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Abstract Feature selection is an important data preprocessing step in data min-
ing and machine learning tasks, especially in the case of high dimensional data. In
this paper, we propose a novel feature selection method based on feature correla-
tion networks, i.e. complex weighted networks describing the strongest correlations
among features in a dataset. The method utilizes community detection techniques
to identify cohesive groups of features in feature correlation networks. A subset of
features exhibiting a strong association with the class variable is selected accord-
ing to the identified community structure taking into account the size of feature
communities and connections within them. The proposed method is experimen-
tally evaluated on a high dimensional dataset containing signaling protein features
related to the diagnosis of Alzheimer’s disease. We compared the performance of
seven commonly used classifiers that were trained without feature selection, after
feature selection by four variants of our method determined by different community
detection techniques, and after feature selection by four widely used state-of-the-
art feature selection methods available in the WEKA machine learning library.
The results of the experimental evaluation indicate that our method improves
the classification accuracy of several classification models while greatly reducing
the dimensionality of the dataset. Additionally, our method tends to outperform
traditional feature selection methods provided by the WEKA library.
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1 Introduction

The feature selection problem has been studied by data mining and machine learn-
ing researchers for many years. The main aim of feature selection is to reduce the
dimensionality of a dataset such that the most significant aspects of the data
are represented by selected features. Consequently, feature selection has become
an important data preprocessing step in data mining and machine learning tasks
due to the rise of high dimensional data in many application domains. Feature
selection usually leads to better machine learning models in terms of prediction
accuracy, lower training time and model comprehensibility [36]. The two most dom-
inant types of feature selection approaches are filter and wrapper methods [9,16].
Wrapper methods rely on the performance of a prespecified classification model
to evaluate the quality of selected features. In contrast to wrapper methods, fil-
ter methods do not utilize classification learning algorithms’ performance to select
features. Those methods are usually based on some efficiently computable measure
for scoring features considering their redundancy, dependency and discriminative
power.

In this paper we present a novel graph-based approach to feature selection.
Our feature selection approach belongs to the class of filter-based methods. The
main idea of the proposed approach is to select relevant features considering the
community structure of feature correlation networks. A feature correlation network
is a weighted graph where nodes correspond to features and links represent the
strongest correlations among them. Feature correlation networks used in our fea-
ture selection method are conceptually similar to weighted correlation networks
used in the analysis of genomic datasets [11,17] with one important difference:
a class variable (a special feature denoting the class of a data instance) is not
represented by a node in the corresponding feature correlation network, but to
each node in the feature feature correlation network is associated a number which
specifies the strength of association between the corresponding feature and the
class variable.

A community (cluster, module or cohesive group) of a weighted network is
a subset of nodes such that links within the community tend to be significantly
stronger than links connecting nodes from the community with the rest of the
network [20]. We say that a network has a community structure if the set of
nodes can be partitioned into communities. The existence of communities is a typ-
ical feature of complex networks from various domains [2,19,28]. Their automatic
identification is enabled by various community detection techniques proposed in
the literature [7,29]. The identification of communities in a complex network en-
ables us to study its structure on a higher level of abstraction by constructing
and analyzing its coarse-grained description (the networks of communities). Our
feature selection approach relies on community detection techniques to identify
communities of features such that correlations within a feature community are
stronger than correlations between features belonging to different communities.
Then, one or more features strongly associated to the class variable are selected
to represent each identified community taking into account the number of nodes
and connections within feature communities.

The rest of the paper is structured as follows. Related work is presented in
Section 2. The proposed method for feature selection is described in Section 3.
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The evaluation of the method is given in Section 4. The last section concludes the
paper and gives directions for possible future work.

2 Related Work

Feature selection is a common data mining preprocessing step, which aims at
reducing the dimensionality of the original dataset. Adequate selection of features
has numerous advantages [27] such as simplification of learning models, improving
the performance of learning algorithms, data reduction (avoidance of the curse of
dimensionality), improved generalization by reducing overfitting, and so on.

Wrapper-based feature selection methods estimate usefulness of features using
the selected learning algorithm. These methods usually give better results than
filter methods since they are adapting their result to a chosen learning algorithm.
However, since a learning algorithm is employed to evaluate each subset of fea-
tures, wrapper methods are very time consuming and almost unusable for high
dimensional data. Furthermore, since the feature selection process is tightly inter-
connected with a learning algorithm, wrappers are less general than filters and have
the increased risk of overfitting. On the other hand, filter methods do not utilize
the learning algorithm in the feature selection process. They are commonly based
on scoring metrics such as the correlation with the variable to predict. These meth-
ods are generally many times faster than wrappers and robust to overfitting [10].
Recently, some embedded methods are introduced [15] which try combine the pos-
itive characteristics of both previous methods.

Relying on the characteristics of data, filter models evaluate features without
utilizing any classification algorithms. Usually, a filter algorithm has two steps:
it ranks features based on certain criteria and then it selects the features with
highest rankings [6]. To address the first step, a number of performance criteria
have been proposed for filter-based feature selection. Correlation based Feature
Selection (CFS) is a simple filter algorithm that ranks features according to a
feature-class correlation [10]. The fast correlated-based filter (FCBF) method [36]
is based on symmetrical uncertainty, which is defined as the ratio between the
information gain and the entropy of two features. The INTERACT algorithm [38]
uses the same goodness measure as FCBF filter, and it also includes the consistency
contribution as an indicator about how significantly the elimination of particular
feature will affect accuracy. The original RELIEF [12] and its variants [25,31]
algorithms estimate the quality of attributes according to how well their values
distinguish between instances that are near to each other but belong to different
classes.

Recently, several approaches proposed feature clustering in order to avoid selec-
tion of redundant features [3,14,33]. The authors in [32] proposed Fast clustering-
bAsed feature Selection algoriThm (FAST). Here, the features are divided into
clusters by using graph-theoretic clustering methods and the final subset of fea-
tures is selected by choosing the most representative feature that is strongly re-
lated to target classes from each cluster. Similarly, the approach in [37] proposed
hyper-graph clustering to extract maximally coherent feature groups from a set of
objects. Furthermore, this approach neglects the assumption that the optimal fea-
ture subset is formed by features that only exhibit pairwise interactions. Instead
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of that, they use multidimensional interaction information which includes third or
higher order dependencies feature combinations in final selection.

Compared to existing graph-based and clustering-based feature selection meth-
ods, our approach leans on community detection techniques to cluster graphs that
describe the strongest correlations among features. Additionally, the approach
takes into account the size of identified communities. In contrast to traditional
graph partitioning and data clustering techniques, a majority of community de-
tection techniques are not computationally demanding and they do not require to
specify the number of clusters in advance [7].

