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Network

e Network — a graph representing interactions or relations among
constituent entities of a complex system
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Newman'’s classification of complex networks

Technological networks
o networks representing engineered man-made systems

Social networks
o Interactions and relationships among social entities

Information networks
o Connections between data items

Biological networks
o Networks representing biological systems and processes



Social networks

e Social network - network-structured data describing
interactions or relations among social entities

e Social entities
o individuals, social groups, institutions, organizations,

companies, political parties, nations

e Social links
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opinions on other individuals (signed social networks)
transfers of material resources

links denoting collaboration, cooperation and coalition
links resulting from behavioral interactions

links imposed by formal relations within formally organized
social groups

links on social networking sites



Information networks

e Networks depicting relations/dependencies between data items

e WWW networks
o nodes: WWW pages
o links: hyperlinks (directed links)

e Citation networks: references between documents
o Scientific papers, patents, legal documents

e Linguistic networks
o Semantic: semantic relationships (e.g., synonyms or antonyms)
between words or concepts
o Structural: word co-occurrence networks and sentence similarity
networks

e Recommender networks
o Bipartite graphs showing preferences of individuals towards some
items

e Ontology networks (knowledge graphs)
o relationships between ontological entities (concepts, roles,
individuals)
o dependencies between ontology modules of a modular ontology



e Tabular datasets can be transformed to information networks
o Nodes: data items or features themselves

o k-nearest neighbors networks
o A — B if B is among the top k nearest data items to A

o eps-radius networks
o A and B connected if distance(A, B) < Eps

o feature correlation networks
o Two features connected if there is a strong correlation between them

Savic¢ et al. A Feature Selection Method Based on Feature Correlation Networks. In Proc.
of MEDI’2017, pp. 248-261, 2017,



Annotated networks

e Networks whose nodes are augmented with attributes

e |abels/categorical attributes: the value of an attribute restricted to a
set of specified categories
e attributes with numerical values

e free-text

e In this tutorial: networks whose nodes are enriched with both
domain-independent metrics used in complex network analysis
and domain-dependent metrics

e enriched co-authorship networks

e metrics quantifying various determinants of research
performance

e enriched ontology networks

e ontology metrics used to evaluate the complexity and design
quality of ontologies
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Complex network analysis

e Quantitative methods for studying the structure and
evolution of complex networks

e Analysis of direct and indirect connectivity of nodes, identification of
connectivity trends and patterns

e Centrality metrics and algorithms — identification of the most
important nodes and links in a network

o Network comprehension — identification of cohesive subgraphs
(clusters/communities), analysis of connectivity between and within
clusters

e Identification of evolutionary trends and principles that can explain
the evolution of a network at the microscopic, mesoscopic and
macroscopic level



Connected components in undirected networks

Connected undirected graph — there is a path between any
two nodes

If a network is not a connected graph then it consists of
multiple connected components
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Giant connected component: a component encompassing a
vast majority of nodes




Components in directed networks

e Weakly connected components

e connected components in the undirected projection of a

directed network

o Strongly connected components

e for every two nodes Aand B

e there is a directed path from A to B, and

e a directed path from B to A

Weakly connected components:
{A, B, C,D, E}
{F, G, H}

Strongly connected components:
{B,C, D, E}
{G, H}



Node degree

degree(x) = the number of links incident with x
= the number of x’s neighbors

the most basic metric to assess node importance

e e.g. in social networks: degree is a metric of social capital

higher number of contacts — broader possibilities to spread ideas/
opinions/interests and influence others

Directed networks: in-degree and out-degree
|Isolated nodes and hubs
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Core-periphery structure

e Assortative networks with localized hubs

e k-core — maximal sub-graph S containing nodes whose degree is
higher than or equalto kin S

void identifyCore(int k) {
while network contains a node whose degree is < k:
remove nodes whose degree is < k
remaining nodes constitute k-core

}

localized hubs:
a k-core for a large k is
a connected graph or
has a giant connected component

core-periphery



K-core decomposition

e k-cores are nested
e shell-index(x) = k — x belongs to k-core, but not to (k+1)-core

e Hubs with
e high shell-index: hubs connected to other hubs

e |ow shell-index: hubs connected to low-degree nodes
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Centrality metrics

Metrics to rank and identify the most important nodes/links
In the network

Fundamental node centrality metrics originate from social
network analysis

o Betweenness centrality
e Closeness centrality
e Eigenvector centrality

Information retrieval

e centrality metrics for directed graphs inspired by
eigenvector centrality

e Page rank and HITS hub and authority scores



Betweenness centrality

e Anode is important if it is located on a large number of shortest
paths between other nodes
o Such node is in a position to control, maintain and influence
information flow through the network

Definition 2.38 (Betweenness centrality). The betweenness centrality of a node z
in a graph G, denoted by Cy(z), is the extent to which z is located on the shortest
paths between two arbitrary nodes different than z:

. G(x,y,2) |
Co(z)= ) . (2.10)
xyeVax#y#z G(x,y)
where & (x,y) is the total number of shortest paths between x and y, and &(x,y,z) is
the total number of shortest paths between x and y passing through z.



