Sanja Konjik


Full Professor


Books

  • Konjik, S., Symmetries in Non-smooth Settings, Generalized Colombeau and Fractional Symmetries, VDM Verlag Dr. Müller, Saarbrücken, 2009.
  • Konjik, S., Dedović, N., Matematika – zbirka zadataka za studente Poljoprivrednog fakulteta, Univerzitet u Novom Sadu, Poljoprivredni fakultet, 2007. (drugo dopunjeno izdanje 2011.)

  • Articles

  • Jolić, M., Konjik, S., Mitrović, D., On the Optimal Controllability of Nonlinear Fractional Systems, submitted, 2023.
  • Jolić, M., Konjik, S., Controllability and observability of linear time-varying fractional systems, Frac. Calc. Appl. Anal., 26, 1709-1739, https://doi.org/10.1007/s13540-023-00171-2, 2023.
  • Jolić, M., Konjik, S., Mitrović, D., On solvability for a class of nonlinear systems of differential equations with the Caputo fractional derivative, Frac. Calc. Appl. Anal., 25, 2126-213, https://doi.org/10.1007/s13540-022-00085-5, 2022.
  • Djordjevic, J., Konjik, S., Mitrović, D., Novak, A., Global controllability for quasilinear non-negative definite system of ODEs and SDEs, J. Optimization Theory Appl., 190, 316-338, 2021.
  • Goles, N., Nerancic, M., Konjik, S., Pajic-Eggspuehler, B., Pajic, B., Cvejic, Z., Phacoemulsification and IOL-Implantation without using viscoelastics: combined modelling of thermo fluid dynamics, clinical outcomes, and endothelial cell density, Sensors, 21(7), 2399, 2021, https://doi.org/10.3390/s21072399
  • Atanacković, T. M., Konjik, S., Pilipović, S., Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian, Acta Mech., 230, 4357-4365, 2019.
  • Konjik, S., Oparnica, Lj., Zorica, D., Distributed order fractional constitutive stress-strain relation in wave propagation modeling, Z. Angew. Math. Phys., 70:51, 10.1007/s00033-019-1097-z, 2019.
  • Atanacković, T. M., Konjik, S., Pilipović, S., Wave equation involving fractional derivatives of real and coplex fractional order, In A. Kochubei, Y. Luchko (Eds.), Handbook of Fractional Calculus with Applications, Volume 2 Fractional Differential Equations, De Gruyter, 327–352, 2019. https://doi.org/10.1515/9783110571660-015
  • Atanacković, T. M., Konjik, S., Pilipović, S., Variational principles with fractional derivatives, In A. Kochubei, Y. Luchko (Eds.), Handbook of Fractional Calculus with Applications, Volume 1 Basic Theory, De Gruyter, 361–384, 2019. https://doi.org/10.1515/9783110571622-015
  • Atanacković, T. M., Janev, M., Konjik, S., Pilipović, S., Complex fractional Zener model of wave propagation in $\R$, Fract. Calc. Appl. Anal., 21(5), 1313-1334, 2018.
  • Atanacković, T. M., Janev, M., Konjik, S., Pilipović, S., Wave equation for generalized Zener model containing complex order fractional derivatives, Contin. Mech. Thermodyn, 29(2), 569–583, 2017.
  • Atanacković, T. M., Konjik, S., Pilipović, S., Zorica, D., Complex order fractional derivatives in viscoelasticity, Mech. Time-Depend. Mater., 20(2), 175-195, 2016.
  • Atanacković, T. M., Janev, M., Konjik, S., Pilipović, S., Zorica, D., Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin-Voigt type, Meccanica, 50(7), 1679-1692, 2015.
  • Hörmann, G., Konjik, S., Kunzinger, M., A regularization approach to non-smooth symplectic geometry, In S. Pilipović, J. Toft (Eds.), Pseudo-Differential Operators and Generalized Functions, Oper. Theory, Adv. Appl., Birkhäuser/Springer, 245, 117-130, 2015.
  • Atanacković, T. M., Janev, M., Konjik, S., Pilipović, S., Zorica, D., Expansion formula for fractional derivatives in variational problems, J. Math. Anal. Appl., 409(2), 911-924, 2014.
  • Hörmann, G., Konjik, S., Kunzinger, M., Symplectic modules over Colombeau-generalized numbers, Commun. Algebra, 42, 3558-3577, 2014.
  • Hörmann, G., Konjik, S., Oparnica, Lj., Generalized solutions for the Euler-Bernoulli model with Zener viscoelastic foundations and distributional forces, Anal. Appl., 11(2), 1350017 (21 pages), 2013.
  • Atanacković, T. M., Konjik, S., Oparnica, Lj., Zorica, D., The Cattaneo type space-time fractional heat conduction equation, Contin. Mech. Thermodyn., 24(4-6), 293-311, 2012.
  • Atanacković, T. M., Konjik, S., Oparnica, Lj., Zorica, D., Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods, Abstr. Appl. Anal., 2011, ID 975694 (32 pages), 2011.
  • Konjik, S., Oparnica, Lj., Zorica, D., Waves in viscoelastic media described by a linear fractional model, Integral Transforms Spec. Funct., 22(4-5), 283-291, 2011.
  • Atanacković, T. M., Dolićanin, D., Konjik, S., Pilipović, S., Dissipativity and stability for a nonlinear differential equation with distributed order symmetrized fractional derivative, Appl. Math. Lett., 24, 1020-1025, 2011.
  • Konjik, S., Oparnica, Lj., Zorica, D., Waves in fractional Zener type viscoelastic media, J. Math. Anal. Appl., 365(1), 259-268, 2010.
  • Atanacković, T. M., Konjik, S., Oparnica, Lj., Pilipović, S., Generalized Hamilton's principle with fractional derivatives, J. Phys. A, Math. Theor., 43, 255203(12pp), 2010.
  • Atanacković, T. M., Konjik, S., Pilipović, S., Simić, S., Variational Problems with Fractional Derivatives: Invariance Conditions and Nöther’s Theorem, Nonlinear Anal., Theory Methods Appl., 71(5-6), 1504-1517, 2009.
  • Konjik, S., Kunzinger, M., Oberguggenberger, M., Foundations of the calculus of variations in generalized function algebras, Acta Appl. Math., 103(2), 169-199, 2008.
  • Atanacković, T. M., Konjik, S., Pilipović, S., Variational Problems with Fractional Derivatives: Euler-Lagrange Equations, J. Phys A: Math. Theor., 41, 095201, 2008.
  • Konjik, S., Kunzinger, M., Group invariants in algebras of generalized functions, Integral Transforms Spec. Funct., 17(2-3) 77-84, 2006.
  • Konjik, S., Kunzinger, M., Generalized group actions in a global setting, J. Math. Anal. Appl., 322(1), 420-436, 2006.
  • Konjik, S., Symmetries of conservation laws, Publ. Inst. Math., Nouv. Sér., 77(91), 29-51, 2005.