3 FSFCN: Feature Selection based on Feature Correlation Networks

The feature selection method proposed in this paper, denoted by FSFCN, is based
on the notion of feature correlation networks. A feature correlation network de-
scribes correlations between features in a dataset that are equal to or higher than a
specified threshold. To formally define feature correlation networks, we will assume
that a dataset is composed of data instances having numeric features and a cat-
egorical class variable. However, the below given definition of feature correlation
networks can be adapted in a straightforward manner for other types of datasets
(categorical features, a mix of categorical and numeric features, continuous class
variable) by taking appropriate correlation measures.

Definition 1 (Feature Correlation Network) Let D be a dataset composed
of data instances described by k real-valued features f1, f2, . . . , fk ∈ R and a
categorical class variable c. Let Cf : R×R→ [−1, 1] denote a correlation measure
applicable to features (e.g, the Pearson or Spearman correlation coefficient) and
let Cc be a correlation measure applicable to a feature and the class variable (e.g.,
the mutual information, the Goodman-Kruskal index, and so on). The feature
correlation network corresponding to D is an undirected, weighted, attributed
graph G = (V,E) with the following properties:

– The set of nodes V corresponds to the set of features (fi ∈ V for each i in
[1 .. k]).

– Two features fi and fj , i 6= j, are connected by an edge ei,j in G, ei,j ∈ E,
if |Cf (fi, fj)| ≥ T , where T is a previously specified threshold indicating a
significant correlation between two features. The weight of ei,j is equal to
|Cf (fi, fj)|.

– Each node in the network has a real-valued attribute reflecting its association
with the class variable measured by Cc.

The features in D can be ranked according to the measure Cc and the top
ranked features can be considered as the most relevant for training a classifier.

Definition 2 (Subset of Relevant Features) A subset Fr of the set of features
F is called relevant if (∀f ∈ Fr)Cc(f) ≥ R, where R is a feature relevance threshold
indicating a significant association between a feature and the class variable.

Definition 3 (Pruned Feature Correlation Network) A pruned feature cor-
relation network is a feature correlation network constructed from a subset of
relevant features.
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Our implementation of the FSFCN method1 for datasets with real-valued fea-
tures and categorical class variables uses pruned feature correlation networks that
are constructed without explicitly stating the threshold indicating a significant
correlation between two features (T ). This means that the FSFCN algorithm has
only one parameter – the feature relevance threshold R separating relevant from
irrelevant features. Additionally, the FSFCN method instruments the Spearman
correlation coefficient to determine correlations among relevant features (the Cf

measure), while correlations between relevant features and the class variable are
quantified by their mutual information (the Cc measure). The mutual information
between a real-valued feature f and the categorical class variable c, denoted by
I(f, c), can be approximated by

I(f, c) ≈
∑
y∈c

∑
x∈f ′

p(x, y)log

(
p(x, y)

p(x)p(y)

)
,

where f ′ is the set of discrete values obtained by a discretization of f , p(x, y)
is the joint probability distribution function of f ′ and c, and p(x) and p(y) are
the marginal probability distribution functions of f ′ and c, respectively. I(f, c)
equal to 0 means that f and c are totally unrelated. A higher value of I(f, c)
implies a stronger association between f and c. The JavaMI library2 is used in
our implementation of the FSFCN method to discretize continuous features and
compute the mutual information between features and the class variable. For the
default value of R we use 0.05 which means that features having I(f, c) lower than
0.05 are by default treated as irrelevant.

The algorithm for constructing pruned feature correlation networks consists of
the following steps (see Algorithm 1):

1. The subset of relevant features Fr is determined using the mutual information
measure. Then, the nodes of the network are created such that each node
corresponds to one feature from Fr.

2. In the second step, the algorithm forms a list L containing tuples in the form
(fi, fj , Sij) for each pair of relevant features fi and fj , where Sij denotes the
value of the Spearman correlation coefficient between features fi and fj .

3. L is sorted by the third component of its elements (Sij) in the decreasing
order, i.e. the first element of the sorted list is the pair of features exhibiting
the highest correlation, while the last element is the pair of features with the
lowest correlation.

4. In the last step, the algorithm forms the links of the network by iterating
through the sorted list L beginning from the first element. In each iteration, for
the currently processed element ek = (fi, fj , Sij) the algorithm creates a link
lij between fi and fj with weight Sij . If the addition of lij into the network
results in a connected graph (i.e., a graph that has exactly one connected
component or, equivalently, a graph in which there is a path between each
pair of nodes) then the algorithm stops, otherwise it goes to the next element
in the sorted list and repeats the previous link creation step. In other words,
the algorithm iteratively builds the network by connecting features having the
highest correlation until the network becomes a connected graph. Consequently,
the weight of the last added link determines the value of the threshold T .

1 The source code of FSFCN can be downloaded from https://github.com/milsav/FSFCN
2 https://github.com/Craigacp/JavaMI
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Algorithm 1: Construction of pruned feature correlation net-
works
input : D, R

D – a dataset with real-valued features F = {f1, f2, . . . , fk} and a categorical class
variable c
R – the feature relevance threshold separating relevant from irrelevant features

output: G = (V,E), T

G – the pruned feature correlation network of D
T – the threshold indicating a significant correlation between features

// determine relevant features and form nodes in G
Fr := an empty set of relevant features
foreach f ∈ F do

m := the value of the mutual information of f and c
if m ≥ R then

Fr := Fr ∪ {f}
end

end
V := Fr

// compute the Spearman correlation for each pair of relevant features
L := an empty list of tuples (fi, fj , s)
foreach (fi, fj) ∈ Fr × Fr, i 6= j do

s := the value of the Spearman correlation for fi and fj
add (fi, fj , s) to L

end

sort L in the decreasing order of the Spearman correlation between paired features

// form links in the pruned feature correlation network
i := 1
cont := true
while cont do

s := the first component of L[i]
d := the second component of L[i]
w := the third component of L[i]
l := create a link between s and d with weight w
E := E ∪

{
l
}

i := i + 1
T := w
cont := G is not a connected graph

end

return G, T

The basic idea of the FSFCN method is to cluster a pruned feature correlation
network in order to obtain cohesive groups of relevant features such that correla-
tions among features within a group are stronger than correlations among features
belonging to different groups. The FSFCN method leans on community detection
techniques to identify clusters in feature correlation networks. The development
of community detection techniques started with Newman and Girvan [21] who
introduced a measure called modularity to estimate the quality of a partition of a
network into cohesive node groups. The main idea behind the modularity measure
is that a subgraph can be considered as a community if the actual number of links
connecting nodes within the subgraph is significantly higher than the expected
number of links in the same subgraph according to some null random graph model.
In the case of weighted networks, the modularity measure accumulates differences
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between the total weight of links within a community and the mathematical ex-
pectation of the previous quantity with respect to a random network having the
same distributions of node degrees and link weights [20].