Closeness centrality

e Anode is important if it is in proximity to a large number of
other nodes

e Spreading/diffusion processes: information originating at
nodes having a high closeness centrality quickly propagate
through the network

Definition 2.41 (Closeness centrality). The closeness centrality of a node z in a
graph G, denoted by C,(z), is inversely proportional to the total distance between z

and all other nodes in G: l
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Ce(z2) (2.17)



Eigenvector centrality

e Recursively defined centrality: a node is important if it is
directly connected to other important nodes

Definition 2.44 (Eigenvector centrality). The eigenvector centrality of a node z in
a graph G, denoted by C,(z), is proportional to the sum of eigenvector centralities

of its neighbors:
| ]
Ce(z) =+ Y Coli) (2.21)
A N

where A is a constant and N(z) denotes the set of nodes directly connected to z, i.e.
N(z)={w: {wz} €E}.

e EVC can be computed by successive approximations starting
from a configuration in which all nodes have equal EVC

e PageRank and HITS hub/authority scores are variants of
EVC for directed networks



Node similarity/distance

Applications: community detection (hierarchical agglomerative
clustering), link prediction and identification of missing links (in the
case of networks extracted from incomplete data)

The length of the shortest path between two nodes

Similarity based on random walks: the probability that a random
walker reaches X from Y in k random walk steps

The number of common neighbors |F(CB) f F(y) |

I'(z)NI'(y)]
I'(z)UT'(y)]

The Jaccard coefficient

Other metrics: Adamic-Adar, Katz, personalized PageRank, cosine
similarity, SimRank (recursively defined similarity)



Community structure

e Community (module, node cluster)

e a subgraph that is more densely/strongly internally
connected than with the rest of the network

o Automatic identification of communities — community
detection algorithms

e Overlapping and non-overlapping community partitions




Network comprehension

Find a partition of
the network into
communities

Coarse-grained
description



Santo Fortunato, 2009, “Community detection in graphs”

e Agglomerative algorithms
Divisive algorithms

 Repeatedly remove links that are likely to be inter-communitarian
links to form the dendrogram

o Measures indicating inter-communitarian links: edge betweenness
centrality, edge clustering coefficient, edge information centrality

Modularity-based algorithms
e heuristics to maximize the modularity measure
e X — a subgraph in the network

e Q(X) = the fraction of links in X - the expected fraction of links
iIn X under some null random network model

Dynamic algorithms

e Discovering communities by dynamical processes running on
the network (e.g. label propagation)

Method-based on statistical inference
 fitting stochastic block models
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Analysis of annotated networks

e Analysis of categorically induced subgraphs
e A - a categorical node attribute
e subgraphs induced by nodes having the same value of A

e Are categorically induced subgraphs strong clusters in the
network?

e enriched co-authorship networks: do researchers from the same
department form a strongly cohesive research community?

e enriched ontology networks: do ontology modules conform to the
“high cohesion” design principle (are concepts from a module
strongly related)?

e Radicchi et al. notion of clusters in complex networks and
graph clustering evaluation (GCE) metrics applied to
categorically induced subgraphs in annotated networks



Radicchi et al. definitions of clusters

e (C - asubgraph of a network, x-a node in C
e Kint(x) - the number of intra-subgraphs links incident with x; i.e.

links connecting x with other nodes in C
e weighted networks: the total weight of intra-subgraph links
e directed networks: the number intra-subgraph links emanating from x

o Kgxt(X) - the number of inter-subgraph links incident with x, i.e. links
connecting x with nodes that are not in C

Definition 2.60 (Radicchi strong community). A subgraph C of a graph G is a
Radicchi strong community (or community in the strong sense) 1f

Definition 2.61 (Radicchi weak community). A subgraph C of a graph G is a
Radicchi weak community (or community in the weak sense) if

Z King (1) > Z Kext (1) (2.52)
iceC

reC



GCE metrics

e C -a subgraph of a network with N nodes
e Nc - the number of nodes in C
e GCE metrics based on edge-cut

Ec (the size of the edge-cut of C)
the total number/weight of (out-going) links connecting the nodes
in C with nodes that are notin C

Ic — the total number/weight of intra-subgraph links in C

Conductance(C) = Ec/ (Ec + 2Ic) [undirected networks]
Conductance(C) = Ec/ (Ec + Ic) [directed networks]
Expansion(C) = Ec/ Nc

Cut-ratio(C) = Ec/ N(N - Nc¢) [only for unweighted networks]

Lower values of conductance, expansion and cut-ratio indicate
more cohesive subgraphs

Conductance(C) < 0.5 — C is a Radicchi weak cluster



GCE metrics

e C - a subgraph of a network, x - a node in C
e GCE metrics based on degree-fraction (DF)
o Keoxi(X) - the number/weight of (out-going) inter-subgraph links
incident with x
e D(x) - the (out-) degree/strength of x, D(x) = Kint(X) + Kext(X)

o DF(X) = kgyt(x) / D(x)

e Maximum-DF(C) = the maximum DF of nodes in C
e Average-DF(C) = the average DF of nodes in C

e Flake-DF(C) = the fraction of nodes in C for which DF(x) < D(x) / 2
(or, equivalently, kjn(x) > kgxt(X))

e Lower values of Maximum-DF and Average-DF and higher values
of Flake-DF indicate more cohesive subgraphs

e Flake-DF(C) =1 — C is a Radicchi strong cluster



Analysis of annotated networks

e Comparison of categorically induced subgraphs (CISs)
e A - a categorical node attribute
e CISs: subgraphs induced by nodes having the same value of A
e M - a numerical node attribute

e Do nodes from a CIS X tend to have higher values of M
compared to nodes from a CISY?

