is the root of one hierarchy tree. In
the case of Java software systems zero in-degree nodes are root packages (packages not contained in other
packages), in Modula-2 systems they represent non-local (non-nested) modules, while in Delphi systems each
unit is one zero in-degree node (Delphi units can not be nested). On the other side, nodes having out-degree
equals to zero (OUT0) are located on the periphery of the hierarchy network, i.e. those nodes do not define
other entities. From the data presented in Table 5, it can be seen that the majority of software entities
are zero out-degree nodes (from 92.49% in CIO to 95.22% in MAS). All global variables (class attributes)
are zero out-degree nodes, as well as all functions (methods) that do not define nested function- or named
class-level entities. The most voluminous package in all examined software systems is DirectX, Delphi unit
from MSE project. This unit comprises 22 Delphi classes, 118 procedures and 2208 global variables (most of
them are constants). At the same time this unit is the largest compilation unit in the corpus: it consists of
11,014 LOC which is 26.31% of the total LOC in MSE. The most voluminous class/module in the corpus is
StandardContext, Java class from Tomcat which is located in org.apache.catalina.core package. The
mentioned class defines one inner class and encompasses 306 methods and 127 class attributes. This class
is also the largest class in Tomcat having 6,523 lines of code.

7.2. Package-level dependencies

Horizontal dependencies connect software entities appearing at the same level of abstraction. At the
highest level of abstraction we have dependencies between package-level entities (packages in Java and units
in Delphi). Table 6 shows characteristics of extracted package collaboration networks (PCNs) for Java
and Delphi systems from the corpus. The number of isolated nodes (nodes having zero total-degree) in a
PCN tells us how many packages/units in the corresponding software system do not reference and are not
being referenced by other packages defined in the source code. Table 6 also contains information about the
packages with the maximal value of Robert Cecil Martin’s afferent and efferent coupling metrics (MaxAC
and MaxEC, respectively). For example, Scene is the most reused Delphi unit in MSE (referenced by 34
other units), while unit Main has the highest degree of aggregation of other units (it references 25 other
units).
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Table 5: Characteristics of extracted hierarchy networks: #nodes - the number of nodes, #links - the number of links, IN0 -
the number of nodes without in-coming links, OUT0 - the number of nodes without out-going links, UPP - the average number
of units per package, FPU - the average number of functions per unit, and VPU - the average number of global variables per
unit.

Software system CIO Tomcat MAS Lumos DelPro MSE

#nodes 1518 24287 6857 4104 13721 8359
#links 1517 24270 6528 3807 13230 8246
IN0 1 17 329 297 491 113
OUT0 1404 22694 6529 3808 12756 7978

UPP 17.166 11.525 0 0 1.02 1.575
FPU 9.962 10.24 16.212 6.584 5.522 7.87
VPU 3.037 4.924 3.428 4.788 18.261 10.702

Table 6: Characteristics of extracted package collaboration networks: #nodes - the number of nodes, #links - the number of
links, #isol - the number of isolated nodes, MaxAC - the highest value of in-degree (afferent coupling), MaxEC - the highest
value of out-degree (efferent coupling).

Software system CIO Tomcat DelPro MSE

#nodes 6 97 491 113
#links 9 493 895 268
#isol 0 (0%) 1 (1.03%) 21 (4.28%) 6 (5.31%)

MaxAC 5 58 169 34
MaxAC name io juli.logging AmcCountrySP Scene
MaxEC 2 30 144 25
MaxEC name io.output catalina.core MainAmcBS Main

7.3. Class-level dependencies

At the middle level of abstraction there are dependencies between class-level entities: classes and in-
terfaces in Java and Delphi, and definition and implementation modules in Modula-2. In class (module)
collaboration networks all parallel links denoting different coupling types between two classes (modules) are
reduced to one link, i.e. different coupling types between two nodes are recorded as attributes of one REF-
ERENCES link. The characteristics of extracted class collaboration networks for software systems from the
corpus are given in Table 7. The table also provides the information about the fraction of isolated nodes. It
can be observed that for Tomcat, MAS and Lumos the fractions of isolated nodes are very low (less than 2%
of the total number of classes/modules), suggesting that in those systems unused (“dead”) code is reduced
to the minimum. For other systems, isolated nodes do not necessarily point to unused code. In the case of
libraries, isolated nodes can denote simple utility classes directly available to programmers. The example
of such isolated class is io.CopyUtils from CIO. The mentioned class provides the set of static methods
for copying files and relies only on JDK classes from java.io package. To the contrary, for standalone user
applications, such as DelPro and MSE, it is more likely that isolated classes indicate unused or unfinished
code. The examples of such classes in MSE are TSplashScreen, TRegisterDialog and THelpIndexDialog.
The mentioned classes declare only Delphi visual components as class attributes without corresponding
event handler methods, and their names clearly suggest that they represent non-core features planned to be
introduced in one of the future releases.

Table 7 also shows classes/modules with the highest values of in-degree (MaxIn) and out-degree (Max-
Out) in corresponding class collaboration networks (CCN). The in-degree of a class is the number of other
classes referencing the class, and it reflects the degree of internal reuse of the class. To the contrary, the
number of out-going dependencies (out-degree) reflects the degree of internal aggregation of other classes
in the source code. In case of Delphi programs classes with the largest out-degree (TFMainAmcBS from
DelPro and TMainForm from MSE) are at the same time classes having the largest total-degree (sum of
in- and out-degree), i.e. the highest value of Chidamber-Kemerer CBO coupling metric. To the opposite,
classes/modules present in Java and Modula-2 projects from the corpus that have the largest CBO are at
the same time the most internally reused entities.
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Table 7: Characteristics of extracted class/module collaboration networks: #nodes - the number of nodes, #links - the number
of links, #isol - the fraction of isolated nodes, MaxIn - class/module having the highest in-degree, MaxOut - class/module
having the highest out-degree (the exact values of in- and out- degrees are given in brackets).

