Publications
- B. Bašić, Counter-intuitive answers to some questions concerning minimal-palindromic extensions of binary words, Discrete Appl. Math. 160 (2012), 181–186. (doi)
- B. Bašić, On d-digit palindromes in different bases: The number of bases is unbounded, Int. J. Number Theory 8 (2012), 1387–1390. (doi)
- B. Bašić, A note on the paper “On Brlek-Reutenauer conjecture”, Theoret. Comput. Sci. 448 (2012), 94–96. (doi)
- B. Bašić, On highly potential words, European J. Combin. 34 (2013), 1028–1039. (doi)
- B. Bašić, Characterization of arithmetic functions that preserve the sum-of-squares operation, Acta Math. Sin. (Engl. Ser.) 30 (2014), 689–695. (doi)
- B. Bašić, On absorption in semigroups and n-ary semigroups, Log. Methods Comput. Sci. 11 (2015), 2:15, 13 pp. (doi)
- B. Bašić, On “very palindromic” sequences, J. Korean Math. Soc. 52 (2015), 765–780. (doi)
- B. Bašić, The Heesch number for multiple prototiles is unbounded, C. R. Math. Acad. Sci. Paris 353 (2015), 665–669. (doi)
- B. Bašić, On a functional equation related to roots of translations of positive integers, Aequationes Math. 89 (2015), 1195–1205. (doi)
- B. Bašić, On quotients of values of Euler's function on the Catalan numbers, J. Number Theory 169 (2016), 160–173. (doi)
- B. Bašić, The existence of n-flimsy numbers in a given base, Ramanujan J. 43 (2017), 359–369. (doi)
- B. Bašić & A. Slivková, On optimal piercing of a square, Discrete Appl. Math. 247 (2018), 242–251. (doi)
- K. Ago & B. Bašić, On highly palindromic words: the ternary case, Discrete Appl. Math. 284 (2020), 434–443. (doi)
- The unabridged version of the article, including an alternate proof of Theorem 6.1, is available here.
- K. Ago & B. Bašić & S. Hačko & D. Mitrović, On generalized highly potential words, Theoret. Comput. Sci. 849 (2021), 184–196. (doi)
- B. Bašić & A. Slivková, Asymptotical Unboundedness of the Heesch Number in Ed for d→∞, Discrete Comput. Geom., in press. (doi)
- B. Bašić & S. Hačko, Large families of permutations of Zd whose pairwise sums are permutations, J. Comb. Designs, in press. (doi)
- B. Bašić, A figure with Heesch number 6: pushing a two-decade-old boundary, Math. Intelligencer, in press.