Definition 4 (Modularity) The modularity of a partitioned weighted network,
denoted by Q, is defined as

Q =

nc∑
c=1

[
Wc

W
−
(

Sc

2W

)2
]
,

where nc is the number of communities in the network, Wc is the sum of weights
of intra-community links in c, Sc is the total weight of links incident with nodes
in c, and W is the total weight of links in the network.

Four different community detection algorithms provided by the iGraph li-
brary [5] are used in our implementation of the FSFCN method to detect non-
overlapping communities in feature correlation networks:

1. The Greedy Modularity Optimization (GMO) algorithm [4]. This algorithm
uses a greedy hierarchical agglomeration strategy to maximize modularity. The
algorithm starts with the partition in which each node is assigned to a singleton
cluster. In each iteration of the algorithm, the variation in modularity obtained
by merging any two communities is computed. The merge operation that max-
imally increases (or minimally decreases) modularity is chosen and the merge
of corresponding clusters is performed.

2. The Louvain algorithm [1]. This method is an improvement of GMO. The
Louvain algorithm is based on a greedy multi-resolution strategy to maximize
modularity starting from the partition in which all nodes are put in differ-
ent communities. When modularity is optimized locally by moving nodes to
neighboring clusters, the algorithm creates a network of communities and then
repeats the same procedure on that network until a maximum of modularity
is obtained.

3. The Walktrap algorithm [22]. This algorithm relies on a node distance measure
reflecting probability that a random walker moves from one node to another
node in exactly k steps (k is the only parameter of the algorithm with the
default value k = 4). The clustering dendrogram is constructed by the Ward’s
agglomerative clustering technique and the partition which maximizes modu-
larity is taken as the output of the algorithm.

4. The Infomap algorithm [26]. This method reveals communities by optimally
compressing descriptions of information flows on the network. The algorithm
uses a greedy strategy to minimize the map equation which reflects the ex-
pected description length of a random walk on a partitioned network.

Each of the previously mentioned community detection algorithms defines one
concrete implementation instance (i.e. one variant) of the FSFCN method.

The final step in the FSFCN method is the selection of features according to
the obtained community partition of the pruned feature correlation network. The
main idea is to select one or more features within each community such that:

1. selected features have a strong association with the class variable, and
2. any two selected features belonging to the same community are not directly

connected in the pruned feature correlation network.
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Algorithm 2: The FSFCN algorithm

input : D, R, CDA
D – a dataset with real-valued features F = {f1, f2, . . . , fk} and a categorical class
variable c
R – the feature relevance threshold separating relevant from irrelevant features
CDA – a community detection algorithm

output: S – the set of selected features

// form the pruned feature correlation network corresponding to D
G,T := Algorithm1(D,R)

C := set of clusters in G obtained by CDA

S := an empty set
foreach c ∈ C do

(Vq , Eq) := the subgraph of G induced by nodes in c
while Vq 6= is not empty do

// determine feature having the highest mutual information
// with the class variable
f := argmaxx∈Vq

Cc(x)

// remove f and its neighbors from (Vq , Eq)
Vr :=

{
a ∈ Vq : {f, a} ∈ Eq

}
∪ {f}

Er :=
{
{a, b} ∈ Eq : a ∈ Vr ∨ b ∈ Vr

}
Vq := Vq \ Vr

Eq := Eq \ Er

// add f to the set of selected features
S := S ∪ {f}

end

end

The pseudo-code describing the FSFCN feature selection is shown in Algo-
rithm 2. After the pruned correlation network is constructed and clustered, the
FSFCN method forms subgraphs of the network corresponding to identified com-
munities where one subgraph is induced by nodes belonging to one community.
The following operations are performed for each community subgraph:

1. A feature having the highest association with the class variable is identified and
put in the set of selected features. Then, it is removed from the community
subgraph together with its neighbors.

2. The previous step is repeated until the community subgraph becomes empty.

In other words, for each feature community the FSFCN method selects one or
more features that represent the whole community. The method also takes into
account the size of communities – a higher number of features is selected for larger
feature communities. When a feature is added to the set of selected features its
neighbors are removed from the community subgraph which means that the set of
selected features will not contain features having a high mutual correlation (such
two features are directly connected in the community subgraph).
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4 Experiments and Results

The experimental evaluation of the FSFCN feature selection method was per-
formed on a dataset with 120 plasma signaling protein features related to the
diagnosis of the Alzheimer’s disease [24]. The class variable indicates whether a
patient was diagnosed with Alzheimer’s or not. The total number of instances in
the dataset is equal to 176 where 64 data instances correspond to patients diag-
nosed with Alzheimer’s.

We performed feature selection using 4 variants of the FSFCN method. Each
of those variants relies on a different community detection technique to cluster
feature correlation networks. The variants of the FSFCN method are denoted by:

1. FG – the FSFCN method with the Fast Greedy Modularity Optimization
(GMO) community detection algorithm,

2. LV – the FSFCN method with the Louvain algorithm,
3. WT – the FSFCN method with the Walktrap algorithm, and
4. IM – the FSFCN method with the Infomap algorithm.

The effectiveness of the FSFCN method is investigated by analyzing perfor-
mance of seven classifiers trained without feature selection and after feature se-
lection by different FSFCN variants and four other methods implemented in the
WEKA machine learning library [35,8]. More specifically, the FSFCN method is
compared with one feature subset selection and three feature ranking methods:

1. CFS – the correlation-based feature subset selection method proposed by Hall
et al. [10],

2. GAINR – the feature ranking method based on the gain ratio measure,
3. INFOG – the feature ranking method based on the information gain measure,

and
4. RFF – the ReliefF feature ranking method [12,13].

The WEKA machine learning library is also exploited to train and evaluate clas-
sifiers. The classification models used in the experimental evaluation are denoted
by:

1. RF – the random forest classifier,
2. J48 – the C4.5 decision tree classifier,
3. LMT – the logistic model tree classifier,
4. JRIP – the RIPPER rule induction classifier,
5. LOGR – the logistic regression classifier,
6. SMO – the Support Vector Machine classifier, and
7. NB – the Naive Bayes classifier.

The default WEKA values are used for parameters of previously mentioned clas-
sification learning and feature selection methods. The performance of classifiers
is compared using the classification accuracy measure (the fraction of correctly
classified data instances).