Software system #nodes #links #isol (%) MaxIn MaxOut

CIO 108 174 15.74 AbstractFileFilter (19) FileFilterUtils (16)
Tomcat 1494 6839 1.67 Log (293) StandardContext (73)
MAS 329 2054 0.91 MASStor (277) RqePRRC (36)
Lumos 308 973 1.94 R2SysCalls (78) L2SysCalls (25)
DelPro 501 770 5.58 TAmcCountry (57) TFMainAmcBS (145)
MSE 178 343 6.74 TShape (35) TMainForm (57)

7.4. Function-level dependencies

At the lowest level of abstraction SNEIPL identifies function-level dependencies: CALLS links between
functions and ACCESS links between functions and global variables. Table 8 presents the characteristics
of extracted static call graphs for software systems from the corpus, while Table 9 shows the functions
having the highest in- and out-degree. The in-degree of function A in the SCG is the number of other
functions that call A, while out-degree stands for the number of function that are called by A. For example,
method isDebugEnabled from class Log is called by 429 other methods defined in Tomcat, while method
startInternal from class StandardContext calls 64 other methods.

Table 8: Characteristics of extracted static call graphs/method collaboration networks.

Software system CIO Tomcat MAS Lumos DelPro MSE

#nodes 1076 15311 5334 2028 2840 2755
#links 611 20831 17456 3738 1522 772
#isolated (%) 43.77 30.49 43.4 37.33 59.05 75.97

#calls resolved (%) 88.47 95.46 100 100 100 99.05
#hard to match (%) 30.67 7.48 0 0 0 0.11
hard to match resolved 132 832 - - - 0
hard to match unresolved 102 1494 - - - 9

Table 9: Functions with the maximal values of in- and out- degree in extracted static call graphs.

Software system MaxIn MaxOut

CIO Charsets.toCharset 24 DirectoryWalker.walk 7
Tomcat Log.isDebugEnabled 429 StandardContext.startInternal 64
MAS MASStor.ADV 1132 MASLoadE.InitExternalsE 128
Lumos R2SysCalls.WriteString 121 L2SysCalls.InitPr 100
DelPro AmcCountrySP.UpdateSQLWithSchema 257 TFActivityHandler.DoActivity 24
MSE Misc.SaveStringToStream 16 TSceneData.MouseDown 12

In case of Modula-2 programs nodes in a SCG represent function declarations in definition modules
and function definitions in corresponding implementation modules. Since Modula-2 does not have function
overloading and inheritance features (Modula-2 functions can not be overridden, neither Modula-2 function
calls are dynamically dispatched), a Modula-2 function call is always matched with the definition of called
function in the implementation module. In other words, isolated nodes in extracted Modula-2 SCGs represent
either function declarations in definition modules or unused functions in implementation modules. The SCG
nodes representing functions from definition modules can be easily pruned from the SCG (they are attached
to CONTAINS links emanating from GDN nodes whose type is IUD eCST universal node), thus leaving
only unused functions from implementation modules as isolated nodes in the SCG.

For object-oriented languages, due to function overloading and overriding, some function calls may be
unresolved by SNEIPL (see Section 6.1). In such cases the rapid type analysis realized by SNEIPL’s function
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call resolver results in multiple function definitions as destination candidates (targets) for a single function
call. All candidates represent functions with the same name and the same number of formal parameters.
We call such functions hard to match. The number of hard to match functions can be easily determined: a
function is hard to match if there is at least one function with the same name and the number of arguments in
the class (overloaded functions) or in one of super or subclasses (both overloaded and overridden functions).
Table 8 shows the fraction of hard to match functions for systems from the corpus, as well as the fraction of
resolved function calls. A function call is resolved when there is exactly one candidate in the candidate list
for the destination function definition after rapid type analysis. Naturally, due to the absence of dynamic
binding, there are no hard to match functions in Modula-2 systems, and each function call is properly
resolved. The number of hard to match functions in DelPro is equal to zero, which means that all functions
present in this software are unique up to name and the number of formal parameters. In other systems, due
to the existence of hard to match functions, there are unresolved function calls. The upper bound of missing
CALLS links in extracted SCGs is equal to the number of unresolved function calls: for CIO unresolved
function calls create maximally 102 CALLS links, for Tomcat 1494, and for MSE maximally 9 CALLS links.
Table 8 also provides the information about the number of resolved calls to hard to match functions. In
such cases, the candidate list for a function call contains multiple targets representing overloaded functions,
and SNEIPL was able to reduce the list of targets after the evaluation of argument types.

Missing calls links may cause isolated nodes in a SCG. When this is not the case an isolated node in
SCG does not necessarily represent unused function. For example, Delphi methods from the user-interface
layer in GUI applications are event handlers (methods activated in response to user actions), and never
explicitly called by other methods in the source code. Also, isolated nodes can represent methods that are
dynamically invoked through reflection mechanisms of a language such as Java Reflection API (those are run-
time dependencies, and not static compile-time dependencies). Another case is that those methods represent
call-back methods used by the standard language library or third-party libraries. For example, Java classes
usually override Object.toString method which is the classical example of a call-back method: toString
is usually never called by other methods in the source code, but from methods in the Java class library, or
when an instance of the class is the argument in a string concatenation operation. Another frequent example
is compareTo method present in all classes implementing Comparable interface: this method is usually called
only from classes in the JDK collections framework.