  • Contributions to Proceedings

  • Jolić, M., Konjik, S., Mitrović, D., A new approach in solving fractional nonlinear control problems, Proceedings of ICFDA 2023 - The International Conference on Fractional Differentiation and its Applications. Ajman University, UAE (14-16 March 2023), 6 pages, 2023.
  • Konjik, S., Atanacković, T. M., Oparnica, Lj., Zorica, D., A note on the constitutive equation in a linear fractional viscoelastic body model, In V. I. Burenkov, M. L. Goldman, E. B. Laneev, V. D. Stepanov (Eds.), Progress in Analysis. Proceedings of the 8th Congress of the International Society for Analysis, its Applications, and Computation. Moscow, Russia (22-27 August 2011), Volume 1, 274-281, 2012.
  • Atanacković, T. M., Konjik, S., Pilipović, S., Fractionalization of constitutive equations in viscoelasticity, In W. Chen, H. G. Sun, D. Baleanu (Eds.), Proceedings of FDA’12. The 5th Symposium on Fractional Differentiation and its Applications. Nanjing, China (14-17 May 2012), Article no. FDA12-129, 6 pages, 2012.
  • Atanacković, T. M., Konjik, S., Oparnica, Lj., Pilipović, S., Simić, S., Recent progress in the calculus of variations with fractional derivatives, In I. Podlubny, B. M. Vinagre Jara, YQ. Chen, V. Feliu Batlle, I. Tejado Balsera (Eds.), Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain (8-20 October 2010), Article no. FDA10-059, 6 pages, 2010.
  • Theses

  • Konjik, S., Group Analysis and Variational Symmetries for Non-smooth Problems, PhD Thesis (advisor: Univ.- Prof. Dr. Michael Kunzinger), Vienna, 2008.
  • Konjik, S., Symmetry Groups of Systems of Conservation Laws, MSc Thesis (advisor: Academician Prof. Dr Stevan Pilipović), Novi Sad, 2003.
  • Last modified: July 2023.