4.1 Community structure in feature correlation networks

We firstly examined whether pruned feature correlation networks of our exper-
imental dataset obtained at different values of the feature relevance threshold
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parameter (denoted by R) exhibit a significant community structure since this the
main assumption of the FSFCN feature selection method. We use M to denote
the maximum value of R for which the corresponding pruned feature correlation
network contains at least one link. For our experimental dataset we have obtained
M = 0.14.

We applied the community detection algorithms used in different variants of
the FSFCN method (Walktrap, GMO, Louvain and Infomap) to a sequence of
pruned feature correlation networks formed by varying parameter R from 0 (no
feature pruning) to M with a step size of 0.01. The basic characteristics of the
pruned feature correlation networks (the number of nodes and links) and identified
community partitions (the number of communities) are summarized in Table 1. It
can be observed that Walktrap, GMO and Louvain identified community partitions
containing more than one community for R < 0.13. The number of identified
communities varies from 2 to 10 in the case of Walktrap and from 2 to 5 in the case
of GMO and Louvain. On the other hand, the Infomap algorithm for a majority
of R values (R ∈ [0.03, 0.08] and R > 0.11) identified exactly one community
containing all the features present in the corresponding pruned feature correlation
network.

Table 1 Characteristics of community structure in the feature correlation networks identified
by four community detection algorithms. R – the feature relevance threshold, N and L –
the number of nodes and links in the pruned feature correlation network, C – the number of
identified communities, p – the probability that a randomly selected intra-community link has
a higher weight than a randomly selected inter-community link. The bullet mark (•) indicates
that intra-community links tend to have significantly higher weights according to the Mann-
Whitney U test.

Walktrap GMO Louvain Infomap

R N L C p C p C p C p

0 120 1290 9 0.61• 5 0.59• 5 0.61• 5 0.65•
0.01 112 1109 9 0.61• 4 0.59• 4 0.63• 6 0.63•
0.02 90 786 10 0.61• 5 0.60• 4 0.65• 5 0.68•
0.03 56 535 6 0.65• 4 0.65• 3 0.64• 1
0.04 43 245 2 0.62• 3 0.65• 4 0.65• 1
0.05 35 161 7 0.65• 4 0.64• 4 0.64• 1
0.06 27 106 6 0.66• 4 0.65• 5 0.63• 1
0.07 21 102 3 0.58 2 0.66• 2 0.66• 1
0.08 15 48 3 0.83• 2 0.79• 2 0.79• 1
0.09 10 15 3 0.40 3 0.40 3 0.40 2 1
0.10 9 13 2 1.00 3 0.40 3 0.40 2 1
0.11 8 10 2 1.00 3 0.25 3 0.25 2 1
0.12 7 7 2 1.00 2 1.00 2 1.00 1
0.13 5 5 1 2 0.00 2 0.00 1
0.14 3 2 1 1 1 1

After performing community detection, the links in a pruned feature correlation
network can be divided into two groups:

1. intra-community links – links connecting features belonging to the same com-
munity, and

2. inter-community links – links connecting features that are in different commu-
nities.



Feature selection based on community detection in feature correlation networks 11

A good partition of a weighted network into communities should exhibit a signifi-
cant value of the weighted modularity measure (Q� 0). Secondly, the weights of
the intra-community links should be significantly higher than the weights of the
inter-community links. Figure 1 shows the value of weighted modularity for iden-
tified community partitions of pruned feature correlation networks constructed at
different feature relevance thresholds. It can be seen that Walktrap, GMO and
Louvain detected community partitions with a significant weighted modularity
(Q > 0.2) in pruned feature correlation networks obtained at R ≤ 0.6.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 0 . 1 2 0 . 1 4
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
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 G M O
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 I n f o m a p

Q 
(m

od
ula

rity
)

R  ( f e a t u r e  r e l e v a n c e  t h r e s h o l d )

Fig. 1 The value of the weighted modularity measure for community partitions identified
by four community detection algorithms (Walktrap, GMO, Louvain and Infomap) in pruned
feature correlation networks formed at different feature relevance thresholds.

We used the Mann-Whitney U (MWU) test [18] to examine whether intra-
community links tend to have higher weights than inter-community links. Let

W intra and W inter denote the weight of a randomly selected intra-community
and inter-community link, respectively. The MWU test can be instrumented to
test the null hypothesis that

P
(
W intra > W inter) = P

(
W inter > W intra)

against the alternative hypothesis that

P
(
W intra > W inter) > P

(
W inter > W intra),

where

– P
(
W intra > W inter) is the probability of superiority of intra-community links

over inter-community links with respect to link weights, i.e. the probability that
a randomly selected intra-community link has a higher weight than a randomly
selected inter-community links, and

– P
(
W inter > W intra) is the opposite probability of superiority.
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The obtained values of P
(
W intra > W inter) are also shown in Table 1. The

probability of superiority of intra-community links is higher than 0.5 for all non-
trivial community partitions (partitions containing more than one community)
identified in pruned feature correlation networks corresponding to R ≤ 0.08 which
implies that

P
(
W intra > W inter) > P

(
W inter > W intra).

The application of the MWU test revealed that the null hypothesis of equal prob-
abilities of superiority can be rejected in favor of the alternative hypothesis for
all non-trivial community partitions in pruned feature correlation networks ob-
tained at R ≤ 0.08, except for the community partition identified by the Walktrap
algorithm in the pruned feature correlation network obtained at R = 0.07. The
null hypothesis of the equal probabilities of superiority is also rejected for com-
munity partitions identified by Infomap in pruned feature correlation networks
obtained at R < 0.03. However, those community partitions exhibit an extremely
low value of the weighted modularity measure (Q < 0.05) suggesting that they con-
tain one giant and several small-size communities. Indeed, the fraction of nodes
in the largest community identified by Infomap in the pruned feature correlation
networks obtained at R < 0.03 varies from 0.85 to 0.89 implying the presence of
a giant community encompassing the vast majority of relevant features. On the
other hand, the fraction of nodes in the largest community identified by Walktrap,
GMO and Louvain in pruned feature correlation network obtained at R ≤ 0.06
varies from 0.25 to 0.56 implying that those three community detection algorithms
identified relatively balanced community partitions. Summarizing all findings, it
can be concluded that pruned feature correlation networks of our experimental
dataset obtained at R ≤ 0.6 exhibit a moderately strong community structure
characterized by (1) a significant modularity, (2) the tendency of intra-community
links to be more stronger than inter-community links, and (3) relatively balanced
communities in terms of their size.