8. Comparative analysis

In order to investigate the correctness and completeness of the dependency extraction procedure realized
by SNEIPL, we extracted class collaboration networks representing ten real-world, open-source, and widely
used software systems written in Java (two of them are already used as case studies in the previous section),
and compared them to the class collaboration networks extracted by a language-dependent tool – Depen-
dency Finder8 version 1.2.1, and a language-independent tool – Doxygen9 version 1.8.5. The characteristics
of software systems used in the comparative analysis are summarized in Table 10. In the comparative anal-
ysis only Java systems are examined: to the our best knowledge SNEIPL is the only currently available
dependency extractor able to process Modula-2 source code, while for Delphi other class dependency extrac-
tors are commercial, closed-source products. However, the fact that only Java systems are examined in the
comparative analysis does not limit the generalizability of its results, because SNEIPL extracts dependen-
cies from the standardized, language-independent representation of the source code. Also, it is important
to notice that the comparative analysis covers class-level dependencies (dependencies at the middle level of
abstraction) and not package and function-level dependencies. This also does not limit the generalizability
of the analysis, since package-level dependencies are completely induced from class-level dependencies, while
function-level dependencies completely induce implicit class-level dependencies.

8http://depfind.sourceforge.net/
9http://www.stack.nl/˜dimitri/doxygen/
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Table 10: Java software systems used in the comparative analysis.

Software system Version LOC Short description

CommonsIO 2.4 25663 IO library
Forrest 0.9 4683 Web publishing framework
PBeans 2.0.2 8502 Object/relational database mapping framework
Colt 1.2.0 84592 High performance scientific computing library
Lucene 3.6.0 111763 Text search engine library
Log4j 1.2.17 43898 Java logging library
Tomcat 7.0.29 329924 Web server and servlet container
Xerces 2.11.0 216902 XML parser library
Ant 1.9.2 219094 Build tool
JFreeChart 1.0.17 226623 Chart creator

8.1. Characteristics of tools used in the comparative analysis

Dependency Finder is an open-source dependency graph extractor for Java with positive recommenda-
tions from professionals coming both from industry and academia.10 Dependency Finder extracts Java class
dependencies from Java bytecode. It is able to read all types of compiled Java: JAR files, zip files, or class
files. Class dependencies are gathered by a handmade Java bytecode parser which traverses the structure of
a class file and collects explicit class dependencies. Implicit dependencies between classes are formed through
the link maximizer algorithm which induces class-level dependencies from method-level dependencies.

Doxygen is a documentation generator tool that supports more than ten programming languages, includ-
ing support for Java. Doxygen was already used to extract CCNs from real-world software systems written
in different programming languages, that were later analyzed under the framework of complex network
theory [1, 4]. Doxygen was also used as dependency extractor in empirical investigations of architecture
and reusability of open-source software systems [56, 57, 58], as well as in research works dealing with the
prediction of vulnerable software components [59] and software validation [60].

Doxygen can be configured to extract local class collaboration graphs and export them in the dot11 file
format. Local class collaboration graphs show direct and indirect inheritance and aggregation dependencies
for individual classes, so we wrote a simple dot aggregation tool that incrementally builds CCN from a
set of dot files. The extraction of local class collaboration graphs in Doxygen for programs written in C,
C++, C#, Objective-C, Java, JavaScript, D, PHP and IDL is based on the unified fuzzy parsing approach.
This means that there is one light-weight parser for all mentioned languages realized as a big state machine
generated by Flex lexical analyzer generator. The parser converts non-skipped parts of a given source code
into a tree of entries which is then analyzed by Doxygen’s Data organizer component. Each entry is a blob
of loosely structured information and contains the special field called “section” which specifies the kind of
information contained in the entry. Data organizer builds dictionaries from extracted entries for the purpose
of generating documentation, and during this step dependencies between entries are identified. For other
languages supported by Doxygen (Tcl, Python and Fortran), the extraction of local class collaboration
graphs is not language-independent. For those languages Doxygen has independent parsers and each of
them realizes language specific extraction of local class collaboration graphs.

The similarity between Doxygen’s unified fuzzy parsing approach and SNEIPL is that in both approaches
there is a language-independent intermediate representation of the source code which is used to identify
dependencies between entities defined in the source code. The differences are in the used intermediate
representations and in the ways they are formed. Doxygen converts analyzed source code into a tree of
entries that is formed by lexical analysis, and achieves language independence using one fuzzy parser for
several languages. Since the intermediate representation used by Doxygen is formed by lexical analysis, the
unified fuzzy parsing approach to dependency extraction has two major disadvantages:

10The recommendations can be found on the web site of the tool.
11http://www.graphviz.org/doc/info/lang.html
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• Doxygen is unable to form symbol tables that completely reflect nested scopes. As the consequence,
Doxygen can not resolve dependencies associated with identifiers that do not have unique names. To
prevent problems Doxygen ignores all of the classes with the same name except one12.