e enriched co-authorship networks: do researchers from a
department X tend to be more productive/more central in the co-
authorship network than researchers from a department Y?

e enriched ontology networks: are concepts from an ontology
module X more important than concepts from an ontology module
Y?

e Metric-based comparison test based on the MWU test and
probabilities of superiority applied to two categorically induced
subgraphs



Metric-based comparison test

e Xand -two independent subsets of nodes in a network
e Thr - a probability threshold indicating a strong stochastic dominance

e Metric-based-comparison-test(X, Y, Thr):
e for-each numeric attribute M:
e M(X) - the set of M values for X
e M(Y) - the set of M values for Y
e p = apply the MWU test to M(X) and M(Y)
e if the null hypothesis rejected (p < 0.05):
e compute probabilities of superiority PS(X) and PS(Y)
e X = arandomly selected value from M(X)
e y = arandomly selected value from M(Y)
e PS(X)=P(x>y), PS(Y)=P(y >Xx)
o if PS(X) > Thr or PS(Y) > Thr (default Thr = 0.75):

e report not only statistically significant differences
between X and Y regarding M, but a strong tendency of
superiority



Metric-based comparison test

e Metric-based comparison test can also be applied to two independent
sets of nodes determined by some structural criteria, e.g.

e highly and lowly coupled nodes
e highly coupled nodes: the minimal subset of nodes C such that
Z degree(x) > Z degree(y)

xeC yv&C

e core and periphery nodes when the network has a core-
periphery structure

e core nodes: the minimal subset of nodes C such that

Z shell-index(x) > Z shell-index(y)

xeC v&C

e nodes belonging to non-trivial strongly connected components and
nodes not involved in cyclic dependencies in directed networks



Analysis of block models of annotated networks

e P - a partition of the set of nodes into kK node groups

e Block model corresponding to P
e nodes: node groups

e links: node groups A and B are connected if there is a node from A
connected to a node from B

e Block models of annotated network can be formed in two principal ways:
e according to a categorical node attribute

e e.g. a departmental collaboration network derived from an intra-
institutional co-authorship network

e according to a partition obtained after community detection

e e.g. a network of research groups obtained after research
groups were identified by a community detection algorithm
applied to the co-authorship network



Group superiority graphs of annotated networks

e P - a partition of the set of nodes into k node groups

e The block model corresponding to P shows connections among
node groups

e Group superiority graphs (GSG) corresponding to P are
directed graphs reflecting stochastic dominance among
node groups with respect to numerical node attributes

e M- anumeric node attribute, A and B two node groups

e A — Binthe GSG of M if nodes in A strongly tend to have
higher values of M than nodes in B

e GSGs: graphs derived from a block model according to
the metric-based comparison test



Mining attachment preferences in annotated networks

To which nodes new nodes connect when joining a network?

N — an annotated network with kK numeric attributes M1, Mo, ..., Mk
N> and N — two successive evolutionary snapshots of N
Transition from to Na to Np
e New nodes — nodes in Np not present in Na
e Nodes in N;can be divided into two categories
e Preferential nodes — nodes to which new nodes attached
¢ Non-preferential nodes — nodes that are not preferential

Attachment preferences in the evolutionary transition from N, to Np
can be revealed by the metric-based comparison test

e e.g.{(Ms, PREF), (Ms, NON-PREF), (M12, PREF)}

An algorithm for mining frequent itemsets (e.g. Apriori) applied to the set of
attachment preferences of all evolutionary transitions
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Research collaboration

e Collaboration: key social feature of modern science

e Science from a social perspective: complex self-organizing
social system

o Katz: “scientific collaboration is a social process and probably
there are as many reasons for researchers to collaborate as there
are reasons for people to communicate”

e Research collaboration can be studied at various levels:

e |ntra-institutional, inter-institutional, national, international,
disciplinary, inter-disciplinary

e Major research questions:
e how research collaboration is structured?
e how the structure of research collaboration evolves?

e how research collaboration is related to research productivity
and impact of multi-authored publications?



Research collaboration

e Research collaboration may manifest in various formal and
informal forms

e Co-authorship — the most visible and well-documented
manifestation of scientific collaboration

e availability of massive bibliographic databases

e Co-authorship networks — social networks encompassing
researchers

e Nodes — researchers

e A and B are connected if A and B co-authored at least one
publication (with or without other co-authors)

e Link weights — the strength of research collaboration
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Link weighting schemes

e Straight scheme
e W(X, Y) = the number of joint publications of x and y

e Salton’s scheme — a normalized variant of the straight scheme

h-\u.\' h(x) — the number of publications (co-)authored by x

W = \/171 h(y) — the number of publications (co-)authored by y
V fx iy h(x, y) — the number of joint publications of x and y

e Newman’s scheme

e More authors a paper has less weight should be added to
the total strength of research collaboration

1 J — the set of joint publications of x and y
W = Z n(k) — the number of authors of publication k
ked

nk—l



e Case study: the FS-UNS co-authorship network
o The network reflecting intra-institutional research collaboration at FS-
UNS (423 FS-UNS researchers from 5 departments)
o The network extracted from bibliographic records contained in the
institutional CRIS-UNS system
No name disambiguation problems
Categorization of publications by the rule book prescribed by the
Serbian Ministry of Science
- Serbian research competency index metric
o The Newman schema used to assign link weights
o Nodes enriched with metrics quantifying different determinants of
research performance