The pruned feature correlation network of our experimental dataset obtained
at the default value of the feature relevance threshold (R = 0.05) contains 35
nodes which means that 35 out of 120 features exhibit a significant association
with the class variable in terms of mutual information. Those 35 nodes represent-
ing relevant features are connected by 161 links which implies that a randomly
selected relevant feature has a significant correlation with 9.2 other relevant fea-
tures on average. The maximal and minimal absolute value of link weights are 0.72
and 0.32, respectively, which means that there are moderate to strong Spearman
correlations among relevant features. The results of community detection on the
pruned feature correlation network obtained at the default value of the R param-
eter are summarized in Table 2. To compare obtained community partitions we
computed the Rand index [23] for each pair of them. It can be noticed that GMO
and Louvain identified the same number of communities with the same value of
the weighted modularity measure and the same distribution of community sizes.
Actually, those two methods identified exactly the same communities – the Rand
index for the community partitions obtained by GMO and Louvain is equal to 1.
The Walktrap method identified a partition with a higher number of communities
and a lower value of weighted modularity compared to GMO/Louvain. The Rand
index between partitions obtained by Walktrap and GMO/Louvain is equal to
0.79 indicating that those two community partitions are highly similar. Finally, it
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can be seen that Infomap failed to identify communities in the network, i.e. this
method identified one community encompassing all nodes in the network.

Table 2 Results of the community detection for the pruned feature correlation network ob-
tained at the default value of the feature relevance threshold (R = 0.05). C – the number
of identified communities, Q – the value of the weighted modularity measure, S – the vector
giving the size of identified communities.

Algorithm C Q S

GMO 4 0.275 (14, 8, 7, 6)
Louvain 4 0.275 (14, 8, 7, 6)
Walktrap 7 0.218 (13, 8, 5, 5, 2, 1, 1)
Infomap 1 0 (35)

The features selected by different variants of the FSFCN method from the
full experimental dataset at the default value of the feature relevance threshold
parameter are shown in Table 3. FG and LV selected the same features since com-
munity partitions obtained by the corresponding community detection algorithms
are identical. It can be observed that each FSFCN variant greatly reduced the
dimensionality of the dataset – the number of selected features varies from 7 to
12. On the other hand, the CFS method implemented in WEKA applied to the
full experimental dataset selected a higher number of features (25 features).

Table 3 The features selected by four different variants of the FSFCN method from the full
dataset at the default value of the feature relevance threshold (R = 0.05). Feature ranks are
determined according to the mutual information with the class variable.

FG/LV WT IM

Rank Rank Rank

IL-1a 1 IL-1a 1 IL-1a 1
IL-8 2 TNF-a 3 PDGF-BB 7
TNF-a 3 GCSF 6 sTNF RI 12
PDGF-BB 7 PDGF-BB 7 Eotaxin 15
sTNF RI 12 sTNF RI 12 MCP-2 17
VEGF-B 14 Eotaxin 15 IGFBP-2 23
Eotaxin 15 SCF 16 TPO 31
MIP-1d 19 MIP-1d 19
IGFBP-2 23 CTACK 22

IGFBP-2 23
BTC 30
TPO 31

We formed the reduced datasets containing those features selected by different
variants of the FSFCN and WEKA CFS feature selection algorithms applied to
the full experimental dataset. Then, we trained and evaluated the considered clas-
sifiers on the full and reduced datasets using the stratified 10-fold cross-validation
procedure implemented in the WEKA library. The obtained classification accu-
racies are shown in Table 4. It can be observed that the classifiers trained on
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the full dataset tend to exhibit the lowest classification accuracy. The classifiers
trained on the dataset containing features selected by the WEKA CFS method
constantly performed better than the classifiers trained on the full dataset. On
the other hand, the classifiers trained on the datasets containing features selected
by FG/LV and WT exhibited a better classification performance compared to the
classifiers trained on the full dataset except in one case. Namely, the accuracy
of LMT without feature selection is equal to the accuracy of the same classifier
trained on the reduced datasets containing features selected by FG/LV and WT.
Consequently, we can say that the feature selection based on properly clustered
feature correlation networks does not decrease the performance of all considered
classifiers while notably reducing the dimensionality of the dataset.

Table 4 The accuracy of classifiers trained on the reduced datasets containing features se-
lected by different FSFCN variants applied to the full dataset. The column FULL corresponds
to classifiers trained on the full dataset, while the column WEKA-CFS corresponds to classi-
fiers trained on the dataset containing features selected by the CFS feature selection method
from WEKA (also applied to the full dataset). One star indicates the lowest performance,
while two stars indicate the highest performance.

FULL WEKA-CFS FG/LV WT IM

RF 0.82 0.85** 0.82 0.85** 0.79*
J48 0.74* 0.77 0.77 0.81** 0.74*
LMT 0.84 0.85** 0.84 0.84 0.83*
JRIP 0.72* 0.81** 0.79 0.78 0.75
LOGR 0.73* 0.81 0.85** 0.85** 0.84
SMO 0.82* 0.83 0.84 0.86** 0.85
NB 0.78* 0.84 0.88** 0.88** 0.84

The next important result that can be observed in Table 4 is that the IM variant
of the FSFCN method exhibits the worst classification performance compared to
other three FSFCN variants. The IM variant in this case is actually equivalent to
the FSFCN method without the clustering step since IM identified exactly one
community encompassing all features in the pruned feature correlation network
corresponding to R = 0.05. Consequently, it can be concluded that clustering of
pruned feature correlation networks enables a better selection of relevant features.

The best performing classifier trained without feature selection is LMT, achiev-
ing accuracy of 0.84. The best classifiers trained on the reduced dataset containing
features selected by WEKA CFS are RF and LMT, achieving accuracy of 0.85.
On the other hand, the classifier with the highest accuracy is NB trained on the
reduced dataset containing features selected by three different variants of the FS-
FCN method. Finally, the classifiers trained on the reduced dataset containing
features selected by the WT variant of the FSFCN method tend to exhibit the
best overall performance.

4.2 Effectiveness of the FSFCN method

To evaluate the effectiveness of the FSFCN feature selection method, we deter-
mined the average number of selected features and the accuracy of classifiers
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trained after FSFCN feature selection variants for different values of the feature
relevance threshold parameter. In contrast to the experiments described in Sec-
tion 4.1, the FSFCN feature selection was not conducted once on the full exper-
imental dataset, but several times on parts of the dataset. More specifically, for
each value of the feature relevance threshold in the range [0, 0.14] with a step size
of 0.01, a stratified 10-fold cross-validation procedure was used to determine the
accuracy of classifiers after FSFCN feature selection performed over 9 folds that
are used to train classifiers. The experimental dataset was divided into stratified
folds using the WEKA library. Then, the accuracy of classifiers trained after FS-
FCN feature selection was compared to the accuracy of baseline classifiers trained
without feature selection.