• The extensibility of the unified fuzzy parser approach is restricted to a family of languages where
the same concept is expressed by similar language constructs – similar in the sense that they can
be reduced to the same lexical rule without loosing relevant information. For example, declaration
of variables in Java and C can be reduced to the same lexical rule in which variable names can be
distinguished from the associated type that is always the first token in the declaration. On the other
side, the same construct in Modula-2 is described by completely different lexical rule, since the type
is the last non-separator token in the declaration.

In comparison with Doxygen, SNEIPL uses much richer intermediate representation of the source code which
enables the construction of symbol tables that fully reflect nested scopes. Secondly, the eCST representation
is not produced by a unified, light-weight parser that restricts the extensibility to a certain family of languages
(e.g., Pascal-like or C-like languages).

8.2. Network similarity measure

Nodes in a class collaboration network are identified by fully qualified class names. Therefore it is easy
to match two nodes from two different networks representing the same class (different in the sense that they
are formed by two different tools). Consequently, a link in a class collaboration link is uniquely identified
by the fully qualified names of the source and destination class.

Since a network consists of a set of nodes and a set of links, comparing two networks is equivalent to
comparing two sets of nodes and two sets of links. The Jaccard coefficient (also Jaccard index or Jaccard
similarity measure) is a commonly used measure of the similarity between two sets. It is defined as the size
of the intersection divided by the size of the union of the sets. The Jaccard coefficient J is a value in the
range [0, 1]: J = 0 implies two disjoint sets, J = 1 denotes identical sets, and the higher value of J indicates
the higher degree of overlap between sets.

In our comparative analysis we use two Jaccard coefficients, one expressing the similarity between two sets
of CCNs nodes, and another showing the similarity between two sets of CCNs links. Let CCNA = (NA, LA)
and CCNB = (NB , LB) denote two class collaboration networks extracted by tools A and B, respectively.
With Nx and Lx are denoted sets of nodes and links respectively, in the CCN extracted by tool x (x = A or
x = B). To formally define Jaccard coefficients for nodes and links we use the following notation (we also
use the same notation in the next subsection of the paper):

MNA,B – the number of mutual nodes, i.e. nodes that appear in both CCNA and CCNB ,
UNA – the number of nodes that are unique to CCNA and do not appear in CCNB ,
UNB – the number of nodes that are unique to CCNB and do not appear in CCNA,
MLA,B – the number of mutual links, i.e. links that appear in both CCNA and CCNB,
ULA – the number of links unique to CCNA and do not appear in CCNB,
ULB – the number of links unique to CCNB and do not appear in CCNA.

The Jaccard coefficient for nodes is defined as

JN(A,B) :=
number of mutual nodes

total number of different nodes
=

|NA ∩NB |
|NA ∪NB |

=
MNA,B

MNA,B +UNA +UNB
.

Similarly, the Jaccard coefficient for links is defined as

JL(A,B) :=
number of mutual links

total number of different links
=

|LA ∩ LB|
|LA ∪ LB|

=
MLA,B

MLA,B +ULA +ULB
.

12http://www.stack.nl/˜dimitri/doxygen/manual/trouble.html
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From the definition of the Jaccard coefficient for nodes (and the same is for links), it can be seen that
this measure is sensitive to missing nodes from the perspective of both A and B – the denominator of the
measure counts both nodes unique to CCNA (nodes missing in CCNB) and nodes unique to CCNB (nodes
missing in CCNA). Additionally, if node x contained in CCNA is missing in CCNB then all links attached
to x are missing in CCNB and vice versa. Therefore, the Jaccard coefficient for links is sensitive to missing
non-isolated nodes from the perspective of both A and B.

Let us assume that CCNB is the 100% correct class collaboration network, i.e. CCNB contains all classes
and all class dependencies present in the corresponding software system. Then JN and JL quantify both
the completeness and correctness of the node and link sets obtained by tool A. Namely, UNB and ULB

represent the number of existent nodes and links respectively, that are not identified by tool A (missing
nodes and links). The higher UNB and ULB imply the lower degree of completeness of results obtained by
tool A. On the other hand, UNA and ULA represent the number of non-existent nodes and links respectively,
that are created by tool A. Therefore, the higher UNA and ULA imply the lower degree of correctness of
results obtained by tool A. In our comparative analysis we examine three different dependency extraction
approaches where one is language-independent (Dependency Finder). Therefore, under the assumption
that the language-dependent tool produces 100% correct results, JN and JL quantify the completeness and
correctness of the two other language-independent approaches.

8.3. Results and discussion

Tables 11 and 12 summarize differences between class collaboration networks extracted using SNEIPL,
Dependency Finder, and Doxygen. Both tables show the number of nodes (|Nx|) and links (|Lx|) in the
CCN formed by tool x, the number of mutual nodes (MN) and mutual links (ML), the number of unique
nodes (UNx) and unique links (ULx) with respect to tool x, and the values of the Jaccard coefficients for
nodes (JN) and links (JL). It can be observed that the CCNs formed by SNEIPL are highly similar to those
formed by Dependency Finder: for all analyzed systems, except for Tomcat, we have JN = 1.0 (identical sets
of nodes), while JL is always higher than 0.9 implying highly overlapping sets of links (class dependencies).
That is not the case with Doxygen where the maximal JL is equal to 0.41. As may be noted from the data
presented in Table 12, the CCNs extracted by Doxygen are significantly smaller (|LB | ≪ |LA|) proper sub-
graphs (UNB = 0∧ULB = 0) or close to proper sub-graphs (UNB ≪ UNA∧ULB ≪ ULA) of corresponding
CCNs formed by Dependency Finder.