Department Abbrv.
Department of Biology and Ecology DBE
Department of Physics DP
Department of Geography, Tourism and Hotel Management DG

Department of Chemistry, Biochemistry and Environmental Protection DC
Department of Mathematics and Informatics DMI




_ Ty
Metric Abbreviation Category
Productivity, normal count PRON Productivity
Productivity, fractional count PROF Productivity
Productivity, straight count PROS Productivity
Serbian Research Competency Index SRCI Productivity
The total number of co-authors COLL Collaboration
The number of FS-UNS co-authors LCOLL Collaboration
The number of external co-authors ECOLL Collaboration
The strength of research collaboration with all co-authors WCOLL Collaboration
The strength of research collaboration with FS-UNS co-authors WLCOLL Collaboration
The strength of research collaboration with external co-authors WECOLL Collaboration
Clustering coefficient CC Collaboration
The degree of intra-group collaboration IntraDEG Collaboration
The degree of inter-group collaboration InterDEG Collaboration
The strength of intra-group collaboration WintraDEG  Collaboration
The strength of inter-group collaboration WinterDEG  Collaboration
Betweenness centrality BET Importance
Weighted betweenness centrality WBET Importance
Closeness centrality CLO Importance
Weighted closeness centrality WCLO Importance
Eigenvector centrality EVC Importance




Cohesiveness of research departments -

e All FS-UNS departments are Radicchi weak and close to Radicchi strong
clusters in the network
o Intra-department collaborations are stronger than inter-department
collaborations for a large majority of researchers but not for all of them

e The strongest intra-department collaborations: DP and DC
e The weakest intra-department collaborations: DMI

e The most closed department: DG (the highest internal density, the lowest
conductance)

Metric DBE DP DC DMI DG
The number of researchers 118 57 95 87 66
The number of non-trivial components 1 1 | 1 1
The number of isolated nodes 3 3 0 7 6
The number of intra-department links 660 240 617 197 560
The number of inter-department links 412 174 411 71 96
Internal density 0.096 0.15 0.14 0.05 0.26
Total weight of intra-department links 8073 5636 9261 1532 2513
Total weight of inter-department links 1607 683 1825 195 160
Average internal degree 11.19 8.42 12.99 4.53 16.97
Average internal weighted degree 136.83 197.76 19497 3522 76.15
Weighted conductance 0.17 0.11 0.16 0.11 0.06

Weighted Flake degree fraction 0.97 0.93 0.98 0.95 0.95
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Inter-department collaborations “

e Researchers involved in inter-department collaborations are
drastically more productive, collaborative and institutionally important

Node metric  Avg(G1) Avg(Go) U p PSy PSy

SRCI 160.378 58.6939 11178.5 1.08E-18*  0.7482  0.2507

PRON 104.9031  32.9031 10333 2.06E-21* 0.764 0.2285

PROS 29.2555 13 13781 1.40E-11*  0.6764  0.2959

PROF 27.9682 12.3087 13477.5  2.69E-12*  0.697 0.3029

LCOLL 18.7225 7.4592 7486.5 4.92E-32* (.82 0.1566

ECOLL 51.0088 13.4745 8411.5 2.52E-28*  0.8038 0.1819

COLL 69.7313 20.9337 7360 1.62E-32* 0.8304 0.1612

BET 769.6687  98.0929 7775 5.09E-31" 0.8166 0.1661

e The departmental collaboration network DBE 7 DG
of FS-UNS is a clique,
but the str.engths of llnter-department 160 5 3 14
collaborations are highly unbalanced .
(a lot of space to improve inter-department 2 i
collaborations) DMI
3@ 12

DP



Metric-based comparison of departments

e Kruskal-Wallis ANOVA: statistically significant differences (SSD) present
regarding SRCI and PRON, but absent regarding PROS and PROF

o SRCI and PRON - biased measures of productivity
e SSD in both local and external collaboration

e No SSD regarding institutional importance

Metric DBE DP DC DMI DG Y2 p-value

SRCI 91.86 174.58 151.84 94.96 67.17 26.01 3.15E-05%
PRON T74.77 98.37 90.54 44.75  50.58 22.68 147E-047
PROS 19.74 25.68 23.48 21.3 19.88 7.85 0.097
PROF 19.17 23.48 20.69 22.2 19.15 6.38 0.172
LCOLL  14.68 11.47 17.32 5.34 18.42 99.11 1.52E-20"
ECOLL  39.17 41.65 43.59 12.36  30.42 49.11 5.54E-10*
COLL 53.85 53.12 60.91 17.7 48.85 69.71 2.61E-14*
BET 514.21 464.53 362.39 553.4 366.87 3.24 0.51811




_

Post-hoc pairwise comparison

DP and DC: superior regarding SRCI and PRON
DMI: the lowest degree of both local and external research collaboration