Figure 2 shows the average number of selected features by different FSFCN
variants at different feature relevance thresholds. As expected, the number of se-
lected features decreases with R due to smaller pruned feature correlation net-
works. We can see that the average number of selected features decreases from
maximally 27.3 for R = 0 (no feature pruning) to maximally 2.3 for R = 0.14,
which means that all four variants of the FSFCN feature selection method greatly
reduce the dimensionality of the experimental dataset (the number of features in
the dataset is equal to 120).
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Fig. 2 The average number of selected features by different FSFCN variants at different
feature relevance thresholds.

The classification accuracy of JRIP and NB after the FSFCN feature selection
variants is shown in Figure 3. It can be observed that all FSFCN variants for
R > 0 improve the accuracy of JRIP compared to the baseline JRIP classifier
trained without feature selection. For R = 0, JRIP classifiers trained after FG and
WT exhibit a lower accuracy than the baseline JRIP classifier. On the other hand,
JRIP classifiers trained after LW and IM at R = 0 have a better accuracy compared
to the baseline JRIP classifier. The maximum accuracy of JRIP is achieved after
feature selection by the IM FSFCN variant at R = 0.03. It is equal to 0.81 which is
9 percentage points higher than the accuracy of the JRIP baseline classifier (0.72).
Similarly as for JRIP, all FSFCN feature selection variants improve the accuracy
of NB, except in a small number of cases corresponding to extremely small and
extremely high values of the feature relevance threshold. The highest accuracy
of NB is achieved after feature selection by IM at R = 0.04 and it is equal to
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0.85, which is an increase of 13 percents compared to the NB baseline classifier
trained without feature selection. It is also interesting to observe that JRIP and
NB after the IM FSFCN variant tend to have a better classification accuracy
compared to the same classifiers trained after feature selection by other three
FSFCN variants. This suggests that the Infomap community detection algorithm
performs drastically better on reduced datasets (9 folds) than on the full dataset
where it failed to identify feature communities.
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Fig. 3 The accuracy of JRIP (a) and NB (b) trained after feature selection by 4 variants of
the FSFCN method. The solid horizontal line denotes the accuracy of the classifiers trained
without feature selection.

Figure 4 shows the accuracy of J48, RF and SMO classification models after
FSFCN feature selection. It can be seen that all FSFCN variants for R in the inter-
val [0.04, 0.07] improve the accuracy of J48 compared to the baseline J48 classifier.
However, J48 classifiers trained after all FSFCN variants for large values of the
feature relevance threshold (R > 0.08) exhibit a lower accuracy than the baseline
J48 classifier. For small feature relevance thresholds (R < 0.04) the situation is
mixed:

1. IM improves the accuracy of J48,
2. J48 classifiers trained after LV exhibit either a higher or equal accuracy com-

pared to the J48 baseline classifier, and
3. the J48 baseline classifier has a higher accuracy than J48 classifiers trained

after FG and WT.

A mixed situation can be also observed regarding the accuracy of SMO classifiers:

1. LV improves the accuracy of SMO for R in the range [0.04, 0.08] and for R
equal to 0 and 0.02,

2. IM improves the accuracy of SMO for R in the range [0.04, 0.06] and for R
equal to 0 and 0.08,

3. FG and WT improve the accuracy of SMO in only 4 (out of 15) cases of
different R values, and

4. the SMO classifiers trained after FSFCN variants at R ≥ 0.09 exhibit a lower
accuracy than the baseline SMO classifier trained without feature selection.
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The FSFCN feature selection method is not very successful in combination with
the RF classification model on our experimental dataset. The baseline RF classifier
has a higher accuracy than RF classifiers trained after all FSFCN feature selection
variants for R > 0.07. Feature selection by FG, LV and LT in a very small number
of cases (less than 3) slightly increase the accuracy of RF. On the other hand,
RF classifiers trained after IM for R ≤ 0.07 exhibit a better or equal accuracy
compared to the baseline RF classifier.
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Fig. 4 The accuracy of J48 (a), RF (b) and SMO (c) trained after feature selection by 4
variants of the FSFCN method. The solid horizontal line denotes the accuracy of classifiers
trained without feature selection.

The impact of the FSFCN feature selection on the accuracy of LMT and LOGR
is shown in Figure 5. It can be observed that FSFCN feature selection in opposite
ways affects the accuracy of LMT and LOGR:

– The accuracy of LOGR after feature selection by all FSCFN variants through
the whole range of R values is higher than the accuracy of the LOGR baseline
classifier trained without feature selection. The highest accuracy of LOGR
equals 0.84 and it is achieved after IM feature selection at R = 0.04. On the
other hand, the accuracy of the LOGR baseline classifier is 0.73, which is 11
percentage points lower than the highest observed accuracy.
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– The accuracy of LMT after feature selection by all FSFCN variants through
the whole range of R values is lower than the accuracy of the LMT baseline
classifier, except in two cases (IM at R = 0.04 and R = 0.06) where the
accuracy of LMT after FSFCN feature selection is equal to the accuracy of the
LMT baseline classifier.
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Fig. 5 The accuracy of LMT (a) and LOGR (b) trained after feature selection by 4 variants
of the FSFCN method. The solid horizontal line denotes the accuracy of classifiers trained
without feature selection.

Summarizing the findings presented in this section, it can be concluded that
all variants of the FSFCN method determined by different community detection
techniques greatly reduce the dimensionality of the dataset and at the same time
notably improve the accuracy of LOGR, JRIP and NB classifiers. Secondly, the
classification accuracy of all considered classification models, except LMT, can be
increased after feature selection by one or more variants of the FSFCN method.

4.3 Comparative analysis of FSFCN with other feature selection methods

We also compared the variants of the FSFCN method to four other widely used
feature selection methods (CFS, GAINR, INFOG and RFF to which we refer as
the baseline feature selection methods) by analyzing the performance of seven clas-
sifiers trained after feature selection. The experimental procedure used to compare
FSFCN with baseline feature selection methods is described in Algorithm 3.