In case of Tomcat all classes identified by Dependency Finder are also identified by SNEIPL (UNB = 0),
but SNEIPL identified seven classes more (UNA = 7). The same seven classes are also present in the CCN
extracted by Doxygen (see UNB value in Table 12). We manually verified that those classes exist in the
Tomcat source code distribution. The analysis of the Ant script that is used to build Tomcat revealed that
those classes are not the part of the Tomcat binary distribution, but belong to extra components (JMX
Remote Lifecycle Listener and JSR 109 web services support).

From the data presented in Table 11, it can be observed that for all examined systems SNEIPL identified
a small portion (ULA ≪ ML) of class dependency links which are not identified by Dependency Finder.
For example, the Forrest CCN formed by DependecyFinder is a sub-graph of the Forrest CCN formed by
SNEIPL (ULA = 4, ULB = 0), i.e. all classes and dependencies identified by Dependency Finder are also
identified by SNEIPL, but SNEIPL identified 4 dependencies more. Those dependencies are represented by
the following links:

locationmap.lm.AbstractNode → locationmap.lm.LocationMap
locationmap.RegexpLocationMapMatcher → locationmap.lm.LocationMap
locationmap.WildcardLocationMapMatcher → locationmap.lm.LocationMap
locationmap.WildcardLocationMapHintMatcher → locationmap.lm.LocationMap

It can be simply checked in the Forrest source code distribution that the above listed links represent existing
dependencies. Class LocationMap is the destination node of all four links. Among other methods and at-
tributes, LocationMap defines four public, static and final String attributes which are accessed by methods in
AbstractNode and LocationMapMatcher classes. Dependency Finder was unable to identify the mentioned
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dependencies simply because they do not exist in the bytecode. Namely, for a final String attribute, or a
final attribute of some primitive type, the Java compiler inlines the value of the attribute directly into all
client classes, so dependencies to the class which owns the attribute are lost. Another situation observed in
our case studies when the translation from source to bytecode can lead to the loss of dependencies occurs
when a dependency between two classes is caused solely by the existence of local variables whose type is the
dependent class. Type information for local variables is not present in bytecode: the Java compiler validates
assignments involving local variables and then discards information about their types.

Table 11: Similarity between class collaboration networks extracted by A = SNEIPL and B = Dependency Finder.

Software system |NA| |NB | MN UNA UNB JN |LA| |LB | ML ULA ULB JL

CommonsIO 108 108 108 0 0 1.0 174 174 173 1 1 0.99
Forrest 35 35 35 0 0 1.0 56 52 52 4 0 0.93
PBeans 58 58 58 0 0 1.0 143 144 140 3 4 0.95
Colt 299 299 299 0 0 1.0 1272 1280 1254 18 26 0.97
Lucene 789 789 789 0 0 1.0 3544 3606 3439 105 167 0.93
Log4j 251 251 251 0 0 1.0 883 853 839 44 14 0.93
Tomcat 1494 1487 1487 7 0 0.99 6839 6832 6512 327 320 0.91
Xerces 876 876 876 0 0 1.0 4775 4677 4517 258 160 0.91
Ant 1175 1175 1175 0 0 1.0 5521 5517 5345 176 172 0.94
JFreeChart 624 624 624 0 0 1.0 3218 3249 3208 10 41 0.98

Table 12: Similarity between class collaboration networks extracted by A = Dependency Finder and B = Doxygen.

Software system |NA| |NB | MN UNA UNB JN |LA| |LB | ML ULA ULB JL

CommonsIO 108 100 100 8 0 0.93 174 71 71 103 0 0.41
Forrest 35 33 33 2 0 0.94 52 21 21 31 0 0.40
PBeans 58 36 36 22 0 0.62 144 19 19 125 0 0.13
Colt 299 228 228 71 0 0.76 1280 263 263 1017 0 0.21
Lucene 789 637 637 152 0 0.81 3606 925 907 2699 18 0.25
Log4j 251 230 230 21 0 0.92 853 246 245 608 1 0.29
Tomcat 1487 1310 1303 184 7 0.87 6832 1707 1694 5138 13 0.25
Xerces 876 813 813 63 0 0.93 4677 1494 1494 3183 0 0.32
Ant 1175 1055 1055 120 0 0.90 5517 1406 1401 4116 5 0.25
JFreeChart 624 597 597 27 0 0.96 3249 792 792 2457 0 0.24

The translation of Java source to Java bytecode can lead to the loss of class dependencies, but also during
the compilation new class dependencies that do not exist in the source code may be created. During the
manual inspection of a portion of links that appear in CCNs extracted by Dependency Finder and do not
appear in CCNs extracted by SNEIPL, we observed that the majority of them represent dependencies from
a non-static inner class to the outer (enclosing) class. Also, we checked that in such cases the inner class does
not make any reference to the outer class, i.e. it does not use any field or method defined in the outer class.
However, for non-static inner classes the Java compiler always create the synthetic field called this$0 which
represents the reference to the instance of the outer class. In other cases, missing class dependencies are
caused by missing CALLS links, i.e. a class dependency is solely caused by method calls, and SNEIPL was
unable to resolve them. The precise quantification of missing calls links in networks extracted by SNEIPL
for software systems used in the comparative analysis is given in Table 13.

To investigate the practical implications of the observed differences between CCNs extracted by SNEIPL,
Dependency Finder, and Doxygen, we consider two perspectives: one associated with researchers interested
in empirical investigations of design complexity of large-scale software systems, and another with practition-
ers interested in software metrics.