DC and DG: active stimulation of intra-institutional collaboration

Metric Department 1  Department 2 U p-value PS; PS>
SRCI DG DP 1280 0.0023 0.34 0.66
DBE DP 2516.5 0.0071 0.37 0.62
DP DMI 1825.5  0.0076 0.63 0.37
DG DC 1956 0.0001 0.31  0.69
DBE DC 4046.5  0.0005 0.36 0.64
DMI DC 2884 0.0004 0.35 0.65
PRON DP DMI 1824.5 0.0075 0.63 0.36
DG DC 2236.5 0.002 0.35 0.64
DBE DC 4345 0.0048 0.38 0.61
DMI DC 2481 <10~* 029 0.69
LCOLL DG DBE 2913 0.0046 0.62 0.36
DG DP 1094.5  0.0001 0.70 0.28
DG DMI 851 <10-* 084 0.14
DBE DMI 22975 < 10~% 075 0.20
DP DMI 1150.5 < 10—* 075 0.21
DBE DC 4521 0.0153 0.39 0.58
DP DC 1888.5 0.0018 0.33 0.63
DMI DC 1073 <107* 012 0.86
ECOLL DG DMI 1576 <10-* 071 0.26
DBE DMI 2906 < 10-%* 0.70 0.27
DP DMI 1319 <10~* 072 0.25
DMI DC 1879 <10~* 022 0.76
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K-core decomposition
e The FS-UNS co-authorship network has a strong and balanced
nested core-periphery structure
e 19 cores, all of them being connected subgraphs in the network
e the density of cores increases exponentially

e the fraction of nodes in k-cores decreases linearly with k
e Core researchers: shell-index >= 12 (32% of the total number)

1.0 1- ?
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§ 0.81 > 05
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Core VS Peripheral Researchers

o Core researchers are drastically more productive, collaborative and

institutionally important than peripheral researchers.

e Core researchers have more significant brokerage role within their ego-

networks

Metric Avg(C) Avg(P) U p NHA PS;, PSS,
PRON 124.2576 49.6354 7954 <107* no 0.78 0.22
PROF 31.7894  16.1697 10003 <107% no 0.73 0.27
PROS 32.4924  17.3430 10647 < 107* no 0.70 0.28
SRCI 172.8083 89.7819 9684 <107* no 0.74 0.26
COLL 88.2273  29.8051 4653 <107* no 0.87 0.13
LCOLL 26.4697  8.0072 784.5 < 107* no 0.98 0.02
ECOLL 61.7576  21.7978 7191 <107* no 0.80 0.19
WCOLL 120.2045 46.2960 7723 <107* no 0.79 0.21
WLCOLL 66.9061 22.8109 6641 <107* no 0.82 0.18
WECOLL 53.2984  23.4851 10089.5 < 10°* no 0.72 0.28
BET 813.9461 312.2748 8040 < 107* no 0.78 0.22
CLO 0.3457 0.2897 4622 <107* no 0.87 0.13
EVC 0.0046 0.0014 849 <107* no 0.98 0.02
WBET 563.0291 221.8833 126445 < 10°* no 0.54 0.23
WCLO 0.6649 0.5056 7099 <107* no 0.81 0.19
CC 0.4659 0.5829 13654 <107* no 0.37 0.63




_

|dentification or research groups

Algorithm Reference Q NC wintra inter .

GMO (5] 0.8371 18 691945 655.66 0.0947
IM [21] 0.8141 41 6618.53 956.58 0.1445
LV [3] 0.8466 17 6920.37 654.74 0.0946
WT [18] 0.8207 37 6873.07 702.04 0.1021
EB [8] 0.5486 13 5248.49 2326.63 0.4433
SOM [16] 0.6022 27 6466.84 1108.28 0.1714

o the best performing algorithm: LV (Louvain)

KNG 2
S omma 7
ST i =
) 3/)(’<,L>\)2g,'
7;e~( Ny

p, \\\‘"

e the highest modularity, the lowest ratio of w(inter) and w(intra)

e agglomerative clustering techniques better than divisive

LV > GMO > WT > IM > SOM > EB
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Fig. 8.3: The visualization of the FS-UNS co-authorship network after community detection by
the Louvain algorithm. Nodes in the same color belong to the same community. The size of a node

is proportional to its degree centrality.
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Research groups identified by Louvain

ID Sizz DBE DP DC DMI DG DD w'itra mnter gg
cr 6 0 0 6 0 0 DC 17933 2358 no
c2 35 0 I 1 32 1 DMI 67030 4875 no
c3 2 2 0 0 0 0 DBE 857 270 yes
C4 25 23 0 1 0 1 DBE 92773 260.12 no
C5 24 24 0 0 0 0 DBE 123069 11735 no
C6 32 32 0 0 0 0 DBE 797.62 13649 no
c7 13 0 0 13 0 0 DC 71220 13151 yes
C8 30 0 I 0 29 0 DMI 843.72 1683 yes
c9 26 1 0 25 0 0 DC 184867 16332 yes
Clo 32 32 0 0 0 0 DBE 92799 7369 yes
Clt 27 0 21 5 0 1 DP 76124 6834 yes
CI2 19 0 0 0 19 0 DMI 29.17 1023 yes
CI3 24 0 10 13 1 0 DC 53704 8245 yes
Cl4 35 2 2 31 0 0 DC 94864 10732 yes
CI5 59 0 0 0 0 59 DG 164218 3058 yes
ct6 9 0 9 0 0 0 DP 32113 1188 yes
Cl7 11 0 11 0 0 0 DP 111053 2435 yes