The accuracy of each considered classifier in combination with each examined
feature selection method was determined by 10 runs of a stratified 10-fold cross-
validation process. This means that 100 instances of each classifier were trained
for each feature selection method. As in the previous experiment, feature selec-
tion and classification training were performed over 9 folds in each cross-validation
step, while the accuracy of classifiers was computed relying on the remaining fold.
The WEKA library was used to form 10 different divisions of the experimental
dataset into stratified folds, select features by baseline methods with the default
WEKA values for their parameters, train classifiers and evaluate their perfor-
mance. The Wilcoxon-signed rank test [34] was utilized to examine whether there
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Algorithm 3: Experimental procedure to compare FSFCN vari-
ants to baseline feature selection methods

Classifiers := {J48, JRIP, LMT, LOGR, NB, RF, SMO}
FSFCNVariants := {FG, IM, LV, WT}
BaselineMethods := {FULL, CFS, GAINR, INFOG, RFF}
// FULL means that a classifier will be trained without feature selection

D := an empty array of dataset divisions into stratified folds
for i := 1 to 10 do

D[i] := divide the experimental dataset into 10 stratified folds
end

foreach (F,B,C) ∈ FSFCNVariants× BaselineMethods× Classifiers do
Af , Ab := empty arrays of real numbers
k := 1
for i := 1 to 10 do

for j := 1 to 10 do
testSet := the j-th fold of D[i]
trainingSet := all folds of D[i] excluding the j-th fold

f := apply F to trainingSet
n := the number of features in f
Cf := train(C, f , trainingSet)
Af [k] := accuracy(Cf , f , testSet)

b := an empty set of features
if B = FULL then

b := all features
else if B is a feature ranking method then

b := top n ranked features by B in trainingSet
else

b := apply B to trainingSet
end
Cb := train(C, b, trainingSet)
Ab[k] := accuracy(Cb, b, testSet)

k := k + 1
end

end
Facc := the average value of Af

Bacc := the average value of Ab

p := apply the Wilcoxon-signed rank test to Af and Ab

if p < 0.05 then
if Facc > Bacc then

C trained after FSFCN variant F has a significantly higher accuracy than
C trained after B

else
C trained after FSCFN variant F has a significantly lower accuracy than
C trained after B

end

end

end

is a statistically significant difference in the accuracy of a classifier trained after
FSFCN variants and after baseline feature selection methods. The default value
of the feature relevance threshold parameter (R = 0.05) was used in all FSFCN
feature selection variants. Finally, classifiers trained after baseline feature ranking
methods (GAINR, INFOG and REF) were trained considering the top k ranked
features, where k is the number of features selected by FSFCN.
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Table 5 shows the results of comparison between the FG variant of FSFCN and
the baseline feature selection methods including also classifiers trained without the
feature selection. It can be observed that FG significantly improves the accuracy
of NB and LOGR classifiers trained without feature selection. Secondly, NB and
LOGR trained after FG significantly outperform the same classifiers trained after
feature selection by CFS and RFF. Additionally, NB after FG exhibits a signifi-
cantly better accuracy than NB trained after all baseline feature selection methods.
The only case in which a baseline feature selection method gives a significantly
better selection of features for a particular classifier is CFS in combination with
RF. Finally, it can be observed that FG outperforms all baseline feature selection
methods in terms of the total number of classification models which perform better
after FG (the FG win-loss scores are shown at the bottom of Table 5).

Table 5 The comparison of the FG FSFCN variant with the baseline feature selection meth-
ods. The down arrow (↓) denotes that a classifiers trained without feature selection (the column
FULL) or trained after a baseline feature selection method has a significantly worse accuracy
than the same classifier trained after FG (according to the Wilcoxon-signed rank test), while
the up arrow (↑) corresponds to the opposite case.

FG FULL CFS GAINR INFOG RFF Best

J48 0.756 0.736 0.749 0.739 0.739 0.750 FG
JRIP 0.766 0.759 0.769 0.766 0.771 0.752 INFOG
LMT 0.830 0.836 0.827 0.817 0.822 0.819 FULL
LOGR 0.836 0.698 ↓ 0.808 ↓ 0.832 0.830 0.810 ↓ FG
NB 0.826 0.777 ↓ 0.799 ↓ 0.801 ↓ 0.790 ↓ 0.792 ↓ FG
RF 0.819 0.823 0.833 ↑ 0.823 0.815 0.817 CFS
SMO 0.826 0.832 0.819 0.828 0.830 0.810 FULL

FG wins 4 5 4 5 7
FG losses 3 2 2 2 0

The results of the comparison between the IM FSCFN variant and the base-
line feature selection methods are summarized in Table 6. It can be seen that
J48, LOGR and NB after IM have significantly higher accuracies than the cor-
responding baseline classifiers trained without feature selection. IM significantly
outperforms CFS for NB and SMO, GAINR and INFOG in the case of J48 and
NB, and RFF for all classifiers except J48. It can be also noticed that all consid-
ered classifiers trained after IM do not never exhibit a significantly lower accuracy
compared to classifiers trained after baseline feature selection methods. To the
contrary, classifiers trained after IM strongly tend to have a higher accuracy than
classifiers obtained after the baseline feature selection methods.

The results of the comparative analysis between the LV FSFCN variant and
the baseline feature selection methods are given in Table 7. The J48 classifier
trained after LV shows a significantly higher accuracy compared to the J48 classi-
fier trained on the full dataset and J48 classifiers trained after all baseline feature
selection methods except RFF. Additionally, LV significantly improves the accu-
racy of NB compared to all baseline feature selection methods. LV also significantly
outperforms CFS in the case of the LOGR classifier. The only case when a baseline
method leads to a significantly better selection of features for a particular classifier
is RF trained after CFS.
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Table 6 The comparison of the IM FSFCN variant with the baseline feature selection meth-
ods.

IM FULL CFS GAINR INFOG RFF Best

J48 0.773 0.736 ↓ 0.749 0.746 ↓ 0.737 ↓ 0.757 IM
JRIP 0.775 0.759 0.769 0.774 0.770 0.750 ↓ IM
LMT 0.830 0.836 0.827 0.818 0.829 0.808 ↓ FULL
LOGR 0.829 0.698 ↓ 0.808 0.829 0.832 0.808 ↓ IM/GAINR
NB 0.850 0.777 ↓ 0.799 ↓ 0.808 ↓ 0.795 ↓ 0.798 ↓ IM
RF 0.830 0.823 0.833 0.819 0.813 0.814 ↓ CFS
SMO 0.834 0.832 0.819 ↓ 0.833 0.825 0.804 ↓ IM

IM wins 6 6 6 6 7
IM losses 1 1 0 1 0

Table 7 The comparison of the LV variant of FSFCN with baseline feature selection methods.