Researchers interested in the design complexity of real-world, large-scale software systems examine com-
plementary cumulative degree distributions of software networks in order to determine the type of design
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Table 13: Quantification of missing CALLS dependencies in networks extracted by SNEIPL: Calls resolved (%) – the fraction
of resolved function calls, HTM – the fraction of hard to match functions in the source code, HTM resolved – the number of
resolved calls to hard to match function, and HTM unresolved – the number of unresolved calls to hard to match functions.

Software system Calls resolved (%) HTM (%) HTM resolved HTM unresolved

CommonsIO 88.47 30.67 132 102
Forrest 100 0 - -
PBeans 89.08 7.54 23 84
Colt 94.23 11.58 586 516
Lucene 97.92 8.19 271 206
Log4j 98.47 13.50 162 51
Tomcat 95.46 7.48 832 1494
Xerces 95.96 4.20 535 831
Ant 88.61 4.46 569 2512
JFreeChart 96.28 7.26 483 604

complexity of studied systems[1, 2, 4, 26]. Complementary cumulative degree distribution CCD(k) is the
probability of observing a node with degree greater than or equal to k in a CCN. Therefore, we investigated
if there are statistically significant differences between CCDs computed from CCNs formed by SNEIPL,
Dependency Finder, and Doxygen. The existence of statistically significant differences between two comple-
mentary cumulative distributions can be checked using the two sample Kolmogorov-Smirnov (KS) test [61].
The KS test is a non-parametric statistical procedure based on the D statistics which is the maximal vertical
distance between tested distributions. The test checks the null hypothesis that there are no statistically
significant differences between tested distributions in terms of their locations, spreads, and shapes. To per-
form KS tests we used an open-source Java library called JCS (Java Statistical Classes)13. The results of
KS tests are summarized in Table 14. The null hypothesis is accepted if the obtained value of the signif-
icance probability (p) is higher than 0.05. It can be observed that for all examined systems there are no
statistically significant differences between CCDs computed from class collaboration networks extracted by
SNEIPL and Dependency Finder. In other words, the degree distribution analysis of CCNs obtained by
SNEIPL and Dependency Finder would result in the same conclusion about the type of design complexity
of corresponding software systems. On the other hand, statistically significant differences between CCDs
computed from CCNs formed by Dependency Finder and Doxygen are present for all examined software
systems, except for Forrest (the smallest examined system).

Table 14: Results of two-sample Kolmogorov-Smirnov tests: D – Kolmogorov-Smirnov statistics, p – the value of the significance
probability. “Accepted” denotes if the null hypothesis (no statistically significant differences between distributions) is accepted
or not.

SNEIPL – DependencyFinder DependencyFinder – Doxygen
Software system D p Accepted D p Accepted

CommonsIO 0.009 0.99 yes 0.45 < 0.01 no
Forrest 0.085 0.99 yes 0.33 0.057 yes
PBeans 0.034 1.00 yes 0.72 < 0.01 no
Colt 0.013 1.00 yes 0.61 < 0.01 no
Lucene 0.022 0.98 yes 0.52 < 0.01 no
Log4j 0.051 0.89 yes 0.53 < 0.01 no
Tomcat 0.017 0.97 yes 0.50 < 0.01 no
Xerces 0.042 0.41 yes 0.44 < 0.01 no
Ant 0.007 1.00 yes 0.54 < 0.01 no
JFreeChart 0.008 0.99 yes 0.52 < 0.01 no

Since the degree of a node in a CCN is at the same the value of Chidamber-Kemerer CBO metric for
the corresponding class, the degree distribution of CCN is at the same time the distribution of CBO values

13http://www.jsc.nildram.co.uk/
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for all classes present in the source code. Therefore, the previous statistical analysis based on KS tests
tells us also that there are no statistically significant differences between values of CBO metric when they
are computed using CCNs extracted by SNEIPL and Dependency Finder. However, software engineers are
usually not interested in the overall statistical properties of metric values, but want to know concrete values
of CBO for classes present in a software system. Therefore, we examined the distribution of CBO differences
when CBO is computed from CCNs extracted by SNEIPL and Dependency Finder. Results are presented
in Table 15. As it can be seen, large CBO differences (△CBO ≥ ±4) occur very rarely (for less than 4% of
the total number of classes). On the other hand, for more than 65% of the total number of classes in each
examined system, the CBO obtained by SNEIPL has the same value as the CBO obtained by Dependency
Finder (△CBO = 0). Doxygen is not considered in the analysis of CBO differences, because the degree
distributions obtained by Doxygen are significantly different from those obtained by Dependency Finder,
which automatically implies large CBO differences. It is important to observe that CBO calculated from
Java source code may be different than CBO calculated from Java bytecode. As pointed earlier, during
the compilation some class dependencies may be lost due to inline optimizations, and at the same time
new dependencies may be introduced. In other words, the CBO differences presented in Table 15 are not
caused entirely by two different implementations of CCN extraction, but also by different sources for CCN
extraction.

Table 15: The distribution of CBO differences (△CBO) when they are calculated using CCNs extracted by SNEIPL and
Dependency Finder.