Collaborations among research groups

e The block model formed according to the partition of nodes obtained by
the Louvain algorithm

e #nodes = 17 (research groups)

e #links = 79 (collaborations between research groups), 9 strong links




Expected: groups that have strong collaborations tend to be more

institutionally important

The importance of a research group and the strength of inter-group

research collaboration are independent of group size

Fig. 8.6: The Spearman correlation matrix of the size, degree (DEG), weighted degree (WDEG)
and weighted betweenness centrality (WBET) of nodes in the collaboration network of FS-UNS

research groups.
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e Researchers involved in inter-group research collaborations
are significantly more productive, collaborative and
institutionally important

Metric Avg(Gy) Avg(Gy) U p NHA PS;, PS;
PRON 08.6367 26.8662 82215 < 10°* no 0.78 0.21
PROF 26.5373 11.1954 11043 <107* no 0.71 0.29
PROS 27.8801 11.6127 11325 <107* no 0.69 0.28
SRCI 151.3667 51.1648 90375 < 10* no 0.76 0.24
COLL 65.1873  17.5845 5301 <107% no 0.86 0.14
LCOLL 17.4569 7.4014 67445 < 10°* no 0.81 0.16
ECOLL 47.7303  10.1831 5932 <107* no 0.84 0.15
WCOLL 05.1948  23.0563 76515 < 10°* no 0.80 0.20
WLCOLL  48.7996 14.9347 85205 < 10% no 0.78 0.22
WECOLL  46.3951 8.1216 8065 <107% no 0.79 0.21
IntraDEG 10.3408 7.4014 124755 < 10°% no 0.64 0.30
InterDEG 7.1161 0.0000 0 <107* no 1.00 0.00
WintraDEG 43.8952  14.9347 9557 <107* no 0.75 0.25
WinterDEG 4.9045 0.0000 0 <107% no 1.00  0.00
BET 687.4335 73.2130 5683 <107* no 0.84 0.14
CLO 0.3291 0.2676 3142 <107* no 0.92 0.08
EVC 0.0031 0.0013 6730 <107* no 0.82 0.18
WBET 457.4900 95.9977 121965 < 10°% no 0.51 0.16
WCLO 0.6060 0.4651 86475 < 10°% no 0.77 0.23
cC 0.4866 0.6553 11824 < 10°% no 0.30 0.68
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o Comparison of research groups by analyzing group superiority graphs
corresponding to productivity and collaboration metrics

e PRON and SRCI — biased measures of research productivity

Metric Nodes Links Superior groups Inferior groups Bipartite structure

PRON 7 7 3 R yes
PROF 0 0 / / /
PROS 0 0 / / /
SRCI 11 10 2 9 yes
COLL 13 24 9 R yes
WCOLL 10 12 R 6 yes

Fig. 8.8: The group superiority graph corresponding to the PRON research productivity metric.
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Mining attachment preferences

New FS-UNS researchers tend to attach to highly productive FS-UNS
researchers that have established a strong collaboration with their

previous co-authors

[temset size  Itemset Support
I {(PRON, pref)} 0.625
{(SRCI, pref)} 0.667
{(COLL, pref)} 0.667
{(LCOLL, pref)} 0.583
{(WCOLL, pref)} 0.708
{(IntraDEG, pref)} 0.583
{(EVC, pref)} 0.625
2 {(PRON, pref), (SRCI, pref) } 0.625
{(PRON, pref), (WCOLL, pref)} 0.625
{(SRCI, pref), (WCOLL, pref) } 0.625
{(COLL, pref), (LCOLL, pref)} 0.583
{(COLL, pref), (WCOLL, pref)} 0.625
{(LCOLL, pref), (WCOLL, pref)} 0.583
{(WCOLL, pref), (IntraDEG, pref)} 0.583
{(WCOLL, pref), (EVC, pref)} 0.583
3 {(PRON, pref), (SRCI, pref), (WCOLL, pref)} 0.625
{(COLL, pref), (LCOLL, pref), (WCOLL, pref)} 0.583
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 Ontology - a formal specification of shared and reusable
knowledge

e Description of concepts (classes) and roles (relationships) in a
knowledge domain through a set of axioms in a description logic

e Backbone of the Semantic Web, specified in OWL

 Monolithic and modular ontology designs

e monolithic — all captured concepts, roles, axioms and assertions gathered
together in one (large) OWL file

e modular — an ontology that consists of multiple ontology modules, OWL
import feature

* Ontology networks — directed graphs showing dependencies
between ontological entities

e Ontology module networks (nodes: ontology modules, links: import relations
between modules)

o Ontology class networks (nodes: classes, links: relations between classes)

o Ontology subsumption network (nodes: classes, links: subsumption relations
between classes)
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Modular design principles

e “Low coupling, high cohesion”

e an ontology module should be loosely coupled to other ontology
modules
— a low average node degree and the absence of hubs in ontology
module networks

e concepts in an ontology module should be strongly coupled
— concepts from the same module form highly cohesive subgraphs
(strong clusters) in the ontology class network
— GCE metrics as metrics of ontology module cohesion

« classification of modules as Radicchi strong, Radicchi weak and poorly
cohesive ontology modules

o Existing ontology cohesion metrics estimate the cohesiveness of
ontology modules in isolation (dependencies to external classes are
ignored)

e GCE metrics rely on external class dependencies taking into
account also the principle of “low coupling”