LV FULL CFS GAINR INFOG RFF Best

J48 0.772 0.736 ↓ 0.749 ↓ 0.743 ↓ 0.736 ↓ 0.753 LV
JRIP 0.771 0.759 0.769 0.778 0.777 0.751 ↓ GAINR
LMT 0.834 0.836 0.827 0.822 0.823 0.820 FULL
LOGR 0.840 0.698 ↓ 0.808 ↓ 0.829 0.829 0.818 ↓ LV
NB 0.826 0.777 ↓ 0.799 ↓ 0.802 ↓ 0.799 ↓ 0.797 ↓ LV
RF 0.821 0.823 0.833 ↑ 0.821 0.820 0.817 CFS
SMO 0.833 0.832 0.819 0.823 0.830 0.812 ↓ LV

LV wins 5 6 5 6 7
LV looses 2 1 1 1 0

The comparison of the WT FSFCN variant with the baseline feature selection
methods is summarized in Table 8. As for all previous FSFCN variants, WT out-
performs baseline feature selection methods in terms of the number of classifiers
that have a higher accuracy after WT. It can be also noticed that WT, similarly
to IM and LV variants of the FSFCN method, significantly improves the accuracy
of J48, LOGR and NB compared to the baseline classifiers trained without fea-
ture selection. Statistically significant differences in accuracies of classifiers trained
after WT and baseline feature selection methods are present in the following cases:

1. J48 and NB trained after WT possess a significantly higher accuracy than J48
and NB trained after all baseline feature selection methods.

2. WT significantly outperforms CFS in the case of three classifiers (J48, LOGR
and NB). However, RF trained after CFS exhibits a significantly higher accu-
racy than RF trained after WT.

3. The accuracy of all classification models trained after WT is never signifi-
cantly lower compared to the same models trained after the baseline feature
ranking methods. To the contrary, WT significantly outperforms GAINR for
three classification models, INFOG for two classification models and RFF for
five classification models.
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Table 8 The comparison of the WT variant of FSFCN with baseline feature selection methods.

WT FULL CFS GAINR INFOG RFF Best

J48 0.774 0.736 ↓ 0.749 ↓ 0.740 ↓ 0.741 ↓ 0.749 ↓ WT
JRIP 0.775 0.759 0.769 0.769 0.772 0.754 ↓ WT
LMT 0.830 0.836 0.827 0.815 ↓ 0.823 0.816 ↓ FULL
LOGR 0.831 0.698 ↓ 0.808 ↓ 0.831 0.832 0.813 INFOG
NB 0.827 0.777 ↓ 0.799 ↓ 0.796 ↓ 0.799 ↓ 0.794 ↓ WT
RF 0.820 0.823 0.833 ↑ 0.819 0.818 0.816 CFS
SMO 0.832 0.832 0.819 0.824 0.833 0.809 ↓ INFOG

WT wins 4 6 6 5 7
WT looses 2 1 0 2 0

5 Conclusion and Future Work

In this paper we presented the FSFCN method for feature selection based on
community detection techniques applied to feature correlation networks. Feature
correlation networks are weighted graphs showing the strongest correlations among
features present in a dataset. The first step of FSFCN is the construction of
a pruned feature correlation network for a given value of the feature relevance
threshold parameter. The feature relevance threshold separates relevant from ir-
relevant features, i.e. features having a strong and weak association with the class
variable, respectively, in terms of the mutual information measure. The pruned
feature correlation network is formed incrementally in a greedy manner: links be-
tween features are created in the decreasing order of feature correlations until the
network becomes a connected graph. The crucial idea of FSFCN is to cluster the
pruned feature correlation network using a community detection technique in or-
der to identify groups of features such that correlations between features within
a group tend to be stronger than correlations between features belonging to dif-
ferent groups. Then, one or more features representing each group of features are
selected taking into account correlations of features with the class variable, the
size of feature communities and connections within them.

The experimental evaluation of four variants of the FSFCN method, where each
variant employs a different community detection technique, was conducted on a
highly dimensional dataset (120 features) related to the diagnosis of Alzheimer’s
disease. We firstly demonstrated that pruned feature correlation networks of the
dataset obtained at different feature relevance thresholds exhibit a significant com-
munity structure. Then, we performed feature selection by the FSFCN variants
and the WEKA CFS feature selection method for default values on their param-
eters on the full dataset, created reduced datasets containing selected features
and trained seven classifiers on the full dataset and reduced datasets. The evalua-
tion of classification performance by the 10-fold cross-validation method revealed
that the classifiers trained on the reduced dataset formed by the FSFCN variant
employing the Walktrap community detection algorithm exhibit the best overall
performance. Additionally, the obtained results indicate that clustering of feature
correlation networks yields to a better selection of features for classification pur-
poses.

In the next experiment, we investigated the effectiveness of the FSFCN feature
selection variants at different values of the feature relevance threshold parameter.
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In contrast to the previous experiment, FSFCN feature selection was performed
on a part of the experimental dataset used to train classifiers that were evaluated
using the 10-fold cross-validation method. The obtained results show that all FS-
FCN variants significantly reduce the dimensionality of the experimental dataset.
Secondly, all FSFCN variants are able to improve the classification accuracy of
all considered classification models excluding LMT, being very successful for three
classification models (LOGR, JRIP and NB) for a wide range of feature relevance
threshold values.

Finally, we compared the FSFCN variants to four widely used feature selec-
tion methods implemented in the WEKA library. Ten runs of the stratified 10-fold
cross-validation procedure were performed in order to make statistically sound
comparison of classifiers trained after FSFCN and classifiers trained after refer-
ence feature selection methods. In each cross-validation step, feature selection and
classification training were conducted on 9 folds of the experimental dataset with
default values for parameters of feature selection and classification algorithms,
while the classification accuracy was computed relying on the remaining fold. The
experimental results revealed that all FSFCN variants outperform reference feature
selection methods in terms of the number of classifiers having a higher accuracy
after FSFCN feature selection. Additionally, J48, LOGR and NB classifiers trained
after FSFCN variants tend to have a significantly higher accuracy than classifiers
trained after reference feature selection methods.

The main task in our future work will be to perform a more comprehensive
evaluation of our approach considering high dimensional datasets from various
domains. It is also possible to experiment with additional variants of the method
taking into account other correlation measures and community detection algo-
rithms (including also community detection techniques which identify overlapping
communities). Finally, in this paper we have focused on feature selection in the
context of data classification. In our future work we will also focus on adaptations
of the FSFCN method for data clustering. Currently, the selection of features rep-
resenting communities of features is guided by the mutual information between
a feature and the class variable. We plan to examine different network central-
ity measures instead of the mutual information in order to be able to apply the
method on datasets containing uncategorized data instances and investigate its
performance in this setting.
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30. Savić, M., Kurbalija, V., Ivanović, M., Bosnić, Z.: A feature selection method based on
feature correlation networks. In: Y. Ouhammou, M. Ivanovic, A. Abelló, L. Bellatreche
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