Software system 0 (%) ±1 (%) ±2 (%) ±3 (%) ≥ ±4 (%)

CommonsIO 96.3 3.7 - - -
Forrest 85.71 11.43 - - 2.86
PBeans 82.76 13.79 3.45 - -
Colt 81.61 16.05 0.33 0.67 1.34
Lucene 65.78 26.36 4.69 0.76 2.41
Log4j 76.1 19.92 1.59 0.8 1.59
Tomcat 65.37 23.13 5.45 3.43 2.62
Xerces 64.95 25.23 5.14 1.26 3.42
Ant 72 21.11 3.57 1.45 1.87
JFreeChart 90.54 7.21 1.28 0.64 0.32

9. Related work

There is a variety of software networks extractors, but in most cases they are tied to a particular
programming language and extract just one type of software network. For example, the review of static call
graphs extractors for C programming language can be found in [55]. In this section it will be discussed how
software networks are extracted in research works dealing with the analysis of software systems under the
framework of complex network theory, and in existing language-independent reverse engineering tools and
environments.

9.1. Extraction of software networks for statistical analyses

In research works that deal with the statistical analysis of software systems under the framework of
complex network theory, software networks are usually extracted using language-specific tools. For example,
in [62, 27] networks are extracted by parsing C++ header files, in [26, 63] by parsing Java source code, in [64]
by parsing Java class files, in [5] by using Java Doclet capabilities to inspect the source code structure, and
in [65] by parsing JavaDoc HTML pages.

Usage of a language-specific software networks extraction tool naturally restricts the statistical study to
software systems written in a particular language. However, the authors of [1] and [4] used basically the
same extraction methodology based on Doxygen to form software networks associated with software systems
written in different programming languages (C static call graphs and C++ class collaboration networks in [1];
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Java package, class and method collaboration networks in [4]). In our comparative analysis we showed that
software networks extracted using SNEIPL are far more accurate than those extracted with the help of
Doxygen.

9.2. Software networks extraction in reverse engineering tools and environments

SNEIPL forms a General Dependency Network (GDN) from the eCST representation of the source code.
GDN is a heterogeneous software network that contains all software entities defined in the source code, as
well as various relations among them. This means that GDNs can be viewed as fact bases used in reverse
engineering activities. Therefore, in this Section we review how fact bases are formed in widely used language-
independent reverse engineering tools, environments, and frameworks. As we will see all reviewed systems
provide a language-independent representation of fact bases, but perform language-dependent fact extrac-
tion. This makes them fundamentally different from SNEIPL which provides both language-independent
fact extraction and language-independent representation of fact bases.

Rigi [32] is a reverse engineering environment that allows the visual exploration of software systems in the
form of graphs showing software entities and their relationships. It offers the language-independent exchange
format based on a graph-based data model, fact extractors for C, C++, and COBOL, and an interactive
graph editor called Rigiedit. Rigi’s graph-based data models are capable to represent architectural elements
of software systems: program components (functions, global variables, etc.) and their relationships (calls to
function, references to variables, etc.). Rigi’s architecture decouples fact extractors from the graph editor
via the exchange format. Rigi’s fact extractors for C and COBOL are parsers built with the help of Yacc
parser generator. Those parsers identify software entities and their dependencies in a source code and
store extracted information in the textual exchange format known as RSF (Rigi Standard Format). For
the reverse engineering of software systems written in other languages, users are expected to produce RSF
files. The authors of Rigi advocate usage of lightweight fact extractors based only on lexical analysis (which
produce imprecise, but useful fact bases) for analyses of legacy software systems, because those systems are
often in the state that the source code can not be compiled (due to missing files) or contains syntax errors.
However, there is no support in Rigi to build parser-based or lightweight fact extractors. In other words,
Rigi is capable to analyze and visualize software networks representing software systems written in different
programming languages but their extraction is not language-independent.

Moose [66] is a tool environment for reverse engineering and re-engineering of object-oriented software
systems. It consists of a repository to store language-independent models of software systems, and pro-
vides query and navigation facilities. Moose models are instances of the FAMIX meta-model and capture
architectural elements of software systems: defined entities (classes, methods, attributes, etc.) and their
dependencies (inheritance, invocation, access and reference). In other words, Moose operates on software
networks and it is capable to visualize them in various forms. There are two ways to form Moose models.
In case of Smalltalk fact extraction is performed via built-in parser. For other languages, Moose provide
an import interface for CDIF and XMI files. Over this interface Moose uses external parsers for languages
other than Smalltalk. However, Moose, similarly as Rigi, does not support language-independent fact ex-
traction: each parser independently recognizes entities and relationships in order to instantiate the FAMIX
meta-model with concrete information about software systems.

Gupro [67] is an integrated workbench to support program understanding of heterogeneous software
systems on different levels of granularity. In Gupro software artifacts are stored in a graph repository
which reflects relationships between defined software entities, and abstraction is done by graph queries. The
extraction of information is done by parsers generated using the PDL parser generator. PDL extends the
Yacc parser generator by EBNF syntax and notational support for compiling textual languages into TGraphs.
TGraphs are directed graphs whose nodes and edges may be attributed, typed and ordered. Those graphs
are used to conceptually represent software systems: software entities are represented by nodes, relationships
among entities by edges, a common type is assigned to similar objects and relationships, and ordering of
relationships is expressed by edge order. TGraphs are produced by individual PDL parsers and consequently
the fact extraction in Gupro is not language-independent.