Modular design principles

e “Avoid cyclic dependencies”

e Ontology modules belonging to a strongly connected component of
the ontology module network are mutually (directly or indirectly)
dependent

e Large cyclic dependencies negatively impact the following quality
attributes:

e understandability
e reusability
e maintainability

e Analysis of strongly connected components in enriched ontology
modules networks in order to reveal characteristics of modules
involved in cyclic dependencies

e Metric-based comparison test



NS STy
\"‘\ LW I //

& / -

/A Z
. -)Lé'_/ \"\:C :

4 ‘Z/ /)f% F\(\b{

Case study: enriched ontology module and class networks of
SWEET (Semantic Web for Earth and Environmental Terminology)

l'\/[/

Network Abbr. The number of nodes The number of links
Ontology module network OMN 203 1138
Ontology class network OCN 6374 8483
Ontology subsumption network OSN 6003 6202

O Module network
O metrics of internal complexity
O adopted software metrics
O centrality metrics
O Orme et al. coupling metrics
R T e AR S O Tartir et al. diversity metrics

ttp:llsweet.jpl.naﬁ.govlz.zlquan.owl
hllp:.'fsweel,jpl.nasa.’J.‘Z‘Z-'leprSclUmlsAowl il sl O G C E m etri CS
""pt"ﬁmmmlﬁﬁﬁé%@é@ﬁﬁ'ﬁ“.govﬂ.2/phen.0w| O C I a S S n etWO rkS

O adopted software metrics

wect .88, 00wz 2/ fcpr.om

http:llsweet.jpl.ne&.gole.Z/matr. owl

O centrality metrics



Connected component analysis

o SWEET exhibits a high degree of modular and conceptual
cohesion
o The SWEET OMN is a weakly connected digraph
no isolated modules or small independent clusters of modules

o The SWEET OCN is a weakly connected digraph, a giant connected
component in the taxonomy of concept

o All three examined networks are small-world networks

Table 4.3: Weakly connected components in the SWEET ontology networks. #WCC - the number
of weakly connected components, LWCCN - the fraction of nodes in the largest WCC, LWCCL
— the fraction of links in the largest WCC, SW — the small-world coefficient, SW-rnd - the small-
world coefficient of a comparable random graph, CC - the clustering coefficient, CC-rnd - the
clustering coefficient of a comparable random graph, A — the Newman assortativity index.

Network #WCC LWCCN [%] LWCCL [%] SW SW-rnd CC CC-rnd A

OMN 1 100 100 255 222 0.15 0.028 0.023
OCN 1 100 100 951 9.74 0.007 0.00021 -0.158
OSN 36 93.35 94.11 11.8 11.74 0.001 0.00017 -0.171




Cyclic dependencies

o A giant SCC in the SWEET ontology OMN
o large cyclic dependencies among SWEET modules
o small link reciprocity, but a large path reciprocity
— cyclic dependencies among SWEET modules are mostly indirect

o Alarge number of small-size SCCS in the SWEET OCN, large cyclic
dependencies among SWEET classes are absent

o Two classes involved in mutual subsumption relations

Table 4.4: Strongly connected components in the SWEET ontology networks. #SCC - the total
number of strongly connected components, LSCCN — the percentage of nodes in the largest SCC,
LSCCL - the percentage of links in the largest SCC, § - the percentage of nodes contained in
all SCCs, R - link reciprocity, R, - normalized link reciprocity, R, — path reciprocity, C' - the
percentage of SCCs that are pure cycles.

Network #SCC LSCCN [%] LSCCL [%] S|%] R R R, C %]
OMN 3 61.57 60.63 64.53 0.0545 0.0275 0.608 33.33
OCN 410 0.17 0.20 15.05 0.1214 0.1212 0.0136 80.24

OSN I 0.03 0.03 0.03  0.0004 0.0003 0.0001 100




o Metric-based comparison test to determine the differences between
modules in the giant SCC and the rest of SWEET modules

o SWEET has a strongly connected core encompassing the most reused
and the most important SWEET modules

Metric Avg(GSCC)  Avg(Rest) U P NullHyp PSS, PS;
LOC 106.8 101.1 6029 0.0045 rejected 0.61 0.38
TEXPR 526 4.11 5412 0.1872  accepted 0.5 0.39
AEXPR 0.068 0.071 5058 0.6522 accepted 0.49 045
AXM 92.8 87.3 6033 0.0044 rejected 0.61 0.38
HVOL 2905 2855.5 6048 0.0039 rejected 0.62 0.38
HDIF 20.5 17.7 6376 0.0002 rejected  0.65 0.35
NCLASS  34.06 27.04 5773 0.0274 rejected 058 04
NINST 924 13.97 5007 0.7448  accepted 0.24 027
IN 8.34 1.22 9110 < 107" rejected  0.91 0.04
ouT 577 5.35 5002 0.7541  accepted 047 0.46
TOT 14.1 6.55 8057 < 10°* rejected 0.81 0.15
BET 870.8 20.6 8781 < 107" rejected  0.89 0.09
PR 0.0066 0.0022 8971 < 107" rejected 0,92 0.08
HITSH 0.0642 0.0467 6048 0.0039 rejected  0.62 0.38
HITSA 0.0549 0.0064 9414 < 10°* rejected 097 0.03
HK 71754528  7888.64 8959 < 107 rejected 092 0.08
AP 1.74 1.28 4892 09666 accepted 0.24 0.23
CR 0.11 0.09 5104 0.5729  accepted 0.3 025
RR 0.23 0.23 5025 0.7125  accepted 0.5 047
NEC 5.12 4.68 4962 0.8298 accepted 0.46 0.44
REC 949 8.76 4981 0.7946 accepted 047 049
CON 0.21 0.22 5470 0.1438 accepted 0.44 0.56
EXP 0.29 031 5498 0.1259 accepted 043 0.56
CUTR 0.000027 0000029 5497 0.1266 accepted 0.44 0.56
AVGODF 024 027 5471 0.1432  accepted 0.44 0.56
MAXODF 094 095 4946 0.8615 accepted 0.08 0.1