Bauhaus [68] is a tool suite that supports program understanding and reverse engineering on all layers
of abstraction, from the source code to the architecture. It is capable to analyze programs in Ada, C,

28



C++ and Java. In Bauhaus two separate program representation exist: InterMediate Language (IML)
and Resource Flow Graph (RFG) representation. The IML representation is defined by the hierarchy of
predefined classes, where each class represents a certain universal programming language construct. IML
is generated from the source code by a language-specific front-end. While IML represent the system on a
very concrete and detailed level, the architectural aspects of the system are modeled by means of RFG.
An RFG is a hierarchical graph that consists of typed nodes and edges. Nodes represent architecturally
relevant elements of software systems (routines, types, files, components, etc.). Different aspects of the
architecture (call graph, hierarchy of modules, etc.) can be obtained using different granularity views. In
other words, RFG is, similarly as GDN, a union of software networks at different levels of abstraction. For
C and C++, an RFG is automatically generated from the IML representation, whereas for other languages
RFG is generated from other intermediate representations (such as Java class files) or compiler supported
interfaces (such as Ada Semantic Interface Specification). Therefore, fact extraction in Bauhaus is not fully
language-independent, since RFGs for some languages are not formed directly from IML.

Compared to described language-independent reverse engineering tools and environments, SNEIPL pro-
vides language-independent fact extraction, since the extraction of software networks is solely based on
the eCST representation. In other words, extraction of software networks in SNEIPL is not tied or incor-
porated in language-specific front-ends that generate a language-independent representation of the source
code, but the language-independent representation (eCST representation) serves as the starting point for
fact extraction.

It should be also mentioned that there are language-dependent reverse engineering tools which realize
software network extraction procedures that can be generalized to a variety of languages. For example, Met-
ricAttitude [12], a tool for the visualization of Java software, relies on improved class hierarchy analysis [54]
to approximate the run-time types of function call receivers. Namely, the static analysis approach proposed
in [12] distinguishes between two types of the function call relationship: virtual and abstract delegations.
The authors of MetricAttitude observed that such differentiation can be exploited to identify design patterns
in the source code. Similarly, the Soot framework for Java byte-code optimization uses variable-type anal-
ysis (VTA) and declared-type analysis (DTA) when extracting static call graphs from Java byte code [69].
Both of these analyses can be thought as more refined versions of rapid type analysis (RTA) which is used
by SNEIPL when resolving candidates for a function call site. Whereas RTA simply collects instantiated
types, DTA and VTA find which types reach each variable (i.e. which allocated objects might be assigned
to a variable) using information contained in so called type propagation graph. SNEIPL discards CALLS
links when RTA results in more than one candidate for a function call site in order to prevent creation
of non-existent links. In such cases VTA and DTA may result in exactly one candidate. Therefore, in
our future work VTA/DTA will be considered as the substitute for RTA in order to obtain more precise
approximations of the run-time types of function call receivers.

10. Conclusion

Real-world software systems are characterized by complex inter-entity interactions. Those interactions
can be modeled in terms of software networks which show dependencies between software entities. In
order to understand the complexity of dependency structures of software systems, to compute metrics
associated with software design, or to recover system architecture from the source code, networks representing
software systems have to be extracted. In this paper we have presented SNEIPL, the language-independent
software networks extractor based on the enriched Concrete Syntax Tree (eCST) representation of the source
code. The eCST representation extends parse trees with so called universal nodes which are predefined
semantic markers of syntactical constructions. The set of eCST universal nodes contains nodes that mark
definitions of software entities which appear as nodes in software networks, as well as universal nodes such as
TYPE, NAME and FUNCTION CALL that serve as the starting point to recover horizontal dependencies
between software entities. From the hierarchy of universal nodes in eCSTs different types of horizontal
dependencies can be deduced, which means that SNEIPL is able to extract software networks at different
levels of abstraction.

29



The applicability of SNEIPL was shown by the extraction of software networks associated with real-
world, medium to large-scale software systems written in different programming languages (Java, Modula-2,
and Delphi). To investigate the correctness and completeness of the extraction algorithm, we compared
class collaboration networks extracted from ten Java software systems with networks extracted using De-
pendency Finder (language-dependent software networks extractor) and Doxygen (language-independent
documentation generator tool). Obtained results showed that networks extracted by SNEIPL and Depen-
dency Finder are highly similar, and that the eCST-based approach to language-independent dependency
extraction provides far more precise results compared to the unified fuzzy parsing approach realized by Doxy-
gen. Since SNEIPL operates on the language-independent representation of the source code, this result can
be generalized to networks representing software systems written in other languages.

We also compared SNEIPL to language-independent reverse engineering tools and frameworks, showing
that SNEIPL provides both language-independent fact extraction and language-independent representation
of extracted facts. This means that besides language-independent network based analysis of software sys-
tems and language-independent computation of software design metrics, SNEIPL can be used to provide
language-independent extraction of fact bases for reverse engineering, architecture recovery, and software
comprehension activities.
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[43] M. Savić, G. Rakić, Z. Budimac, M. Ivanović, Extractor of software networks from enriched concrete syntax trees, in:
Proceedings Of International Conference of Numerical Analysis and Applied Mathematics ICNAAM2011, 2nd Symposium
on Computer Languages, Implementations and Tools (SCLIT), Vol. 1479, 2012, pp. 486–489. doi:10.1063/1.4756172.
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[68] A. Raza, G. Vogel, E. Plödereder, Bauhaus: a tool suite for program analysis and reverse engineering, in: Proceedings of
the 11th Ada-Europe international conference on Reliable Software Technologies, Ada-Europe’06, Springer-Verlag, Berlin,
Heidelberg, 2006, pp. 71–82. doi:10.1007/11767077 6.

[69] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, C. Godin, Practical virtual method call
resolution for Java, in: Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’00, ACM, New York, NY, USA, 2000, pp. 264–280. doi:10.1145/353171.353189.

32