FODF 0.76 0.73 5395 0.2015 accepted 055 0.44




o Degree distribution analysis: the SWEET ontology networks contain
hubs (highly coupled nodes)

o Metric-based comparison test: hubs tend to more voluminous and more
functionally important modules than non-hub modules

Metric Avg(Hubs) Avg(Rest) U P NullHyp PS; PS>
LOC 138.4 93 6185 < 107" rejected 079 021
TEXPR 7.6 3.9 5449 < 10°% rejected 066 027
AEXPR  0.076 0.068 4579 0.07 accepted 057 04
AXM 122.5 79.7 6097 < 10°% rejected 077 022
HVOL 3931.3 2526.1 6237 < 10°% rejected 079 021
HDIF 23.1 18.2 5797 < 10 rejected 074 026
NCLASS  46.6 26.1 5047 < 10 rejected 075 0.24
NINST 8.8 1.8 4316 0.28 accepted 0.19 029
IN 14.7 2.5 7214 < 10" rejected 09 006
ouT 7.4 5 5175 0.0006 rejected 062 031
BET 1438.7 236.01 6815 < 107" rejected 087 0.13
PR 0.0128 0.0022 6737 < 10" rejected 086 0.14
HITSA 0.09 0.01 7326 < 107" rejected 093 007
HITSH 0.08 0.04 5435 < 107" rejected  0.69 031
HK 1681429.9 190339 7688 < 10" rejected 098 0.02
AP 0.83 1.82 4198 0.45 accepted 0.19 026
CR 0.07 0.11 3926 0.99 accepted 029 028
RR 0.28 0.22 4845 0.01 rejected 061 038
NEC 7 4.2 5257 0.0003 rejected 063 029
REC 13.2 7.8 5019 0.003  rejected 062 034
CON 0.19 0.22 4450 0.15 accepted 044 057
EXP 0.26 0.31 4409 0.18 accepted 044 056
CUTR 0.000024  0.000029 4404 0.19 accepted 044 056
AVGODF  0.22 0.26 4359 0.24 accepted 044 055
MAXODF 0.96 0.94 4042 0.75 accepted 009 007

FODF 0.78 0.74 4245 0.38 accepted 053 045




GCE metrics as ontology metrics
o M - an ontology module within a modularized ontology
o G(M) - a graph showing dependencies among classes in M
o (M) is a subgraph of the ontology class network

o Basic ontology module cohesion metrics ignoring external dependencies
o DEN - the density of G(M)
o COMP - the number of weakly connected components in G(M)

Table 4.14: The values of the Spearman correlation coefficient for GCE metrics and metrics of
internal ontology module density (DEN) and connectedness (COMP).

EXP CON CUTR AODF FODF
DEN  -0.035 -0.056 -0.038 -0.109 0.076
COMP 0.174 0.265 0.175 0.253 -0.235

o Weak correlations — ontology cohesion metrics based solely on
internal class dependencies are unable to identify modules whose
constituent classes form strong clusters in the OCN



Cohesion of SWEET modules

o SWEET ontology modules has a satisfactory degree of

cohesion
o 18 modules (8.87%) are Radicchi strong clusters
o 195 modules (96.08%) are Radicchi weak clusters
o only 8 modules are poorly cohesive (non-Radicchi-weak clusters)
o poorly cohesive modules have a low centrality in the OMN

Module LOC TEXPR IN OUT PR BET CON
stateSpaceConfiguration.owl 106 0 I 2 0.0016 12 0.75
stateTimeFrequency.owl 72 0 2 7 0.0021 260 0.75
quanTimeAverage.owl 89 I 3 8 0.0012 451 0.74
stateSpace.owl 70 0 0 5 0.0010 O 0.65
realmAtmoWeather.owl 61 4 0 7 0.0010 0O 0.65
reprSpaceDirection.ow| 97 0 9 2 0.0045 16 0.61
phenOcean.owl 15 I 2 2 0.0014 13 0.6
stateTime.owl 83 5 3 5 0.0015 7 0.5

A 104.6 4.82 5.6 5.6 0.0049 544 0.22
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Conclusions

o Methods to analyze annotated social and information networks
focused on categorically induced subgraphs, block models and
attachment preferences

o Case studies related to analysis annotated networks with numeric
attributed being domain-dependent metrics

o analysis of enriched co-authorship networks
o an in-depth evaluation of research collaboration and mutual
relationships between collaboration and other determinants
of research performance

o analysis of enriched ontology networks
o evaluation of design quality of modular ontologies with
respect to modular design principles originating from
software engineering



o More about the topics of the tutorial including presented case
studies can be found in
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